1
|
Chen P, Zhong Z, Jin WX, Sun J, Sun SC. Chromosome-scale assembly of Artemia tibetiana genome, first aquatic invertebrate genome from Tibet Plateau. Sci Data 2025; 12:777. [PMID: 40355476 PMCID: PMC12069563 DOI: 10.1038/s41597-025-05136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Genomic-level studies on the adaptive evolution of animals in the Qinghai-Tibet Plateau have been rapidly increasing. However, most studies are concentrated on vertebrates, and there are few reports on invertebrates. Here, we report the chromosome-level genome assembly for the brine shrimp Artemia tibetiana from Kyêbxang Co, a high-altitude (4620 m above sea level) salt lake on the plateau, based on the combination of Illumina, Nanopore long-reads and Hi-C sequencing data. The assembled genome is 1.69 Gb, and 94.83% of the assembled sequences are anchored to 21 pseudo-chromosomes. Approximately 75% of the genome was identified as repetitive sequences, which is higher than most crustaceans documented so far. A total of 17,988 protein-coding genes were identified, among them 14,388 were functionally annotated. This genomic resource provides the foundation for whole-genome level investigation on the genetic adaptation of Artemia to the harsh conditions in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Panpan Chen
- Fisheries College, Ocean University of China, Qingdao, 266000, China
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Zhaoyan Zhong
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Wei-Xin Jin
- Fisheries College, Ocean University of China, Qingdao, 266000, China
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China
| | - Jin Sun
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China.
| | - Shi-Chun Sun
- Fisheries College, Ocean University of China, Qingdao, 266000, China.
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266000, China.
| |
Collapse
|
2
|
Yao XQ, Bao H, La NT, Jiang GS, Zhai PH, Liu CB, Yu L. Gut microbiota contribute to cold adaptation in mammals-primates and ungulates. iScience 2025; 28:112245. [PMID: 40241768 PMCID: PMC12002624 DOI: 10.1016/j.isci.2025.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Gut microbiota play an influential role in how animals adapt to extreme environments. Two phylogenetically distant mammals, Yunnan snub-nosed monkey and reindeer both adapted to frigid environments. Metagenomic analyses revealed they developed similar cold adaptation strategies in response to food scarcity (enhanced fiber degradation and nitrogen balance maintenance), energy shortages (increased short-chain fatty acid [SCFA] synthesis), and a constant body temperature sustainment (stimulation of non-shivering thermogenesis [NST]). Moreover, they evolved distinct adaptation strategies to cope with different cold ecosystems. Yunnan snub-nosed monkey adapt to high-altitude hypoxia environment through enhancing ability to synthesize lactate and metabolize purine, while reindeer adapt to extreme cold environment through increasing blood flow, strengthening urea cycling, and enriching fat storage associated bacteria. Notably, reindeer microbiota uniquely enriched cholesterol-degrading bacteria, potentially mitigating cardiovascular risks from lipid storage. Our study expands the knowledge of how gut microbiome promotes cold adaptation through shared and specialized mechanisms shaped by different phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Xue-Qin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Nhat-Tan La
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guang-Shun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Peng-Hui Zhai
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bing Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Li Y, Luo J, Chen M, Roos C, Hu Z, Chen Y, Tian Y, Guo R, Kuang W, Yu L. Genetic Diversity, Genetic Structure, and Demographic History of Black Snub-Nosed Monkey (Rhinopithecus strykeri) in the Gaoligong Mountains, Southwestern China. Am J Primatol 2025; 87:e70031. [PMID: 40195038 DOI: 10.1002/ajp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The Gaoligong Mountains, located in the southeastern Tibetan Plateau, is one of the world's biodiversity hotspots and provides a refugium for many endangered endemic animals. In this study, we reported a population genetic study on black snub-nosed monkey (Rhinopithecus strykeri), a critically endangered primate endemic to the Gaoligong Mountains, yet their large-scale population genetic study remains underexplored. Here, we performed population genetic analyses from two geographical populations (Pianma and Luoma) based on targeted genomic single-nucleotide polymorphism (SNP) data (37.7 K) and mitochondrial DNA (mtDNA) control region (842 bp). Both nuclear SNP data and mtDNA revealed relatively low levels of genetic variation in both populations compared to other reported primates, which is most likely to be explained by loss of historical genetic diversity due to inbreeding and long-term small effective population size, thus potentially aggravating the effects of inbreeding and genetic depression. Phylogenetic and population structure analyses for mtDNA revealed two deep lineages (approximately 0.69 million years ago), but limited genetic differentiation in nuclear data, which might have been caused by the Late Cenozoic uplift of the Tibetan Plateau and glacial refuge, and subsequent secondary contact as a result of historically high and bidirectional gene flow between populations. Ecological niche modeling and landscape connectivity analyses also showed historical and recent connectivity between two geographical populations. The demographic history inferred from both mtDNA and nuclear data revealed at least two continuous declines in the effective population size occurring around 43 Kya and 8-10 Kya, respectively, probably due to Pleistocene glaciations and subsequent human activities. Our results provide the first detailed and comprehensive genetic insights into the genetic diversity, population structure, and demographic history of a critically endangered species, and provide essential baseline information to guide conservation efforts.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jia Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Minglin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Zhechang Hu
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yixin Chen
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, China
| | - Yingping Tian
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Rongxi Guo
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
4
|
Wu X, Pei J, Xiong L, Ge Q, Bao P, Liang C, Yan P, Guo X. Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity characteristics in three Chinese cattle breeds. BMC Genomics 2025; 26:206. [PMID: 40021973 PMCID: PMC11871715 DOI: 10.1186/s12864-025-11328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Cattle have evolved genetic adaptations to a diverse range of agroecological zones, such as plateaus and arid zones. However, little is known about its genetic basis of adaptation to harsh environments within a short period of time after domestication. Here, we analyzed whole-genome sequence data from three indigenous cattle breeds (Anxi, Qaidam and Zhangmu) in northwest China and five worldwide cattle breeds (Angus, Holstein, Jersey, Gir and N'Dama) to explore their genetic composition and identify selective sweeps in the Chinese cattle breeds. RESULTS Analyses of phylogenetic and population structure revealed that three indigenous cattle breeds share genomic components from Bos taurus and Bos indicus. A novel set of candidate genes was identified through comparative genomic analyses of cattle from contrasting environments based on SNP and copy number variation (CNV) data. These candidate genes are potentially associated with adaptive phenotypes, including high-altitude adaptability (e.g., ANGPT1, PPARGC1A, RORA), cold climate adaptation (e.g., TSHR, PRKG, OXCT1), and dryland adaptation (e.g., PLEKHA7, NFATC1, PLCB1). CONCLUSIONS This study unravels the unique adaptive diversity of three Chinese indigenous cattle breeds, providing a valuable resource for future research on sustainable livestock breeding strategies to response to climate change.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Lin Xiong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Qianyun Ge
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji, 831100, China.
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.
| |
Collapse
|
5
|
Wang X, Shen Y, Teng Y, Wu R, Liu S, Zhao J, Hu C, Li M, Pan H, Qi J. Successful Traceability of Wildlife Samples Contributes to Wildlife Conservation: A Case Study of Tracing the Snub-Nosed Monkey ( Rhinopithecus spp.). Animals (Basel) 2025; 15:174. [PMID: 39858174 PMCID: PMC11758607 DOI: 10.3390/ani15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rapid and effective methods for tracing the geographic origin of wildlife samples are essential for tackling the illegal wildlife trade. Traditional morphological categorization methods are often inadequate as relying on the mitochondrial COXI barcode is insufficient for determining geographic populations. To address these limitations, we developed a bioinformatics-based pipeline for the rapid identification of traceable nuclear genome loci. This pipeline has been applied to the whole-genome sequence (WGS) data of China's flagship species, the snub-nosed monkey (Rhinopithecus spp.). These species are known for sex-biased dispersal and hybrid speciation, which complicates genealogy tracing. Using phylogenetic principles, we employed the Robinson and Foulds (RF) distance and scanned over 1,850,726 population-specific loci, identifying five pairs that can trace genealogy origins rapidly and cost-effectively using PCR. Additionally, we found that relying only on mitochondrial genetic information is insufficient for rapid and accurate traceability to subspecies-level geographic populations. Our pipeline efficiently identifies loci and traces the geographic origin of snub-nosed monkey individuals, providing a valuable tool for species preservation and combating the wildlife trade. This approach can be extended to other species, aiding in the conservation of endangered wildlife and tracing criminal evidence.
Collapse
Affiliation(s)
- Xibo Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhao Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Jilai Zhao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Can Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.W.)
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.)
| |
Collapse
|
6
|
Jack KM, Kulick NK, Schoof VA, Wikberg EC, Kawamura S, Fedigan LM. And Baby Makes Three: Postpartum Changes in Male-Female Affiliative Interactions in White-Faced Capuchins. Am J Primatol 2025; 87:e23691. [PMID: 39513495 PMCID: PMC11650963 DOI: 10.1002/ajp.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
In group-living primates, male investment in infants is highly variable. Previous research on polygynandrous primates found that male care of infants, whether direct or indirect, may be a means to increase offspring survival, increase social status, invest in future mating opportunities, and/or invest in future social or coalition partners, any of which may increase fitness outcomes. Relationships between male white-faced capuchins (Cebus imitator) and infants are highly variable, ranging from neutral to highly affiliative during periods of group stability to lethal during times of instability. We used genetic paternity analysis and behavioral observations to investigate the impact of paternity status, female dominance rank, male dominance rank, and infant sex on changes in rates of affiliation (contact and proximity) between capuchin males and females following the birth of an infant (n = 92 dyads). We used generalized linear mixed models and an information theory approach to select models for averaging. We found that overall rates of male-female affiliation increased following the birth of an infant (contact change: +1.09 ± 2.55%; proximity change: +1.16 ± 3.08%). Infant sex was the only significant explanatory variable; dyads that included males and females who gave birth to male infants experienced a significant increase in their time in contact and proximity in comparison to dyads with females who gave birth to female infants (contact change: p < 0.05 in 2/3 models; proximity change: p < 0.001 in 3/3 models). These findings add to previous data indicating that male capuchins do not recognize their offspring or have the motivation to preferentially invest in their care. We suggest that the observed sex bias may be a form of sex-specific socialization connected to the importance of forming long-term cooperative male bonds that are maintained via male parallel dispersal in this species.
Collapse
Grants
- This study was supported by National Geographic Society (Grant 6332-98), Natural Sciences and Engineering Research Council of Canada (NSERC postgraduate scholarship), Alberta Heritage Scholarship Fund, Royal Anthropological Institute, Sigma-Xi, the Faculty of Graduate Studies and Research/Department of Anthropology at the University of Alberta, Izaak Walton Killam Memorial Scholarship, Tulane's Stone Center for Latin American Studies, Newcomb Institute, Committee on Research, Research Enhancement Fund
- J. Armand Bombardier Internationalist Fellowship, Fonds Québecois de la Recherche sur la Nature et les Technologies, The LSB Leakey Foundation, National Geographic Society (grant 8652-09), National Science Foundation (grant 0926039), Tulane University's Department of Anthropology, Stone Center for Latin American Studies, NSERC Operating Grant (grant #A7723), the Japan Society for the Promotion of Science (P12739 and 22247036), and the National Science Foundation Graduate Research Fellowship Program (grant #2021318675).
- This study was supported by National Geographic Society (Grant 6332-98), Natural Sciences and Engineering Research Council of Canada (NSERC postgraduate scholarship), Alberta Heritage Scholarship Fund, Royal Anthropological Institute, Sigma-Xi, the Faculty of Graduate Studies and Research/Department of Anthropology at the University of Alberta, Izaak Walton Killam Memorial Scholarship, Tulane's Stone Center for Latin American Studies, Newcomb Institute, Committee on Research, Research Enhancement Fund, J. Armand Bombardier Internationalist Fellowship, Fonds Québecois de la Recherche sur la Nature et les Technologies, The LSB Leakey Foundation, National Geographic Society (grant 8652-09), National Science Foundation (grant 0926039), Tulane University's Department of Anthropology, Stone Center for Latin American Studies, NSERC Operating Grant (grant #A7723), the Japan Society for the Promotion of Science (P12739 and 22247036), and the National Science Foundation Graduate Research Fellowship Program (grant #2021318675).
Collapse
Affiliation(s)
| | - Nelle K. Kulick
- Department of AnthropologyTulane UniversityNew OrleansLouisianaUSA
- Department of Anthropology and ArcheologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Valérie A.M. Schoof
- Department of AnthropologyTulane UniversityNew OrleansLouisianaUSA
- Bilingual Biology Program (Multidisciplinary Studies Department)Faculty of Graduate Studies (Biology)York UniversityTorontoOntarioCanada
| | - Eva C. Wikberg
- Department of AnthropologyUniversity of Texas at San AntonioSan AntonioTexasUSA
| | - Shoji Kawamura
- Department of Integrated BiosciencesGraduate School of Frontier SciencesUniversity of TokyoBunkyo CityTokyoJapan
| | - Linda M. Fedigan
- Department of Anthropology and ArcheologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
7
|
Zuo B, Chen R, Tang X, Shao Y, Liu X, Nneji LM, Sun Y. Genomic Insights Into Genetic Basis of Evolutionary Conservatism and Innovation in Frogs. Integr Zool 2024. [PMID: 39663509 DOI: 10.1111/1749-4877.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Examining closely related species evolving in similar environments offers valuable insights into the mechanisms driving phylogenetic conservatism and evolutionary lability. This can elucidate the intricate relationship between inheritance and environmental factors. Nonetheless, the precise genomic dynamics and molecular underpinnings of this process remain enigmatic. This study explores the evolutionary conservatism and adaptation exhibited by two closely related high-altitude frog species: Nanorana parkeri and N. pleskei. We assembled a high-quality genome for Tibetan N. pleskei and compared it to the genomes of N. parkeri and their lowland relatives. Our findings reveal that these two Tibetan frog species diverged approximately 16.6 million years ago, pointing to a possible ancestral colonization of high-elevation habitats. Following this colonization, significant adaptive evolution occurred in both coding and non-coding regions of the ancestral lineage. This evolution led to notable phenotypic alterations, as evidenced by the reduced body size. Also, due to purifying selection, most ancestral adaptive features persisted in descendant species, indicating a strong element of evolutionary conservatism. However, descendant species evolved novel adaptations to exacerbated environmental challenges in the Tibet Plateau, mainly related to hypoxia response. Furthermore, our analysis underscores the critical role of regulatory variations in descendant adaptive evolution. Notably, hub genes in networks, such as EGLN3, accumulated more variations in regulatory regions as they were transmitted from ancestors to descendants. In sum, our study sheds light on the profound and lasting impact of genetic heritage on species' adaptive evolution.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Rongmei Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaolong Liu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Lotanna M Nneji
- Department of Biology, Howard University, Washington, DC, USA
| | - Yanbo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
8
|
Bubenikova J, Plasil M, Burger PA, Horin P. Four new genome sequences of the Pallas's cat ( Otocolobus manul): an insight into the patterns of within-species variability. Front Genet 2024; 15:1463774. [PMID: 39720181 PMCID: PMC11667119 DOI: 10.3389/fgene.2024.1463774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Manul (Otocolobus manul) is the only representative of the genus Otocolobus, which makes up the Leopard Cat lineage along with the genus Prionailurus. Their habitat is characterized by harsh environmental conditions. Although their populations are probably more stable than previously thought, it is still the case that their population size is declining. Conservation programs exist to protect manuls, but those based on captive breeding are often unsuccessful due to their increased susceptibility to diseases. The manul is therefore a suitable model species for evolutionary and diversity studies as well as for studying mechanisms of adaptation to harsh environment and mechanisms of susceptibility to diseases. Recently, the genome of the O. manul based on nanopore long-range sequencing has been published. Aiming to better understand inter- and intraspecific variation of the species, we obtained information on genome sequences of four other manuls, based on whole genome resequencing via the Illumina platform. On average, we detected a total of 3,636,571 polymorphic variants. Information on different types of structural variants and on the extent of SNP homozygosity, not available from the reference genome, was retrieved. The average whole-genome heterozygosity was almost identical to that found in the O. manul reference genome. In this context, we performed a more detailed analysis of the candidate gene EPAS1 potentially related to adaptation to the hypoxic environment. This analysis revealed both inter- and intraspecific variation, confirmed the presence of a previously described non-synonymous substitution in exon 15 unique to manuls and identified three additional unique non-synonymous substitutions located in so far not analyzed EPAS1 exonic sequences. The analysis of lncRNA located in the intron 7 of EPAS1 revealed interspecific variability and monomorphic nature of the sequence among analyzed manuls. The data obtained will allow more detailed analyses of the manul genome, focusing on genes and pathways involved in their adaptation to the environment and in susceptibility to diseases. This information can be helpful for optimizing conservation programs for this understudied species.
Collapse
Affiliation(s)
- Jana Bubenikova
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
| | - Martin Plasil
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna (VETMEDUNI), Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, CEITEC – VETUNI Brno, Brno, Czechia
- Department of Animal Genetics, VETUNI Brno, Brno, Czechia
| |
Collapse
|
9
|
Li X, Han B, Liu D, Wang S, Wang L, Pei Q, Zhang Z, Zhao J, Huang B, Zhang F, Zhao K, Tian D. Whole-genome resequencing to investigate the genetic diversity and mechanisms of plateau adaptation in Tibetan sheep. J Anim Sci Biotechnol 2024; 15:164. [PMID: 39639384 PMCID: PMC11622566 DOI: 10.1186/s40104-024-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Tibetan sheep, economically important animals on the Qinghai-Tibet Plateau, have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective breeding. However, most current research focuses on one or two breeds, and lacks a comprehensive representation of the genetic diversity across multiple Tibetan sheep breeds. This study aims to fill this gap by investigating the genetic structure, diversity and high-altitude adaptation of 6 Tibetan sheep breeds using whole-genome resequencing data. RESULTS Six Tibetan sheep breeds were investigated in this study, and whole-genome resequencing data were used to investigate their genetic structure and population diversity. The results showed that the 6 Tibetan sheep breeds exhibited distinct separation in the phylogenetic tree; however, the levels of differentiation among the breeds were minimal, with extensive gene flow observed. Population structure analysis broadly categorized the 6 breeds into 3 distinct ecological types: plateau-type, valley-type and Euler-type. Analysis of unique single-nucleotide polymorphisms (SNPs) and selective sweeps between Argali and Tibetan sheep revealed that Tibetan sheep domestication was associated primarily with sensory and signal transduction, nutrient absorption and metabolism, and growth and reproductive characteristics. Finally, comprehensive analysis of selective sweep and transcriptome data suggested that Tibetan sheep breeds inhabiting different altitudes on the Qinghai-Tibet Plateau adapt by enhancing cardiopulmonary function, regulating body fluid balance through renal reabsorption, and modifying nutrient digestion and absorption pathways. CONCLUSION In this study, we investigated the genetic diversity and population structure of 6 Tibetan sheep breeds in Qinghai Province, China. Additionally, we analyzed the domestication traits and investigated the unique adaptation mechanisms residing varying altitudes in the plateau region of Tibetan sheep. This study provides valuable insights into the evolutionary processes of Tibetan sheep in extreme environments. These findings will also contribute to the preservation of genetic diversity and offer a foundation for Tibetan sheep diversity preservation and plateau animal environmental adaptation mechanisms.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Zian Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Bin Huang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Fuqiang Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| |
Collapse
|
10
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
11
|
Duan H, Tao L, Wu K, Li Q, Zhou X, Dong P, Sun X, Lin L, Ma X, Zhao R, Wang Q. Association of depression with gastroesophageal reflux disease, and the mediating role of risk factors: a Mendelian randomization study. Front Psychiatry 2024; 15:1425730. [PMID: 39606001 PMCID: PMC11600978 DOI: 10.3389/fpsyt.2024.1425730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background Growing evidence suggests that depression affects gastroesophageal reflux disease (GERD). But, the relationship between depression and GERD is unclear. To examine the relationship between depression and the risk of GERD, as well as the mediating role of risk factors. Methods We found genetic variants associated with GERD (N = 78,707) and depression (N = 500,199 (excluding 23 and Me) from the largest genome-wide association study and we applied two-sample Mendelian randomization (MR) to find out if they are related. We further used two-step MR to find the mediating factors. Results The results found a causal link between depression and GERD, inverse-variance weighted (IVW), risk OR 2.149 (95% CI, 1.910 to 2.418; P <0.001). F-statistics for all instrumental variables (IVs) were greater than 10. Multivariate MR maintained the significance of the depression-GERD link even after adjusting for body mass index (BMI), waist-to-hip ratio (WHR), and educational attainment (EA). Mediation analysis revealed that increased depression is associated with lower EA (OR = 0.94; 95% CI, 0.89 to 0.99; P = 0.03), while EA itself significantly impacts GERD risk (OR = 0.25; 95% CI, 0.18 to 0.34; P = 8.24 × 10-9). Ultimately, EA mediates the effect of depression on GERD (OR = 1.09; 95% CI, 1.01 to 1.18; P = 0.04), accounting for 11.4% of the mediated effect. Conclusions Depression is associated with an increased risk of developing GERD, with some of the effects mediated by EA. This result may provide important information for the prevention and intervention of depression and GERD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiong Wang
- The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest
Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
13
|
Seshadri L, Atickem A, Zinner D, Roos C, Zhang L. Whole Genome Analysis Reveals Evolutionary History and Introgression Events in Bale Monkeys. Genes (Basel) 2024; 15:1359. [PMID: 39596559 PMCID: PMC11593718 DOI: 10.3390/genes15111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: The Bale monkey (Chlorocebus djamdjamensis) is a threatened primate species endemic to Ethiopia and, in contrast to other members of the genus Chlorocebus, lives at high altitudes and feeds mainly on bamboo. Two populations of the species are present, one in continuous bamboo forest (CF) in the eastern part of the species' range, and the other in fragmented forest (FF) in the western part. Based on mitochondrial DNA and phenotypic characteristics, previous studies have suggested introgression by parapatric congeners into the FF population but not into the CF population. The objective of this study was to gain insights into the evolutionary history of Bale monkeys and their potential genetic adaptations to high altitudes and for bamboo consumption. Methods: We sequenced the whole genomes of individuals from both populations and compared their genomes with those of the other five Chlorocebus species. We applied phylogenetic methods and conducted population demographic simulations to elucidate their evolutionary history. A genome-wide analysis was conducted to assess gene flow and identify mutations potentially associated with adaptations to high altitudes and for bamboo metabolism. Results: Our analyses revealed Bale monkeys as the sister clade to Chlorocebus aethiops and showed that gene flow occurred between C. aethiops and FF but not between C. aethiops and CF. In addition, we detected non-synonymous mutations in genes potentially associated with the adaptation to high altitudes (EPAS1) in both populations and with the adaptation for bamboo metabolism (TAS2R16, MPST, and TST) mainly in the CF population. Conclusions: Our study provides insights into the evolutionary history of a threatened primate species and reveals the genetic basis for its adaptions to unique environments and for diet specialization.
Collapse
Affiliation(s)
- Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- International Max Planck Research School for Genome Science (IMPRS-GS), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa 999047, Ethiopia;
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| |
Collapse
|
14
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC, The Amphibian Genomics Consortium (AGC). The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
15
|
Cliffe RN, Ewart HE, Scantlebury DM, Kennedy S, Avey-Arroyo J, Mindich D, Wilson RP. Sloth metabolism may make survival untenable under climate change scenarios. PeerJ 2024; 12:e18168. [PMID: 39351373 PMCID: PMC11441404 DOI: 10.7717/peerj.18168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Although climate change is predicted to have a substantial effect on the energetic requirements of organisms, the longer-term implications are often unclear. Sloths are limited by the rate at which they can acquire energy and are unable to regulate core body temperature (Tb) to the extent seen in most mammals. Therefore, the metabolic impacts of climate change on sloths are expected to be profound. Here we use indirect calorimetry to measure the oxygen consumption (VO2) and Tb of highland and lowland two-fingered sloths (Choloepus hoffmanni) when exposed to a range of different ambient temperatures (Ta) (18 °C -34 °C), and additionally record changes in Tb and posture over several days in response to natural fluctuations in Ta. We use the resultant data to predict the impact of future climate change on the metabolic rate and Tb of the different sloth populations. The metabolic responses of sloths originating from the two sites differed at high Ta's, with lowland sloths invoking metabolic depression as temperatures rose above their apparent 'thermally-active zone' (TAZ), whereas highland sloths showed increased RMR. Based on climate change estimates for the year 2100, we predict that high-altitude sloths are likely to experience a substantial increase in metabolic rate which, due to their intrinsic energy processing limitations and restricted geographical plasticity, may make their survival untenable in a warming climate.
Collapse
Affiliation(s)
- Rebecca N Cliffe
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| | - Heather E Ewart
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
- School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - David M Scantlebury
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sarah Kennedy
- The Sloth Conservation Foundation, Hayfield, Derbyshire, United Kingdom
| | | | | | - Rory P Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
16
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
17
|
Yan J, Song C, Liang J, La Y, Lai J, Pan R, Huang Z, Li B, Zhang P. Moderate Genetic Diversity of MHC Genes in an Isolated Small Population of Black-and-White Snub-Nosed Monkeys ( Rhinopithecus bieti). Animals (Basel) 2024; 14:2276. [PMID: 39123802 PMCID: PMC11310952 DOI: 10.3390/ani14152276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Genetic diversity is an essential indicator that echoes the natural selection and environmental adaptation of a species. Isolated small populations are vulnerable to genetic drift, inbreeding, and limited gene flow; thus, assessing their genetic diversity is critical in conservation. In this study, we studied the genetic diversity of black-and-white snub-nosed monkeys (Rhinopithecus bieti) using neutral microsatellites and five adaptive major histocompatibility complex (MHC) genes. Two DQA1 alleles, two DQB1 alleles, two DRB1 alleles, two DRB5 alleles, and three DPB1 alleles were isolated from a population. The results indicate that neutral microsatellites demonstrate a high degree of heterozygosity and polymorphism, while adaptive MHC genes display a high degree of heterozygosity and moderate polymorphism. The results also show that balancing selection has prominently influenced the MHC diversity of the species during evolution: (1) significant positive selection is identified at several amino acid sites (primarily at and near antigen-binding sites) of the DRB1, DRB5, and DQB1 genes; (2) phylogenetic analyses display the patterns of trans-species evolution for all MHC loci. This study provides valuable genetic diversity insights into black-and-white snub-nosed monkeys, which dwell at the highest altitude and have experienced the harshest environmental selection of all primates globally since the Pleistocene. Such results provide valuable scientific evidence and a reference for making or amending conservation strategies for this endangered primate species.
Collapse
Affiliation(s)
- Jibing Yan
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
| | - Chunmei Song
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
| | - Jiaqi Liang
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
| | - Yanni La
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
| | - Jiandong Lai
- Baima Snow Mountain National Nature Reserve Administrative Bureau, Diqing 674500, China;
| | - Ruliang Pan
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
- International Center of Biodiversity and Primat Conservation, Dali University, Dali 671003, China
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Zhipang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China;
| | - Baoguo Li
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
- Shaanxi Institute of Zoology, Xi’an 710032, China
- College of Life Science, Yanan University, Yanan 710032, China
| | - Pei Zhang
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.Y.); (C.S.); (J.L.); (Y.L.); (R.P.)
| |
Collapse
|
18
|
Li C, Chen B, Langda S, Pu P, Zhu X, Zhou S, Kalds P, Zhang K, Bhati M, Leonard A, Huang S, Li R, Cuoji A, Wang X, Zhu H, Wu Y, Cuomu R, Gui B, Li M, Wang Y, Li Y, Fang W, Jia T, Pu T, Pan X, Cai Y, He C, Wang L, Jiang Y, Han JL, Chen Y, Zhou P, Pausch H, Wang X. Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae030. [PMID: 39142817 PMCID: PMC12016566 DOI: 10.1093/gpbjnl/qzae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 08/16/2024]
Abstract
Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.
Collapse
Affiliation(s)
- Chao Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Bingchun Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Suo Langda
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | | | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ran Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Awang Cuoji
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Xiran Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Haolin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Renqin Cuomu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ba Gui
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ming Li
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yutao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Yan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenwen Fang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Tianchun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yudong Cai
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chong He
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs/Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Liming Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yu Jiang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
19
|
Li Y, Yi H, Zhu Y. Novel insights into adaptive evolution based on the unusual AT-skew in Acheilognathus gracilis mitogenome and phylogenetic relationships of bitterling. Gene 2024; 902:148154. [PMID: 38218382 DOI: 10.1016/j.gene.2024.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Acheilognathus gracilis, a bitterling species, distribute in lower reaches of Yangtze River. They are identified as the top-priority bitterling species for conservation as having high evolutionary distinctiveness and are at risk of extinction. In present study, we first sequenced the complete mitogenome of A. gracilis and analyzed its phylogenetic position using 13 PCGs. The A. gracilis mitogenome is 16,774 bp in length, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, a control region and the origin of the light strand replication. The overall base composition of A. gracilis in descending order is T 27.9 %, A 27.7 %, C 26.1 % and G 18.3 %, shows a unusual AT-skew with slightly negative. Further investigation revealed A. gracilis uses excess T over A in NADH dehydrogenase 5 (nd5), whereas the most of other bitterlings are biased toward to use A not T, implying there is likely to be unique strategy of adaptive evolution in A. gracilis. We also compared 13 PCGs of 30 bitterling mitogenomes and the results exhibit highly conservative. Phylogenetic trees constructed by 13 PCGs strongly support the monophyly of Acheilognathus and the paraphyly of Rhodeus and Tanakia. Current results will provide valuable information for follow-up research on conservation of species facing with serious population decline and can provide novel insights into the phylogenetic analysis and evolutionary biology research.
Collapse
Affiliation(s)
- Yuxuan Li
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yi
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
20
|
Anashkina AA, Simonenko SY, Orlov YL, Petrushanko IY. Glutathione Non-Covalent Binding Sites on Hemoglobin and Major Glutathionylation Target betaCys93 Are Conservative among Both Hypoxia-Sensitive and Hypoxia-Tolerant Mammal Species. Int J Mol Sci 2023; 25:53. [PMID: 38203223 PMCID: PMC10778717 DOI: 10.3390/ijms25010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Intracellular tripeptide glutathione is an important agent of cell survival under hypoxia. Glutathione covalently binds to SH groups of hemoglobin cysteine residues, protecting them from irreversible oxidation, and changes its affinity to oxygen. Reduced glutathione (GSH) can also form a noncovalent complex with hemoglobin. Previously, we showed that hemoglobin tetramer has four noncovalent binding sites of glutathione GSH molecules inside, two of which are released during hemoglobin transition to deoxy form. In this study, we characterized the conserved cysteine residues and residues of noncovalent glutathione binding sites in the sequences of a number of hypoxia-tolerant and hypoxia-sensitive mammals. The solvent accessibility of all HbA and HbB residues in oxy and deoxy forms was analyzed. The alpha subunit of all species considered was shown to have no conserved cysteines, whereas the beta subunit contains Cys93 residue, which is conserved across species and whose glutathionylation changes the affinity of hemoglobin for oxygen 5-6-fold. It was found that the key residues of noncovalent glutathione binding sites in both alpha and beta subunits are absolutely conserved in all species considered, suggesting a common mechanism of hemoglobin redox regulation for both hypoxia-sensitive and hypoxia-tolerant mammals.
Collapse
Affiliation(s)
- Anastasia A. Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., 119991 Moscow, Russia;
| | - Sergey Yu. Simonenko
- Biotechnology Division, Research Center for Translational Medicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia;
| | - Yuriy L. Orlov
- Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia;
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., 119991 Moscow, Russia;
| |
Collapse
|
21
|
Li HB, Sun J, Li LH, Zhou Y, Fang XL, Li BY, Guo LJ, Geng Y, Wang CP, Huang ZP, Garber PA, Yang Y, Cui LW, Xiao W. Effects of provisioning on the activity budget and foraging strategies of black-and-white snub-nosed monkeys (Rhinopithecus bieti) in the Baima Snow Mountain Nature Reserve, Yunnan, China. Am J Primatol 2023; 85:e23548. [PMID: 37661600 DOI: 10.1002/ajp.23548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Provisioning can significantly affect the ranging patterns, foraging strategies, and time budget of wild primates. In this study, we document for the first time, the effects of provisioning on the activity budget and foraging effort in an Asian colobine. Over 3-years, we used an instantaneous scanning method at 10-min intervals to collect data on the activity budget of a semiprovisioned breeding band (SPB) of black-and-white snub-nosed monkeys (Rhinopithecus bieti) (42-70 individuals) at Xiangguqing (Tacheng), Yunnan, China. We then compared the effects of provisioning in our study band with published data on a sympatric wild nonprovisioned breeding band (NPB) of R. bieti (ca. 360 monkeys) at the same field site. The SPB spent 25.6% of their daytime feeding, 17.1% traveling, 46.9% resting, and 10.3% socializing. In comparison, the NPB devoted more time to feeding (34.9%) and socializing (14.1%), less time to resting (31.3%), and was characterized by a greater foraging effort (1.74 versus 0.96, foraging effort = (feeding + traveling)/resting; see Methods). There was no difference between bands in the proportion of their activity budget devoted to traveling (15.7% vs. 17.1%). In addition, the SPB exhibited a more consistent activity budget and foraging effort across all seasons of the year compared to the NPB. These findings suggest that the distribution, availability, and productivity of naturally occurring feeding sites is a major determinant of the behavioral strategies and activity budget of R. bieti. Finally, a comparison of our results with data on six nonprovisioned R. bieti bands indicates that caution must be raised in meta-analyses or intraspecific comparisons of primate behavioral ecology that contain data generated from both provisioned and nonprovisioned groups.
Collapse
Affiliation(s)
- Hong-Bo Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Jing Sun
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Lun-Hong Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Xue-Lan Fang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Bo-Yan Li
- Institute of Resource Conservation, Lashihai Plateau Wetland Provincial Nature Reserve Bureau, Lijiang, Yunnan, China
| | - Long-Jie Guo
- Nujiang Administration Bureau, Gaoligongshan National Nature Reserve, Liuku, Yunnan, China
| | - Ying Geng
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Chun-Ping Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China
| | - Paul A Garber
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
| | - Yin Yang
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China
| | - Liang-Wei Cui
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| |
Collapse
|
22
|
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience 2023; 26:107793. [PMID: 37731610 PMCID: PMC10507238 DOI: 10.1016/j.isci.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 00 Suchdol, Czech Republic
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
23
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
24
|
Liu TS, Zhu XY, He D, You MS, You SJ. Oxygen stress on age-stage, two-sex life tables and transcriptomic response of diamondback moth (Plutella xylostella). ENVIRONMENTAL ENTOMOLOGY 2023; 52:527-537. [PMID: 36928981 DOI: 10.1093/ee/nvad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/17/2023]
Abstract
Elucidating the genetic basis of local adaption is one of the important tasks in evolutionary biology. The Qinghai-Tibet Plateau has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. The diamondback moth (DBM), Plutella xylostella, is one of the most devastating pests of the global Brassica industry. A highly heterozygous genome of this pest has facilitated its adaptation to a variety of complex environments, and so provides an ideal model to study fast adaptation. We conducted a pilot study combining RNA-seq with an age-stage, two-sex life table to study the effects of oxygen deprivation on DBM. The developmental periods of all instars were significantly shorter in the hypoxic environment. We compared the transcriptomes of DBM from Fuzhou, Fujian (low-altitude) and Lhasa, Tibet (high-altitude) under hypoxia treatment in a hypoxic chamber. Some DEGs are enriched in pathways associated with DNA replication, such as DNA repair, nucleotide excision repair, base excision repair, mismatch repair and homologous recombination. The pathways with significant changes were associated with metabolism process and cell development. Thus, we assumed that insects could adapt to different environments by regulating their metabolism. Our findings indicated that although adaptive mechanisms to hypoxia in different DBM strains could be similar, DBM individuals from Tibet had superior tolerance to hypoxia compared with those of Fuzhou. Local adaptation of the Tibetan colony was assumed to be responsible for this difference. Our research suggests novel mechanisms of insect responses to hypoxia stress.
Collapse
Affiliation(s)
- Tian-Sheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R. China
| | - Xiang-Yu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Di He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Shi-Jun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- BGI-Sanya, Sanya 572025, P.R. China
| |
Collapse
|
25
|
Wu H, Wang Z, Zhang Y, Frantz L, Roos C, Irwin DM, Zhang C, Liu X, Wu D, Huang S, Gu T, Liu J, Yu L. Hybrid origin of a primate, the gray snub-nosed monkey. Science 2023; 380:eabl4997. [PMID: 37262139 DOI: 10.1126/science.abl4997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/06/2022] [Indexed: 06/03/2023]
Abstract
Hybridization is widely recognized as promoting both species and phenotypic diversity. However, its role in mammalian evolution is rarely examined. We report historical hybridization among a group of snub-nosed monkeys (Rhinopithecus) that resulted in the origin of a hybrid species. The geographically isolated gray snub-nosed monkey Rhinopithecus brelichi shows a stable mixed genomic ancestry derived from the golden snub-nosed monkey (Rhinopithecus roxellana) and the ancestor of black-white (Rhinopithecus bieti) and black snub-nosed monkeys (Rhinopithecus strykeri). We further identified key genes derived from the parental lineages, respectively, that may have contributed to the mosaic coat coloration of R. brelichi, which likely promoted premating reproductive isolation of the hybrid from parental lineages. Our study highlights the underappreciated role of hybridization in generating species and phenotypic diversity in mammals.
Collapse
Affiliation(s)
- Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zefu Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-80539 Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies in Beijing Zoo, Beijing, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies in Beijing Zoo, Beijing, China
| | - Dongdong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Tongtong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
26
|
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Rogers J, Farh KKH, Bonet TM. A global catalog of whole-genome diversity from 233 primate species. Science 2023; 380:906-913. [PMID: 37262161 PMCID: PMC12120848 DOI: 10.1126/science.abn7829] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/06/2023] [Indexed: 06/03/2023]
Abstract
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Collapse
Affiliation(s)
- Lukas F. K. Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, CA 94404, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, CA 94404, USA
| | - Mareike C. Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Austria
| | - Joseph D. Orkin
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Département d’anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, CEP 69553-225, Tefé, Amazonas, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E. Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | | | - Joshua G. Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, CA 94404, USA
| | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City. UT 84102, USA
| | | | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - João Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia – RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica – ComFauna, Iquitos, Loreto, Peru
| | - Malu Messias
- Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clément J. Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clifford J. Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | | | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, Addis Ababa, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald–Insel Riems, Germany
| | - Minh D. Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK, and School of Geosciences, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robin M. D. Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, CA 94404, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
27
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
28
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich ASD, Fiziev PP, Kuderna LFK, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Bataillon T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O'Donnell-Luria A, Rehm HL, Xu J, Rogers J, Marques-Bonet T, Farh KKH. The landscape of tolerated genetic variation in humans and primates. Science 2023; 380:eabn8153. [PMID: 37262156 DOI: 10.1126/science.abn8197] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | | | - Petko P Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Joseph D Orkin
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, UT 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para, Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação "Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N F da Silva
- Instituto Nacional de Pesquisas da Amazonia, Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso, Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University, New Haven, CT 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, PoB 16316, Addis Ababa 1000, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald - Insei Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore 168582, Republic of Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, 08010 Barcelona, Spain
| | - Amanda Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| |
Collapse
|
29
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich A, Fiziev P, Kuderna L, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath J, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Batallion T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O’Donnell A, Rehm H, Xu J, Rogers J, Marques-Bonet T, Kai-How Farh K. The landscape of tolerated genetic variation in humans and primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538953. [PMID: 37205491 PMCID: PMC10187174 DOI: 10.1101/2023.05.01.538953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Joshua G. Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Anastasia Dietrich
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Petko Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Lukas Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Daniel Balick
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Mareike C. Janiak
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna; Djerassiplatz 1, 1030, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna; 1030, Vienna, Austria
| | - Joseph D. Orkin
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d’anthropologie, Université de Montréal; 3150 Jean-Brillant, Montréal, QC, H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University; Aarhus, 8000, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development; Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Faculty of Sciences, Department of Organismal Biology, Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB); Avenue Franklin D. Roosevelt 50, 1050, Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
| | | | - Julie Horvath
- North Carolina Museum of Natural Sciences; Raleigh, North Carolina, 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University; Durham, North Carolina , 27707, USA
- Department of Biological Sciences, North Carolina State University; Raleigh, North Carolina , 27695, USA
- Department of Evolutionary Anthropology, Duke University; Durham, North Carolina , 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabricio Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah; Salt Lake City, Utah, 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para; Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development; Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia – RedeFauna; Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica – ComFauna; Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação “Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N. F. da Silva
- Instituto Nacional de Pesquisas da Amazonia; Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso; Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University; San Antonio, Texas, 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Clément J. Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | | | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University; New Haven, Connecticut, 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | | | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen; Copenhagen, DK-2100, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center; 1369 West Wenyi Road, Hangzhou, 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University; 1 Xueshi Road, Shangcheng District, Hangzhou, 310006, China
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office; P.O.Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald - Isle of Riems, Germany
| | - Minh D. Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University; Hanoi, 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart; 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Av. Doctor Aiguader, N88, Barcelona, 08003, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation; C. Wellington 30, Barcelona, 08005, Spain
| | - Thomas Batallion
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune; Nho Quan District, Ninh Binh Province, 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature; 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre; Singapore 168582, Republic of Singapore
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland; Chambers Street, Edinburgh, EH1 1JF, UK
- School of Geosciences, University of Edinburgh; Drummond Street, Edinburgh, EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research; 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Amanda Melin
- Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany
- Department of Anthropology & Archaeology and Department of Medical Genetics
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
- Alberta Children’s Hospital Research Institute; University of Calgary; 2500 University Dr NW T2N 1N4, Calgary, Alberta, Canada
| | | | - Robin M. D. Beck
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Christian Roos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH8 9XP, UK
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Monkol Lek
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research; Kellnerweg 4, 37077 Göttingen, Germany
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Genetics, Yale School of Medicine; New Haven, Connecticut, 06520, USA
| | - Anne O’Donnell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Heidi Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Toyota Technological Institute at Chicago; Chicago, Illinois, 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| |
Collapse
|
30
|
Kuang W, Zinner D, Li Y, Yao X, Roos C, Yu L. Recent Advances in Genetics and Genomics of Snub-Nosed Monkeys ( Rhinopithecus) and Their Implications for Phylogeny, Conservation, and Adaptation. Genes (Basel) 2023; 14:985. [PMID: 37239345 PMCID: PMC10218336 DOI: 10.3390/genes14050985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The snub-nosed monkey genus Rhinopithecus (Colobinae) comprises five species (Rhinopithecus roxellana, Rhinopithecus brelichi, Rhinopithecus bieti, Rhinopithecus strykeri, and Rhinopithecus avunculus). They are range-restricted species occurring only in small areas in China, Vietnam, and Myanmar. All extant species are listed as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) Red List, all with decreasing populations. With the development of molecular genetics and the improvement and cost reduction in whole-genome sequencing, knowledge about evolutionary processes has improved largely in recent years. Here, we review recent major advances in snub-nosed monkey genetics and genomics and their impact on our understanding of the phylogeny, phylogeography, population genetic structure, landscape genetics, demographic history, and molecular mechanisms of adaptation to folivory and high altitudes in this primate genus. We further discuss future directions in this research field, in particular how genomic information can contribute to the conservation of snub-nosed monkeys.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Xueqin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Christian Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| |
Collapse
|
31
|
Zhao J, Yao Y, Li D, Zhu W, Xiao H, Xie M, Xiong Y, Wu J, Ni Q, Zhang M, Xu H. Metagenome and metabolome insights into the energy compensation and exogenous toxin degradation of gut microbiota in high-altitude rhesus macaques (Macaca mulatta). NPJ Biofilms Microbiomes 2023; 9:20. [PMID: 37081021 PMCID: PMC10119431 DOI: 10.1038/s41522-023-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
There have been many reports on the genetic mechanism in rhesus macaques (RMs) for environmental adaptation to high altitudes, but the synergistic involvement of gut microbiota in this adaptation remains unclear. Here we performed fecal metagenomic and metabolomic studies on samples from high- and low-altitude populations to assess the synergistic role of gut microbiota in the adaptation of RMs to high-altitude environments. Microbiota taxonomic annotation yielded 7471 microbiota species. There were 37 bacterial species whose abundance was significantly enriched in the high-altitude populations, 16 of which were previously reported to be related to the host's dietary digestion and energy metabolism. Further functional gene enrichment found a stronger potential for gut microbiota to synthesize energy substrate acetyl-CoA using CO2 and energy substrate pyruvate using oxaloacetate, as well as a stronger potential to transform acetyl-CoA to energy substrate acetate in high-altitude populations. Interestingly, there were no apparent differences between low-altitude and high-altitude populations in terms of genes enriched in the main pathways by which the microbiota consumed the three energy substrates, and none of the three energy substrates were detected in the fecal metabolites. These results strongly suggest that gut microbiota plays an important energy compensatory role that helps RMs to adapt to high-altitude environments. Further functional enrichment after metabolite source analysis indicated the abundance of metabolites related to the degradation of exogenous toxins was also significantly higher in high-altitude populations, which suggested a contributory role of gut microbiota to the degradation of exogenous toxins in wild RMs adapted to high-altitude environments.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jiayun Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
32
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
33
|
Li A, Yang Q, Li R, Dai X, Cai K, Lei Y, Jia K, Jiang Y, Zan L. Chromosome-level genome assembly for takin (Budorcas taxicolor) provides insights into its taxonomic status and genetic diversity. Mol Ecol 2023; 32:1323-1334. [PMID: 35467052 DOI: 10.1111/mec.16483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
The takin (Budorcas taxicolor) is one of the largest bovid herbivores in the subfamily Caprinae. The takin is at high risk of extinction, but its taxonomic status and genetic diversity remain unclear. In this study, we constructed the first reference genome of Bu. taxicolor using PacBio long High-Fidelity reads and Hi-C technology. The assembled genome is ~2.95 Gb with a contig N50 of 68.05 Mb, which were anchored onto 25+XY chromosomes. We found that the takin was more closely related to muskox than to other Caprinae species. Compared to the common ancestral karyotype of bovidae (2n = 60), we found the takin (2n = 52) experienced four chromosome fusions and one large translocation. Furthermore, we resequenced nine golden takins from the main distribution area, the Qinling Mountains, and identified 3.3 million single nucleotide polymorphisms. The genetic diversity of takin was very low (θπ = 0.00028 and heterozygosity =0.00038), among the lowest detected in domestic and wild mammals. Takin genomes showed a high inbreeding coefficient (FROH =0.217), suggesting severe inbreeding depression. The demographic history showed that the effective population size of takins declined significantly from ~100,000 years ago. Our results provide valuable information for protection of takins and insights into their evolution.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qimeng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuelei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Keli Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinghu Lei
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| | - Kangsheng Jia
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| |
Collapse
|
34
|
Zhao J, Yao Y, Dong M, Xiao H, Xiong Y, Yang S, Li D, Xie M, Ni Q, Zhang M, Xu H. Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans, and dogs to high altitude environments. Front Microbiol 2023; 14:1067240. [PMID: 36910187 PMCID: PMC9995840 DOI: 10.3389/fmicb.2023.1067240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Animal gut microbiota plays an indispensable role in host adaptation to different altitude environments. At present, little is known about the mechanism of animal gut microbiota in host adaptation to high altitude environments. Here, we selected wild macaques, humans, and dogs with different levels of kinship and intimate relationships in high altitude and low altitude environments, and analyzed the response of their gut microbiota to the host diet and altitude environments. Alpha diversity analysis found that at high altitude, the gut microbiota diversity of wild macaques with more complex diet in the wild environments is much higher than that of humans and dogs with simpler diet (p < 0.05), and beta diversity analysis found that the UniFrac distance between humans and dogs was significantly lower than between humans and macaques (p < 0.05), indicating that diet strongly drive the convergence of gut microbiota among species. Meanwhile, alpha diversity analysis found that among three subjects, the gut microbiota diversity of high altitude population is higher than that of low altitude population (ACE index in three species, Shannon index in dog and macaque and Simpson index in dog, p < 0.05), and beta diversity analysis found that the UniFrac distances among the three subjects in the high altitude environments were significantly lower than in the low altitude environments (p < 0.05). Additionally, core shared ASVs analysis found that among three subjects, the number of core microbiota in high altitude environments is higher than in low altitude environments, up to 5.34 times (1,105/207), and the proportion and relative abundance of the core bacteria types in each species were significantly higher in high altitude environments than in low altitude environments (p < 0.05). The results showed that high altitude environments played an important role in driving the convergence of gut microbiota among species. Furthermore, the neutral community model trial found that the gut microbiota of the three subjects was dispersed much more at high altitude than at low altitude, implying that the gut microbiota convergence of animals at high altitudes may be partly due to the microbial transmission between hosts mediated by human activities.
Collapse
Affiliation(s)
- Junsong Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Mengmeng Dong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hongtao Xiao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Ying Xiong
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Meng Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
35
|
Enlarged fins of Tibetan catfish provide new evidence of adaptation to high plateau. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2253-7. [PMID: 36802318 DOI: 10.1007/s11427-022-2253-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 02/23/2023]
Abstract
The uplift of the Tibetan Plateau significantly altered the geomorphology and climate of the Euroasia by creating large mountains and rivers. Fishes are more likely to be affected relative to other organisms, as they are largely restricted to river systems. Faced with the rapidly flowing water in the Tibetan Plateau, a group of catfish has evolved greatly enlarged pectoral fins with more numbers of fin-rays to form an adhesive apparatus. However, the genetic basis of these adaptations in Tibetan catfishes remains elusive. In this study, we performed comparative genomic analyses based on the chromosome-level genome of Glyptosternum maculatum in family Sisoridae and detected some proteins with conspicuously high evolutionary rates in particular in genes involved in skeleton development, energy metabolism, and hypoxia response. We found that the hoxd12a gene evolved faster and a loss-of-function assay of hoxd12a supports a potential role for this gene in shaping the enlarged fins of these Tibetan catfishes. Other genes with amino acid replacements and signatures of positive selection included proteins involved in low temperature (TRMU) and hypoxia (VHL) responses. Functional assays reveal that the G. maculatumTRMU allele generates more mitochondrial ATP than the ancestral allele found in low-altitude fishes. Functional assays of VHL alleles suggest that the G. maculatum allele has lower transactivation activity than the low-altitude forms. These findings provide a window into the genomic underpinnings of physiological adaptations that permit G. maculatum to survive in the harsh environment of the Tibetan Himalayas that mirror those that are convergently found in other vertebrates such as humans.
Collapse
|
36
|
Li H, Xia W, Liu X, Wang X, Liu G, Chen H, Zhu L, Li D. Food provisioning results in functional, but not compositional, convergence of the gut microbiomes of two wild Rhinopithecus species: Evidence of functional redundancy in the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159957. [PMID: 36343820 DOI: 10.1016/j.scitotenv.2022.159957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The consumption of similar diets has led to the convergence of gut microbial compositions and functions across phylogenetically distinct animals. However, given the functional redundancy in gut microbiomes, it remains unclear whether synchrony occurs in their functions only and not in their composition, even within phylogenetically close animals consuming a similar diet. In this study, we collected fresh fecal samples from a Rhinopithecus roxellana population in April 2021 (before food provisioning) and June and December 2021 (after food provisioning) and used high-throughput sequencing methods (full-length 16S rRNA gene sequencing and metagenomes) to investigate changes in the gut microbiome due to food provisioning. Combining the results from our previous studies on a wild Rhinopithecus bieti population, we found that the artificial food provisions (e.g., apples, carrots, and peanuts) affected the gut microbiome, and synchrony occurred only in its functions and antibiotic resistance gene community in both Rhinopithecus species, reflecting its ecological functional redundancy. Given the current findings (e.g., depletion in probiotic microbes, dysbiosis in the gut microbial community, and changes in the antibiotic resistance gene profile), anthropogenic disturbances (e.g., food provisioning) would have potential negative effects on host health. Therefore, human activity in animal conservation should be rethought from the standpoint of gut microbial diversity.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xingyu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou, China
| | - Hua Chen
- Mingke Biotechnology, Hangzhou, China
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.
| |
Collapse
|
37
|
Ma J, Zhang L, Shen F, Geng Y, Huang Y, Wu H, Fan Z, Hou R, Song Z, Yue B, Zhang X. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genomics 2023; 24:23. [PMID: 36647013 PMCID: PMC9843897 DOI: 10.1186/s12864-023-09111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.
Collapse
Affiliation(s)
- Jinnan Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.410739.80000 0001 0723 6903College of Continuing Education, Yunnan Normal University, Kunming, 650092 China
| | - Liang Zhang
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Fujun Shen
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Yang Geng
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Rong Hou
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Zhaobin Song
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Xiuyue Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| |
Collapse
|
38
|
Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat Rev Genet 2023; 24:314-331. [PMID: 36599936 DOI: 10.1038/s41576-022-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Primate genomics holds the key to understanding fundamental aspects of human evolution and disease. However, genetic diversity and functional genomics data sets are currently available for only a few of the more than 500 extant primate species. Concerted efforts are under way to characterize primate genomes, genetic polymorphism and divergence, and functional landscapes across the primate phylogeny. The resulting data sets will enable the connection of genotypes to phenotypes and provide new insight into aspects of the genetics of primate traits, including human diseases. In this Review, we describe the existing genome assemblies as well as genetic variation and functional genomic data sets. We highlight some of the challenges with sample acquisition. Finally, we explore how technological advances in single-cell functional genomics and induced pluripotent stem cell-derived organoids will facilitate our understanding of the molecular foundations of primate biology.
Collapse
|
39
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Zhao JR, Hu SY, Zhang LJ, Zhang L, Yang XZ, Yuan ML. Differential gene expression patterns between the head and thorax of Gynaephora aureata are associated with high-altitude adaptation. Front Genet 2023; 14:1137618. [PMID: 37144120 PMCID: PMC10151491 DOI: 10.3389/fgene.2023.1137618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 05/06/2023] Open
Abstract
Grassland caterpillars (Lepidoptera: Erebidae: Gynaephora) are important pests in alpine meadows of the Qinghai-Tibetan Plateau (QTP). These pests have morphological, behavioral, and genetic adaptations for survival in high-altitude environments. However, mechanisms underlying high-altitude adaptation in QTP Gynaephora species remain largely unknown. Here, we performed a comparative analysis of the head and thorax transcriptomes of G. aureata to explore the genetic basis of high-altitude adaptation. We detected 8,736 significantly differentially expressed genes (sDEGs) between the head and thorax, including genes related to carbohydrate metabolism, lipid metabolism, epidermal proteins, and detoxification. These sDEGs were significantly enriched in 312 Gene Ontology terms and 16 KEGG pathways. We identified 73 pigment-associated genes, including 8 rhodopsin-associated genes, 19 ommochrome-associated genes, 1 pteridine-associated gene, 37 melanin-associated genes, and 12 heme-associated genes. These pigment-associated genes were related to the formation of the red head and black thorax of G. aureata. A key gene, yellow-h, in the melanin pathway was significantly upregulated in the thorax, suggesting that it is related to the formation of the black body and contributed to the adaptation of G. aureata to low temperatures and high ultraviolet radiation in the QTP. Another key gene, cardinal, in the ommochrome pathway was significantly upregulated in the head and may be related to red warning color formation. We also identified 107 olfactory-related genes in G. aureata, including genes encoding 29 odorant-binding proteins, 16 chemosensory proteins, 22 odorant receptor proteins, 14 ionotropic receptors, 12 gustatory receptors, 12 odorant degrading enzymes, and 2 sensory neuron membrane proteins. Diversification of olfactory-related genes may be associated with the feeding habits of G. aureata, including larvae dispersal and searching for plant resources available in the QTP. These results provide new insights into high-altitude adaptation of Gynaephora in the QTP and may contribute to the development of new control strategies for these pests.
Collapse
Affiliation(s)
- Jia-Rui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Li-Jun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Li Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xing-Zhuo Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
41
|
Liang C, Liu D, Song P, Zhou Y, Yu H, Sun G, Ma X, Yan J. Transcriptomic Analyses Suggest the Adaptation of Bumblebees to High Altitudes. INSECTS 2022; 13:1173. [PMID: 36555083 PMCID: PMC9783775 DOI: 10.3390/insects13121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Determining the adaptive mechanisms by which bumblebees adapt to high altitudes can help us to better understand their distribution, providing a basis for the future protection and utilization of bumblebee resources. For this study, the adaptive mechanisms of two dominant bumblebee species in the northeastern Qinghai-Tibet Plateau-Bombus kashmirensis and B. waltoni-were studied through transcriptomics methods. For each species, enrichment analysis of the differentially expressed genes and gene set enrichment analysis were carried out between samples collected at different altitudes (4000 m, 4500 m, and 5000 m). The results indicate that these bumblebees tend to up-regulate energy metabolism-related genes when facing extremely high-altitude environments. Of the enriched pathways up-regulated in higher altitudes, the pentose and glucuronate interconversions pathway presented the most severe up-regulation in multiple comparisons of different altitudes for B. kashmirensis, as well as the AMPK signaling pathway, which was found to be up-regulated in both species. Notably, limited by the extreme hypoxic conditions in this study, oxidative phosphorylation was found to be down-regulated with increasing altitude, which is uncommon in studies on bumblebee adaptation to high altitudes.
Collapse
Affiliation(s)
- Chengbo Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Daoxin Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Kunlun College, Qinghai University, Xining 810016, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yuantao Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Hongyan Yu
- Qinghai Service Guarantee Center of Qilian Mountain National Park, Xining 810001, China
| | - Guo Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xiaoxuan Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jingyan Yan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
42
|
Lyu T, Zhou S, Fang J, Wang L, Shi L, Dong Y, Zhang H. Convergent Genomic Signatures of High-Altitude Adaptation among Six Independently Evolved Mammals. Animals (Basel) 2022; 12:ani12243572. [PMID: 36552492 PMCID: PMC9774524 DOI: 10.3390/ani12243572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The species living in the Qinghai-Tibet Plateau provide an excellent model system for studying the relationship between molecular convergent evolution and adaptation. Distant species experiencing the same selection pressure (i.e., hypoxia, low temperature and strong ultraviolet radiation) are likely to evolve similar genetic adaptations independently. Here, we performed comparative genomics studies on six independently evolved high-altitude species. The results also showed that the convergent evolution of the six species was mainly reflected at the level of rapidly evolving genes, and the functions of these rapidly evolving genes were mainly related to hypoxia response and DNA damage repair. In addition, we found that high-altitude species had more gene family changes than their low-altitude relatives, except for the order Lagomorpha. The results also show that the convergence of the gene family contraction of high-altitude species is much greater than that of expansion, revealing a possible pattern of species in adapting to high-altitude. Furthermore, we detected a positive selection signature in four genes related to hypoxia response and ultraviolet radiation damage in these six species (FYCO1, ERBIN, SCAMP1 and CXCL10). Our study reveals that hypoxia response might play an important role in the adaptation of independently evolved species to a high-altitude environment, providing a basic perspective for further exploring the high-altitude adaptation mechanism of different related species in the future.
Collapse
Affiliation(s)
- Tianshu Lyu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150000, China
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shengyang Zhou
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Jiaohui Fang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lidong Wang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yuehuan Dong
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
43
|
Fu TT, Sun YB, Gao W, Long CB, Yang CH, Yang XW, Zhang Y, Lan XQ, Huang S, Jin JQ, Murphy RW, Zhang Y, Lai R, Hillis DM, Zhang YP, Che J. The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proc Natl Acad Sci U S A 2022; 119:e2212406119. [PMID: 36346846 PMCID: PMC9674958 DOI: 10.1073/pnas.2212406119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.
Collapse
Affiliation(s)
- Ting-Ting Fu
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Yan-Bo Sun
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Gao
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cheng-Bo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chun-Hua Yang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Wang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Qiang Lan
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Hillis
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
44
|
Zhao X, Li X, Zhang Z, Garber PA, Yu M, Qiao H, Li M. Differential response to climate change and human activities in three lineages of Sichuan snub‐nosed monkeys (
Rhinopithecus roxellana
). DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xumao Zhao
- State Key Laboratory of Grassland Agro‐Ecosystems, College of Ecology Lanzhou University Lanzhou China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Xinrui Li
- State Key Laboratory of Grassland Agro‐Ecosystems, College of Ecology Lanzhou University Lanzhou China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering Chinese Academy of Sciences Guangzhou China
| | - Paul A. Garber
- Department of Anthropology and Program in Ecology and Evolutionary Biology University of Illinois Urbana Illinois USA
- International Centre of Biodiversity and Primate Conservation Dali University Dali China
| | - Min Yu
- State Key Laboratory of Grassland Agro‐Ecosystems, College of Ecology Lanzhou University Lanzhou China
| | - Huijie Qiao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
45
|
Lyu T, Yang X, Zhao C, Wang L, Zhou S, Shi L, Dong Y, Dou H, Zhang H. Comparative transcriptomics of high-altitude Vulpes and their low-altitude relatives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature) to the native species, which have driven striking phenotypic and genetic adaptations. Although the mechanisms of high-altitude adaptation have been explored for many plateau species, how the phylogenetic background contributes to genetic adaption to high-altitude of Vulpes is largely unknown. In this study, we sequenced transcriptomic data across multiple tissues of two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the genetic and gene expression changes caused by high-altitude environment. The results indicated that the positive selection genes (PSGs) identified by both high-altitude Vulpes are related to angiogenesis, suggesting that angiogenesis may be the result of convergent evolution of Vulpes in the face of hypoxic selection pressure. In addition, more PSGs were detected in V. ferrilata than in V. v. montana, which may be related to the longer adaptation time of V. ferrilata to plateau environment and thus more genetic changes. Besides, more PSGs associated with high-altitude adaptation were identified in V. ferrilata compared with V. v. montana, indicating that the longer the adaptation time to the high-altitude environment, the more genetic alterations of the species. Furthermore, the result of expression profiles revealed a tissue-specific pattern between Vulpes. We also observed that differential expressed genes in the high-altitude group exhibited species-specific expression patterns, revealed a convergent expression pattern of Vulpes in high-altitude environment. In general, our research provides a valuable transcriptomic resource for further studies, and expands our understanding of high-altitude adaptation within a phylogenetic context.
Collapse
|
46
|
Zhou C, Liu Y, Zhang R, Zheng X, Zhao G, Li F, Liu W, Yue B, Yang N. Chromosome-level Genome Assembly of the High-altitude Leopard (Panthera pardus) Sheds Light on Its Environmental Adaptation. Genome Biol Evol 2022; 14:6670020. [PMID: 35975810 PMCID: PMC9452791 DOI: 10.1093/gbe/evac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The leopard (Panthera pardus) has the largest natural distribution from low- to high-altitude areas of any wild felid species, but recent studies have revealed that leopards have disappeared from large areas, probably owing to poaching, a decline of prey species, and habitat degradation. Here, we reported the chromosome-scale genome assembly of the high-altitude leopard (HL) based on nanopore sequencing and high-throughput chromatin conformation capture (Hi-C) technology. Panthera genomes revealed similar repeat composition, and there was an appreciably conserved synteny between HL and the other two Panthera genomes. Divergence time analysis based on the whole genomes revealed that the HL and the low-altitude leopard differentiate from a common ancestor ∼2.2 Ma. Through comparative genomics analyses, we found molecular genetic signatures that may reflect high-altitude adaptation of the HL. Three HL-specific missense mutations were detected in two positively selected genes, that is, ITGA7 (Ala112Gly, Asp113Val, and Gln115Pro) and NOTCH2 (Ala2398Ser), which are likely to be associated with hypoxia adaptation. The chromosome-level genome of the HL provides valuable resources for the investigation of high-altitude adaptation and protection management of the vulnerable leopard.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Yi Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Guangqing Zhao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Wei Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R.China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, P. R.China.,Collaborative Innovation Center for Ecological Animal Husbandry of Qinghai- Tibetan plateau, Southwest Minzu University, China
| |
Collapse
|
47
|
Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat Ecol Evol 2022; 6:630-643. [PMID: 35332281 PMCID: PMC9090980 DOI: 10.1038/s41559-022-01703-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
Abstract
Primates have adapted to numerous environments and lifestyles, but very few species are native to high elevations. Here, we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of hematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared to baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult hemoglobin but found that gelada hemoglobin does not exhibit markedly altered oxygenation properties compared to lowland primates. We also found that geladas at high altitude do not exhibit elevated blood hemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.
Collapse
|
48
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
49
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
50
|
Yao YG. Towards the peak: the 10-year journey of the National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility) and a call for international collaboration in non-human primate research. Zool Res 2022; 43:237-240. [PMID: 35194982 PMCID: PMC8920839 DOI: 10.24272/j.issn.2095-8137.2022.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yong-Gang Yao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| |
Collapse
|