1
|
Lopes-Pacheco M, Winters AG, Jackson JJ, Olson Rd JA, Kim M, Ledwitch KV, Tedman A, Jhangiani AR, Schlebach JP, Meiler J, Plate L, Oliver KE. Recent developments in cystic fibrosis drug discovery: where are we today? Expert Opin Drug Discov 2025; 20:659-682. [PMID: 40202089 DOI: 10.1080/17460441.2025.2490250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION The advent of variant-specific disease-modifying drugs into clinical practice has provided remarkable benefits for people with cystic fibrosis (PwCF), a multi-organ life-limiting inherited disease. However, further efforts are needed to maximize therapeutic benefits as well as to increase the number of PwCF taking CFTR modulators. AREA COVERED The authors discuss some of the key limitations of the currently available CFTR modulator therapies (e.g. adverse reactions) and strategies in development to increase the number of available therapeutics for CF. These include novel methods to accelerate theratyping and identification of novel small molecules and cellular targets representing alternative or complementary therapies for CF. EXPERT OPINION While the CF therapy development pipeline continues to grow, there is a critical need to optimize strategies that will accelerate testing and approval of effective therapies for (ultra)rare CFTR variants as traditional assays and trials are not suitable to address such issues. Another major barrier that needs to be solved is the restricted access to currently available modulator therapies, which remains a significant burden for PwCF who are from racial and ethnic minorities and/or living in underprivileged regions.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ashlyn G Winters
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - JaNise J Jackson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - John A Olson Rd
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Austin Tedman
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ashish R Jhangiani
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jonathan P Schlebach
- The James Tarpo Junior & Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Cystic Fibrosis & Airways Disease Research, Emory University & Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
2
|
Huang RL, Snyder MT, Fahmida N, Albon DP. Reconsidering the Diagnosis: Abnormal Sweat Chloride Tests in Non-CF Bronchiectasis. Pediatr Pulmonol 2025; 60:e27471. [PMID: 39778078 PMCID: PMC11776038 DOI: 10.1002/ppul.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION While the diagnosis of cystic fibrosis (CF) is often straightforward and reliant on correlation between genetic testing and clinical signs and symptoms, there is a subset where the distinction is not nearly as clearcut. This has previously been reported in patients identified through newborn screening but not meeting full CF diagnostic criteria, earning the label of CF Screen Positive, Inconclusive Diagnosis (CFSPID) instead. A homologous diagnostic category in adults is named CF Transmembrane Conductance Regulator-Related Disorder (CFTR-RD). METHODS Through a retrospective chart review, this study reports on a relatively large adult cohort (n = 23) that presented to pulmonology clinic at a single center with intermediate or positive sweat chloride tests but non-diagnostic full CFTR gene analysis. RESULTS Median sweat chloride result was 48 mmol/L, and a majority of the cohort had chronic lung disease with atypical pathogens on sputum culture, including Pseudomonas aeruginosa, non-tuberculous Mycobacteria, Acinetobacter species, amongst others. CONCLUSIONS This clinical picture suggests CFTR dysfunction or similar mechanism in the absence of an identified genetic cause. Alternate chloride channels and their respective genes or candidates of genetic modifiers to the CF-phenotype could be targets of further research in this cohort or similar patients. Such genetic modifiers include loci that have been implicated in inflammation, the CFTR interactome, and/or co-/post-translational modification of CFTR.
Collapse
Affiliation(s)
- Reyna L. Huang
- School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Matthew T. Snyder
- Department of Pediatrics, Division of GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nuzhat Fahmida
- College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dana P. Albon
- Department of Internal Medicine, Division of Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Ward A, Mauleon R, Ooi CY, Rosic N. Impact of Gene Modifiers on Cystic Fibrosis Phenotypic Profiles: A Systematic Review. Hum Mutat 2024; 2024:6165547. [PMID: 40225935 PMCID: PMC11919198 DOI: 10.1155/2024/6165547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 04/15/2025]
Abstract
Cystic fibrosis (CF) is a complex monogenic disorder with a large variability in disease severity. Growing evidence suggests that the variation observed depends not only on variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but also on modifier genes. Utilizing five databases (including CINAHL, PubMed, Science Direct, Scopus, and Web of Science), a systematic review was conducted to examine the current literature on the known impacts of genomic variations in modifier genes on the CF disease progression, severity, and therapeutic response. A total of 70 full-text articles describing over 80 gene modifiers associated with CF were selected. The modifier genes included genes associated with the CFTR interactome, the inflammatory response, microbial profiles, and other genes affecting the critical physiological pathways of multiple organ systems, such as the respiratory and gastrointestinal systems. Limitations of the existing literature embrace the lack of clinical studies investigating pharmacogenetic impacts and the significance of gene modifiers on the CF clinical picture, including a limited number of replication and validation studies. Further investigations into other potential gene modifiers using genome-wide association studies are needed to critically explore new therapeutic targets and provide a better understanding of the CF disease phenotype under specific drug treatments.
Collapse
Affiliation(s)
- Anastasia Ward
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| | - Ramil Mauleon
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
- Rice Breeding Innovations, International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Chee Y. Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, Randwick Clinical Campus, UNSW Medicine & Health, UNSW, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Nedeljka Rosic
- Faculty of Health, Southern Cross University, Coolangatta, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
5
|
Benjamin KJM, Sauler M, Poonyagariyagorn H, Neptune ER. Cell type-specific expression of angiotensin receptors in the human lung with implications for health, aging, and chronic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599425. [PMID: 38948835 PMCID: PMC11212981 DOI: 10.1101/2024.06.17.599425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The renin-angiotensin system is a highly characterized integrative pathway in mammalian homeostasis whose clinical spectrum has been expanded to lung disorders such as chronic obstructive pulmonary disease (COPD)-emphysema, idiopathic pulmonary fibrosis (IPF), and COVID pathogenesis. Despite this widespread interest, specific localization of this receptor family in the mammalian lung is limited, partially due to the imprecision of available antibody reagents. In this study, we establish the expression pattern of the two predominant angiotensin receptors in the human lung, AGTR1 and AGTR2, using complementary and comprehensive bulk and single-cell RNA-sequence datasets that are publicly available. We show these two receptors have distinct localization patterns and developmental trajectories in the human lung, pericytes for AGTR1 and a subtype of alveolar epithelial type 2 cells for AGTR2. In the context of disease, we further pinpoint AGTR2 localization to the COPD-associated subpopulation of alveolar epithelial type 2 (AT2B) and AGTR1 localization to fibroblasts, where their expression is upregulated in individuals with COPD, but not in individuals with IPF. Finally, we examine the genetic variation of the angiotensin receptors, finding AGTR2 associated with lung phenotype (i.e., cystic fibrosis) via rs1403543. Together, our findings provide a critical foundation for delineating this pathway's role in lung homeostasis and constructing rational approaches for targeting specific lung disorders.
Collapse
Affiliation(s)
- Kynon JM Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hataya Poonyagariyagorn
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Enid R Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Lu S, Chen K, Song K, Pilewski JM, Gunn BM, Poch KR, Rysavy NM, Vestal BE, Saavedra MT, Kolls JK. Systems serology in cystic fibrosis: Anti-Pseudomonas IgG1 responses and reduced lung function. Cell Rep Med 2023; 4:101210. [PMID: 37852181 PMCID: PMC10591031 DOI: 10.1016/j.xcrm.2023.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Nearly one-half of patients with cystic fibrosis (CF) carry the homozygous F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but exhibit variable lung function phenotypes. How adaptive immunity influences their lung function remains unclear, particularly the serological antibody responses to antigens from mucoid Pseudomonas in sera from patients with CF with varying lung function. Sera from patients with CF with reduced lung function show higher anti-outer membrane protein I (OprI) immunoglobulin G1 (IgG1) titers and greater antibody-mediated complement deposition. Induction of anti-OprI antibody isotypes with complement activity enhances lung inflammation in preclinical mouse models. This enhanced inflammation is absent in immunized Rag2-/- mice and is transferrable to unimmunized mice through sera. In a CF cohort undergoing treatment with elexacaftor-tezacaftor-ivacaftor, the declination in anti-OprI IgG1 titers is associated with lung function improvement and reduced hospitalizations. These findings suggest that antibody responses to specific Pseudomonas aeruginosa (PA) antigens worsen lung function in patients with CF.
Collapse
Affiliation(s)
- Shiping Lu
- Department of Immunology and Microbiology, Tulane University, New Orleans, LA, USA; Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, USA
| | | | | | - Brian E Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
7
|
Santos L, Nascimento R, Duarte A, Railean V, Amaral MD, Harrison PT, Gama-Carvalho M, Farinha CM. Mutation-class dependent signatures outweigh disease-associated processes in cystic fibrosis cells. Cell Biosci 2023; 13:26. [PMID: 36759923 PMCID: PMC9912517 DOI: 10.1186/s13578-023-00975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The phenotypic heterogeneity observed in Cystic Fibrosis (CF) patients suggests the involvement of other genes, besides CFTR. Here, we combined transcriptome and proteome analysis to understand the global gene expression patterns associated with five prototypical CFTR mutations. RESULTS Evaluation of differentially expressed genes and proteins unveiled common and mutation-specific changes revealing functional signatures that are much more associated with the specific molecular defects associated with each mutation than to the CFTR loss-of-function phenotype. The combination of both datasets revealed that mutation-specific detected translated-transcripts (Dtt) have a high level of consistency. CONCLUSIONS This is the first combined transcriptomic and proteomic study focusing on prototypical CFTR mutations. Analysis of Dtt provides novel insight into the pathophysiology of CF, and the mechanisms through which each mutation class causes disease and will likely contribute to the identification of new therapeutic targets and/or biomarkers for CF.
Collapse
Affiliation(s)
- Lúcia Santos
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal ,grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Rui Nascimento
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Aires Duarte
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Violeta Railean
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida D. Amaral
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Patrick T. Harrison
- grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Carlos M. Farinha
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
8
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
9
|
Gholami M, Zoughi M, Hasanzad M, Larijani B, Amoli MM. Haplotypic variants of COVID-19 related genes are associated with blood pressure and metabolites levels. J Med Virol 2023; 95:e28355. [PMID: 36443248 PMCID: PMC9877746 DOI: 10.1002/jmv.28355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The genetic association of coronavirus disease 2019 (COVID-19) with its complications has not been fully understood. This study aimed to identify variants and haplotypes of candidate genes implicated in COVID-19 related traits by combining the literature review and pathway analysis. To explore such genes, the protein-protein interactions and relevant pathways of COVID-19-associated genes were assessed. A number of variants on candidate genes were identified from Genome-wide association studies (GWASs) which were associated with COVID-19 related traits (p ˂ 10-6 ). Haplotypic blocks were assessed using haplotypic structures among the 1000 Genomes Project (r2 ≥ 0.8, D' ≥ 0.8). Further functional analyses were performed on the selected variants. The results demonstrated that a group of variants in ACE and AGT genes were significantly correlated with COVID-19 related traits. Three haplotypes were identified to be involved in the blood metabolites levels and the development of blood pressure. Functional analyses revealed that most GWAS index variants were expression quantitative trait loci and had transcription factor binding sites, exonic splicing enhancers or silencer activities. Furthermore, the proxy haplotype variants, rs4316, rs4353, rs4359, and three variants, namely rs2493133, rs2478543, and rs5051, were associated with blood metabolite and systolic blood pressure, respectively. These variants exerted more regulatory effects compared with other GWAS variants. The present study indicates that the genetic variants and candidate haplotypes of COVID-19 related genes are associated with blood pressure and blood metabolites. However, further observational studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Marziyeh Zoughi
- Metabolomics and genomics research center endocrinology and metabolism molecular‐cellular sciences instituteTehran University of medical sciencesTehranIran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
11
|
Mésinèle J, Ruffin M, Guillot L, Corvol H. Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes. Int J Mol Sci 2022; 23:ijms232214205. [PMID: 36430680 PMCID: PMC9698440 DOI: 10.3390/ijms232214205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Although cystic fibrosis (CF) is recognized as a monogenic disease, due to variants within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene, an extreme clinical heterogeneity is described among people with CF (pwCF). Apart from the exocrine pancreatic status, most studies agree that there is little association between CFTR variants and disease phenotypes. Environmental factors have been shown to contribute to this heterogeneity, accounting for almost 50% of the variability of the lung function of pwCF. Nevertheless, pwCF with similar CFTR variants and sharing the same environment (such as in siblings) may have highly variable clinical manifestations not explained by CFTR variants, and only partly explained by environmental factors. It is recognized that genetic variants located outside the CFTR locus, named "modifier genes", influence the clinical expression of the disease. This short review discusses the latest studies that have described modifier factors associated with the various CF phenotypes as well as the response to the recent CFTR modulator therapies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Inovarion, 75005 Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France
- Correspondence: (L.G.); (H.C.)
| |
Collapse
|
12
|
Zhai J, Emond MJ, Spangenberg A, Stern DA, Vasquez MM, Blue EE, Buckingham KJ, Sherrill DL, Halonen M, Gibson RL, Rosenfeld M, Sagel SD, Bamshad MJ, Morgan WJ, Guerra S. Club cell secretory protein and lung function in children with cystic fibrosis. J Cyst Fibros 2022; 21:811-820. [PMID: 35367162 PMCID: PMC9509401 DOI: 10.1016/j.jcf.2022.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Club cell secretory protein (CC16) exerts anti-inflammatory functions in lung disease. We sought to determine the relation of serum CC16 deficits and genetic variants that control serum CC16 to lung function among children with cystic fibrosis (CF). METHODS We used longitudinal data from CF children (EPIC Study) with no positive cultures for Pseudomonas aeruginosa prior to enrollment. Circulating levels of CC16 and an inflammatory score (generated from CRP, SAA, calprotectin, G-CSF) were compared between participants with the lowest and highest FEV1 levels in adolescence (LLF and HLF groups, respectively; N = 130-per-group). Single nucleotide variants (SNVs) in the SCGB1A1, EHF-APIP loci were tested for association with circulating CC16 and with decline of FEV1 and FEV1/FVC% predicted levels between ages 7-16 using mixed models. RESULTS Compared with the HLF group, the LLF group had lower levels of CC16 (geometric means: 8.2 vs 6.5 ng/ml, respectively; p = 0.0002) and higher levels of the normalized inflammatory score (-0.21 vs 0.21, p = 0.0007). Participants in the lowest CC16 and highest inflammation tertile had the highest odds for having LLF (p<0.0001 for comparison with participants in the highest CC16 and lowest inflammation tertile). Among seven SNVs associated with circulating CC16, the top SNV rs3741240 was associated with decline of FEV1/FVC and, marginally, FEV1 (p = 0.003 and 0.025, respectively; N = 611 participants, 20,801 lung function observations). CONCLUSIONS Serum CC16 deficits are strongly associated with severity of CF lung disease and their effects are additive with systemic inflammation. The rs3741240 A allele is associated with low circulating CC16 and, possibly, accelerated lung function decline in CF.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Amber Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Monica M Vasquez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States; Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Kati J Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States; Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Pediatrics, University of Arizona, Tucson, AZ, United States.
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
13
|
Kingston H, Stilp AM, Gordon W, Broome J, Gogarten SM, Ling H, Barnard J, Dugan-Perez S, Ellinor PT, Gabriel S, Germer S, Gibbs RA, Gupta N, Rice K, Smith AV, Zody MC, Blackman SM, Cutting G, Knowles MR, Zhou YH, Rosenfeld M, Gibson RL, Bamshad M, Fohner A, Blue EE. Accounting for population structure in genetic studies of cystic fibrosis. HGG ADVANCES 2022; 3:100117. [PMID: 35647563 PMCID: PMC9136666 DOI: 10.1016/j.xhgg.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its frequency varies in a geographic cline across Europe. We hypothesized that genetic variation associated with this cline is overrepresented in a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) analyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control for population structure even when population structure is confounded with disease severity and a common pathogenic variant.
Collapse
Affiliation(s)
- Hanley Kingston
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M. Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - William Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jai Broome
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shannon Dugan-Perez
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - The Cystic Fibrosis Genome Project
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Scott M. Blackman
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Garry Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
| | - Margaret Rosenfeld
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ronald L. Gibson
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Alison Fohner
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E. Blue
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Paranjapye A, NandyMazumdar M, Harris A. Krüppel-Like Factor 5 Regulates CFTR Expression Through Repression by Maintaining Chromatin Architecture Coupled with Direct Enhancer Activation. J Mol Biol 2022; 434:167561. [PMID: 35341742 PMCID: PMC9086126 DOI: 10.1016/j.jmb.2022.167561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Single cell RNA-sequencing has accurately identified cell types within the human airway that express the Cystic Fibrosis Transmembrane Conductance regulator (CFTR) gene. Low abundance CFTR transcripts are seen in many secretory cells, while high levels are restricted to rare pulmonary ionocytes. Here we focus on the mechanisms coordinating basal CFTR expression in the secretory compartment. Cell-selective regulation of CFTR is achieved within its invariant topologically associating domain by the recruitment of cis-regulatory elements (CREs). CRE activity is coordinated by cell-type-selective transcription factors. One such factor, Krüppel-Like Factor 5 (KLF5), profoundly represses CFTR transcript and protein in primary human airway epithelial cells and airway cell lines. Here we reveal the mechanism of action of KLF5 upon the CFTR gene. We find that depletion or ablation of KLF5 from airway epithelial cells changes higher order chromatin structure at the CFTR locus. Critical looping interactions that are required for normal gene expression are altered, the H3K27ac active chromatin mark is redistributed, and CTCF occupancy is modified. However, mutation of a single KLF5 binding site within a pivotal airway cell CRE abolishes CFTR expression. Hence, KLF5 has both direct activating and indirect repressive effects, which together coordinate CFTR expression in the airway.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
15
|
Zhang L, Sun L. Linear Mixed-Effect Models Through the Lens of Hardy-Weinberg Disequilibrium. Front Genet 2022; 13:856872. [PMID: 35495131 PMCID: PMC9039721 DOI: 10.3389/fgene.2022.856872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
For genetic association studies with related individuals, the linear mixed-effect model is the most commonly used method. In this report, we show that contrary to the popular belief, this standard method can be sensitive to departure from Hardy-Weinberg equilibrium (i.e., Hardy-Weinberg disequilibrium) at the causal SNPs in two ways. First, when the trait heritability is treated as a nuisance parameter, although the association test has correct type I error control, the resulting heritability estimate can be biased, often upward, in the presence of Hardy-Weinberg disequilibrium. Second, if the true heritability is used in the linear mixed-effect model, then the corresponding association test can be biased in the presence of Hardy-Weinberg disequilibrium. We provide some analytical insights along with supporting empirical results from simulation and application studies.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Characterizing mucociliary clearance in young children with cystic fibrosis. Pediatr Res 2022; 91:612-620. [PMID: 33753897 PMCID: PMC8455702 DOI: 10.1038/s41390-021-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND This research characterized mucociliary clearance (MCC) in young children with cystic fibrosis (CF). METHODS Fourteen children (5-7 years old) with CF underwent: two baseline MCC measurements (Visits 1 and 2); one MCC measurement approximately 1 year later (Visit 3); and measurements of lung clearance index (LCI), a measure of ventilation inhomogeneity. RESULTS Median (range) percent MCC through 60 min (MCC60) was similar on Visits 1 and 2 with 11.0 (0.9-33.7) and 12.8 (2.7-26.8), respectively (p = 0.95), and reproducible (Spearman Rho = 0.69; p = 0.007). Mucociliary clearance did not change significantly over 1 year with median percent MCC60 on Visit 3 [12.8 (3.7-17.6)] similar to Visit 2 (p = 0.58). Lower percent MCC60 on Visit 3 was significantly associated with higher LCI scores on Visit 3 (N = 14; Spearman Rho = -0.56; p = 0.04). CONCLUSIONS Tests of MCC were reproducible and reliable over a 2-week period and stable over a 1-year period in 5-7-year-old children with CF. Lower MCC values were associated with increased ventilation inhomogeneity. These results suggest that measurements of MCC could be used in short-term clinical trials of interventions designed to modulate MCC and as a new, non-invasive test to evaluate early lung pathology in children with CF. IMPACT This is the first study to characterize mucociliary clearance (MCC) in children with cystic fibrosis (CF) who were 5-7 years old. Measurements of mucociliary clearance were reproducible and reliable over a 2-week period and stable over a 1-year period. Variability in MCC between children was associated with differences in ventilation homogeneity, such that children with lower MCC values had increased ventilation inhomogeneity. These results suggest that measurements of MCC could be used in short-term clinical trials of interventions designed to modulate MCC and as a new, non-invasive test to evaluate early lung pathology in children with CF.
Collapse
|
17
|
Bojanowski CM, Lu S, Kolls JK. Mucosal Immunity in Cystic Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2901-2912. [PMID: 35802761 PMCID: PMC9270582 DOI: 10.4049/jimmunol.2100424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
The highly complex and variable genotype-phenotype relationships observed in cystic fibrosis (CF) have been an area of growing interest since the discovery of the CF transmembrane conductance regulator (CFTR) gene >30 y ago. The consistently observed excessive, yet ineffective, activation of both the innate and adaptive host immune systems and the establishment of chronic infections within the lung, leading to destruction and functional decline, remain the primary causes of morbidity and mortality in CF. The fact that both inflammation and pathogenic bacteria persist despite the introduction of modulator therapies targeting the defective protein, CFTR, highlights that we still have much to discover regarding mucosal immunity determinants in CF. Gene modifier studies have overwhelmingly implicated immune genes in the pulmonary phenotype of the disease. In this context, we aim to review recent advances in our understanding of the innate and adaptive immune systems in CF lung disease.
Collapse
Affiliation(s)
- Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care, and Environmental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, LA;
| | - Shiping Lu
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
18
|
Butnariu LI, Țarcă E, Cojocaru E, Rusu C, Moisă ȘM, Leon Constantin MM, Gorduza EV, Trandafir LM. Genetic Modifying Factors of Cystic Fibrosis Phenotype: A Challenge for Modern Medicine. J Clin Med 2021; 10:5821. [PMID: 34945117 PMCID: PMC8707808 DOI: 10.3390/jcm10245821] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disease caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. CF is characterized by a high phenotypic variability present even in patients with the same genotype. This is due to the intervention of modifier genes that interact with both the CFTR gene and environmental factors. The purpose of this review is to highlight the role of non-CFTR genetic factors (modifier genes) that contribute to phenotypic variability in CF. We analyzed literature data starting with candidate gene studies and continuing with extensive studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES). The results of both types of studies revealed that the number of modifier genes in CF patients is impressive. Their identification offers a new perspective on the pathophysiological mechanisms of the disease, paving the way for the understanding of other genetic disorders. In conclusion, in the future, genetic analysis, such as GWAS and WES, should be performed routinely. A challenge for future research is to integrate their results in the process of developing new classes of drugs, with a goal to improve the prognosis, increase life expectancy, and enhance quality of life among CF patients.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Ștefana Maria Moisă
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| | | | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.B.); (C.R.); (E.V.G.)
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (Ș.M.M.); (L.M.T.)
| |
Collapse
|
19
|
Collaco JM, Raraigh KS, Betz J, Aksit MA, Blau N, Brown J, Dietz HC, MacCarrick G, Nogee LM, Sheridan MB, Vernon HJ, Beaty TH, Louis TA, Cutting GR. Accurate assignment of disease liability to genetic variants using only population data. Genet Med 2021; 24:87-99. [PMID: 34906463 DOI: 10.1016/j.gim.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The growing size of public variant repositories prompted us to test the accuracy of pathogenicity prediction of DNA variants using population data alone. METHODS Under the a priori assumption that the ratio of the prevalence of variants in healthy population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we used a Bayesian method to assign probability to a variant belonging to either distribution. RESULTS The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver operating characteristic curve range = 0.54-0.99). Application of BayPR to expertly curated variants in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% to 22 of 23 (95.7%) benign/likely benign variants. CONCLUSION Irrespective of the variant type or functional effect, the BayPR approach provides probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the variant counts in affected and unaffected population samples.
Collapse
Affiliation(s)
- Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Raraigh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua Betz
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Melis Atalar Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland
| | - Jordan Brown
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Harry C Dietz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Gretchen MacCarrick
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Molly B Sheridan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hilary J Vernon
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Thomas A Louis
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
20
|
Kondratyev NV, Alfimova MV, Golov AK, Golimbet VE. Bench Research Informed by GWAS Results. Cells 2021; 10:3184. [PMID: 34831407 PMCID: PMC8623533 DOI: 10.3390/cells10113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Scientifically interesting as well as practically important phenotypes often belong to the realm of complex traits. To the extent that these traits are hereditary, they are usually 'highly polygenic'. The study of such traits presents a challenge for researchers, as the complex genetic architecture of such traits makes it nearly impossible to utilise many of the usual methods of reverse genetics, which often focus on specific genes. In recent years, thousands of genome-wide association studies (GWAS) were undertaken to explore the relationships between complex traits and a large number of genetic factors, most of which are characterised by tiny effects. In this review, we aim to familiarise 'wet biologists' with approaches for the interpretation of GWAS results, to clarify some issues that may seem counterintuitive and to assess the possibility of using GWAS results in experiments on various complex traits.
Collapse
Affiliation(s)
| | | | - Arkadiy K. Golov
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, 115522 Moscow, Russia; (M.V.A.); (A.K.G.); (V.E.G.)
| |
Collapse
|
21
|
Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del- CFTR Homozygous Patient Populations. Genes (Basel) 2021; 12:genes12101554. [PMID: 34680949 PMCID: PMC8535344 DOI: 10.3390/genes12101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
CFTR encodes for a chloride and bicarbonate channel expressed at the apical membrane of polarized epithelial cells. Transepithelial sodium transport mediated by the amiloride-sensitive sodium channel ENaC is thought to contribute to the manifestation of CF disease. Thus, ENaC is a therapeutic target in CF and a valid cystic fibrosis modifier gene. We have characterized SCNN1B as a genetic modifier in the three independent patient cohorts of F508del-CFTR homozygotes. We could identify a regulatory element at SCNN1B to the genomic segment rs168748-rs2303153-rs4968000 by fine-mapping (Pbest = 0.0177), consistently observing the risk allele rs2303153-C and the contrasting benign allele rs2303153-G in all three patient cohorts. Furthermore, our results show that expression levels of SCNN1B are associated with rs2303153 genotype in intestinal epithelia (p = 0.003). Our data confirm that the well-established biological role of SCNN1B can be recognized by an association study on informative endophenotypes in the rare disease cystic fibrosis and calls attention to reproducible results in association studies obtained from small, albeit carefully characterized patient populations.
Collapse
|
22
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
23
|
Harris A. Human molecular genetics and the long road to treating cystic fibrosis. Hum Mol Genet 2021; 30:R264-R273. [PMID: 34245257 DOI: 10.1093/hmg/ddab191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The causative gene in cystic fibrosis was identified in 1989, three years before the publication of the first issue of Human Molecular Genetics. CFTR was among the first genes underlying a common inherited disorder to be cloned, and hence its subsequent utilization towards a cure for CF provides a roadmap for other monogenic diseases. Over the past 30 years the advances that built upon knowledge of the gene and the CFTR protein to develop effective therapeutics have been remarkable, and yet the setbacks have also been challenging. Technological progress in other fields has often circumvented the barriers. This review focuses on key aspects of CF diagnostics and current approaches to develop new therapies for all CFTR mutations. It also highlights the major research advances that underpinned progress towards treatments, and considers the remaining obstacles.
Collapse
Affiliation(s)
- Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
24
|
Walton NI, Zhang X, Soltis AR, Starr J, Dalgard CL, Wilkerson MD, Conrad D, Pollard HB. Tensin 1 (TNS1) is a modifier gene for low body mass index (BMI) in homozygous [F508del]CFTR patients. Physiol Rep 2021; 9:e14886. [PMID: 34086412 PMCID: PMC8176904 DOI: 10.14814/phy2.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well‐phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein‐coding, non‐silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rates between homozygous [F508del]CFTR and compound heterozygous [F508del]CFTR patients. The 3 SNPs were all located in one gene on chromosome 2: Tensin 1 (TNS1: rs3796028; rs2571445: and rs918949). We observed significantly lower BMIs in homozygous [F508del]CFTR patients who were also homozygous for Tensin 1 rs918949 (T/T) (p = 0.023) or rs2571445 (G/G) (p = 0.02) variants. The Tensin 1 gene is thus a potential modifier gene for low BMI in CF patients homozygous for the [F508del]CFTR variant.
Collapse
Affiliation(s)
- Nathan I Walton
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xijun Zhang
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anthony R Soltis
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joshua Starr
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Douglas Conrad
- Department of Medicine, University of California, San Diego, CA, USA
| | - Harvey B Pollard
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
25
|
Extracellular phosphate enhances the function of F508del-CFTR rescued by CFTR correctors. J Cyst Fibros 2021; 20:843-850. [PMID: 34020896 PMCID: PMC8503924 DOI: 10.1016/j.jcf.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
CFTR correctors rescue the plasma membrane expression of F508del-CFTR. Extracellular phosphate enhances F508del-CFTR function rescued by CFTR correctors. Cystic fibrosis airway epithelia express the phosphate transporter SLC34A2. Extracellular phosphate levels might contribute to variable drug responses.
Background: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors. Methods: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature. Results: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl− currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl− currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate. Conclusions: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl− currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.
Collapse
|
26
|
Sepahzad A, Morris-Rosendahl DJ, Davies JC. Cystic Fibrosis Lung Disease Modifiers and Their Relevance in the New Era of Precision Medicine. Genes (Basel) 2021; 12:genes12040562. [PMID: 33924524 PMCID: PMC8069009 DOI: 10.3390/genes12040562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cystic fibrosis (CF) has grown exponentially since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989. With evolving genetic and genomic tools, we have come to better understand the role of CFTR genotypes in the pathophysiology of the disease. This, in turn, has paved the way for the development of modulator therapies targeted at mutations in the CFTR, which are arguably one of the greatest advances in the treatment of CF. These modulator therapies, however, do not target all the mutations in CFTR that are seen in patients with CF and, furthermore, a variation in response is seen in patients with the same genotype who are taking modulator therapies. There is growing evidence to support the role of non-CFTR modifiers, both genetic and environmental, in determining the variation seen in CF morbidity and mortality and also in the response to existing therapies. This review focusses on key findings from studies using candidate gene and genome-wide approaches to identify CF modifier genes of lung disease in cystic fibrosis and considers the interaction between modifiers and the response to modulator therapies. As the use of modulator therapies expands and we gain data around outcomes, it will be of great interest to investigate this interaction further. Going forward, it will also be crucial to better understand the relative influence of genomic versus environmental factors. With this understanding, we can truly begin to deliver personalised care by better profiling the likely disease phenotype for each patient and their response to treatment.
Collapse
Affiliation(s)
- Afsoon Sepahzad
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
| | | | - Jane C. Davies
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK;
- National Heart & Lung Institute, Imperial College London, Emmanuel Kay Building, 1b Manresa Rd, London SW3 6LR, UK
- Correspondence:
| |
Collapse
|
27
|
Eastman AC, Pace RG, Dang H, Aksit MA, Vecchio-Pagán B, Lam ATN, O'Neal WK, Blackman SM, Knowles MR, Cutting GR. SLC26A9 SNP rs7512462 is not associated with lung disease severity or lung function response to ivacaftor in cystic fibrosis patients with G551D-CFTR. J Cyst Fibros 2021; 20:851-856. [PMID: 33674211 DOI: 10.1016/j.jcf.2021.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The CFTR modulator ivacaftor has been variably effective in treating individuals with cystic fibrosis (CF) who harbor CFTR gating variants such as G551D, as well as other classes of CFTR variants when used with other modulators. Because CFTR genotype does not fully explain this variability, defining genetic modifiers of response to modulator therapy is of particular interest to the field of individualized CF drug therapy. Previous studies have proposed that a variant in SLC26A9 (rs7512462) is associated with lung disease severity and with response to treatment with ivacaftor in individuals with CF who carry G551D or gating variants. METHODS Given the implications for CF treatment, we re-examined the reported associations in three cohorts; patients enrolled in the Twin and Siblings study at Johns Hopkins University, the CF modifier study at the University of North Carolina at Chapel Hill, and the prospective G551D Observational (GOAL) study. The GOAL study was specifically designed to measure lung function response to ivacaftor. RESULTS We find no association between SLC26A9 (rs7512462) genotype and lung disease severity (n = 272) or change in lung function at one-, three-, and six-month intervals following ivacaftor treatment(n = 141) in individuals with CF who carry at least one G551D variant. CONCLUSIONS Our inability to replicate this association indicates that rs7512462 genotype should not be used in treatment decisions.
Collapse
Affiliation(s)
- Alice C Eastman
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Rhonda G Pace
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Hong Dang
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Melis Atalar Aksit
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Briana Vecchio-Pagán
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Anh-Thu N Lam
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Wanda K O'Neal
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA
| | - Scott M Blackman
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA
| | - Michael R Knowles
- University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27599, USA.
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University (JHU), Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Osikoya O, Axton M. The missing person in gene-environment interactions. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10041. [PMID: 36618445 PMCID: PMC9744496 DOI: 10.1002/ggn2.10041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/11/2023]
|
29
|
Sanders M, Lawlor JMJ, Li X, Schuen JN, Millard SL, Zhang X, Buck L, Grysko B, Uhl KL, Hinds D, Stenger CL, Morris M, Lamb N, Levy H, Bupp C, Prokop JW. Genomic, transcriptomic, and protein landscape profile of CFTR and cystic fibrosis. Hum Genet 2021; 140:423-439. [PMID: 32734384 PMCID: PMC7855842 DOI: 10.1007/s00439-020-02211-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023]
Abstract
Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.
Collapse
Affiliation(s)
- Morgan Sanders
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - John N Schuen
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Susan L Millard
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Xi Zhang
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Leah Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Bethany Grysko
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Hara Levy
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Caleb Bupp
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Abstract
Because CFTR gene studies now represent one of the most frequent genetic analyses routinely performed worldwide, the number of rare CFTR variants identified in various clinical situations, regularly increases. To provide appropriate diagnosis and prognosis to CF patients as well as appropriate genetic counseling to families, the clinical impact and the phenotypic spectrum of variants identified by diagnostic techniques need to be characterized. Three complementary locus specific databases, called CFTR1, CFTR2 and CFTR-France were developed to address these issues. Besides, the growing knowledge of the CF pathophysiology and the technical evolution in molecular biology allowed to identify candidate modifier genes, regulatory loci, epigenetic profiles and trans-regulators that could help to refine genotype-phenotype correlations at the individual level. These different factors may contribute to the large phenotypic variability between patients with CF, even when they carry identical CFTR variants, regarding lung function, meconium ileus susceptibility or the risk for developing CFTR-related diabetes and liver disease. Finally, the availability of new therapies that target the CFTR protein for numbers of CF patients led to the identification of 'good' and 'poor' responders, thus raising questions of pharmacogenetics factors that may influence treatment efficiency as a novel feature of the complexity of CF patients' management. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
|
31
|
Pineau F, Shumyatsky G, Owuor N, Nalamala N, Kotnala S, Bolla S, Marchetti N, Kelsen S, Criner GJ, Sajjan US. Microarray analysis identifies defects in regenerative and immune response pathways in COPD airway basal cells. ERJ Open Res 2020; 6:00656-2020. [PMID: 33313308 PMCID: PMC7720690 DOI: 10.1183/23120541.00656-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/07/2023] Open
Abstract
Background Airway basal cells are specialised stem cells and regenerate airway epithelium. Airway basal cells isolated from patients with COPD regenerate airway epithelium with an abnormal phenotype. We performed gene expression analysis to gain insights into the defective regenerative programme in COPD basal cells. Methods We conducted microarray analysis and compared COPD versus normal basal cells to identify differentially regulated genes (DEGs) and the enriched biological pathways. We determined the correlation of DEGs with cell polarisation and markers of ciliated and goblet cells. HOXB2 was knocked down in 16HBE14o− cells and monitored for polarisation of cells. HOXB2 expression in the lung sections was determined by immunofluorescence. Results Comparison of normal and COPD basal cell transcriptomic profiles highlighted downregulation of genes associated with tissue development, epithelial cell differentiation and antimicrobial humoral response. Expression of one of the tissue development genes, HOXB2 showed strong correlation with transepithelial resistance and this gene was downregulated in COPD basal cells. Knockdown of HOXB2, abrogated polarisation of epithelial cells in normal cells. Finally, HOXB2 expression was substantially reduced in the bronchial epithelium of COPD patients. Conclusions Defect in gene signatures involved in tissue development and epithelial differentiation were implicated in COPD basal cells. One of the tissue developmental genes, HOXB2, is substantially reduced in bronchial epithelium of COPD patients. Since HOXB2 contributes to airway epithelial cell polarisation, we speculate that reduced expression of HOXB2 in COPD may contribute to abnormal airway epithelial regeneration in COPD. COPD airway basal cells show downregulation of gene sets that are involved in intercellular junctions, epithelial differentiation and immune responses, highlighting the possible mechanisms of defective airway epithelial repair in COPDhttps://bit.ly/3kneloj
Collapse
Affiliation(s)
- Fanny Pineau
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | | | - Nicole Owuor
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Nisha Nalamala
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Sudhir Kotnala
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Sudhir Bolla
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Marchetti
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Steven Kelsen
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Gerard J Criner
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA
| | - Uma S Sajjan
- Dept of Thoracic Surgery and Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, USA
| |
Collapse
|
32
|
Auslander N, Ramos DM, Zelaya I, Karathia H, Crawford TO, Schäffer AA, Sumner CJ, Ruppin E. The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases. Mol Syst Biol 2020; 16:e9701. [PMID: 33438800 PMCID: PMC7754056 DOI: 10.15252/msb.20209701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Modifier genes are believed to account for the clinical variability observed in many Mendelian disorders, but their identification remains challenging due to the limited availability of genomics data from large patient cohorts. Here, we present GENDULF (GENetic moDULators identiFication), one of the first methods to facilitate prediction of disease modifiers using healthy and diseased tissue gene expression data. GENDULF is designed for monogenic diseases in which the mechanism is loss of function leading to reduced expression of the mutated gene. When applied to cystic fibrosis, GENDULF successfully identifies multiple, previously established disease modifiers, including EHF, SLC6A14, and CLCA1. It is then utilized in spinal muscular atrophy (SMA) and predicts U2AF1 as a modifier whose low expression correlates with higher SMN2 pre-mRNA exon 7 retention. Indeed, knockdown of U2AF1 in SMA patient-derived cells leads to increased full-length SMN2 transcript and SMN protein expression. Taking advantage of the increasing availability of transcriptomic data, GENDULF is a novel addition to existing strategies for prediction of genetic disease modifiers, providing insights into disease pathogenesis and uncovering novel therapeutic targets.
Collapse
Affiliation(s)
- Noam Auslander
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- National Center for Biotechnology InformationNational Library of MedicineNational Institutes of HealthBethesdaMDUSA
| | - Daniel M Ramos
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ivette Zelaya
- Interdepartmental Program in BioinformaticsUniversity of California Los AngelesLos AngelesCAUSA
| | - Hiren Karathia
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer InstituteNational Institutes of HealthMDUSA
| | - Thomas O. Crawford
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Charlotte J Sumner
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL)National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
33
|
Dang H, Polineni D, Pace RG, Stonebraker JR, Corvol H, Cutting GR, Drumm ML, Strug LJ, O’Neal WK, Knowles MR. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLoS One 2020; 15:e0239189. [PMID: 33253230 PMCID: PMC7703903 DOI: 10.1371/journal.pone.0239189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.
Collapse
Affiliation(s)
- Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rhonda G. Pace
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Jaclyn R. Stonebraker
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux sde Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa J. Strug
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
34
|
Huang W, Yu J, Liu T, Defnet AE, Zalesak S, Farese AM, MacVittie TJ, Kane MA. Proteomics of Non-human Primate Plasma after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2020; 119:621-632. [PMID: 32947488 PMCID: PMC7541796 DOI: 10.1097/hp.0000000000001350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-dose radiation exposure results in organ-specific sequelae that occurs in a time- and dose-dependent manner. The partial body irradiation with minimal bone marrow sparing model was developed to mimic intentional or accidental radiation exposures in humans where bone marrow sparing is likely and permits the concurrent analysis of coincident short- and long-term damage to organ systems. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the plasma proteome of non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing with 6 MV LINAC-derived photons at 0.80 Gy min over a time period of 3 wk. The plasma proteome was analyzed by liquid chromatography-tandem mass spectrometry. A number of trends were identified in the proteomic data including pronounced protein changes as well as protein changes that were consistently upregulated or downregulated at all time points and dose levels interrogated. Pathway and gene ontology analysis were performed; bioinformatic analysis revealed significant pathway and biological process perturbations post high-dose irradiation and shed light on underlying mechanisms of radiation damage. Additionally, proteins were identified that had the greatest potential to serve as biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
35
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
36
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
37
|
Recchiuti A, Patruno S, Plebani R, Romano M. The Resolution Approach to Cystic Fibrosis Inflammation. Front Pharmacol 2020; 11:1129. [PMID: 32848748 PMCID: PMC7403222 DOI: 10.3389/fphar.2020.01129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Despite the high expectations associated with the recent introduction of CFTR modulators, airway inflammation still remains a relevant clinical issue in cystic fibrosis (CF). The classical anti-inflammatory drugs have shown very limited efficacy, when not being harmful, raising the question of whether alternative approaches should be undertaken. Thus, a better knowledge of the mechanisms underlying the aberrant inflammation observed in CF is pivotal to develop more efficacious pharmacology. In this respect, the observation that endogenous proresolving pathways are defective in CF and that proresolving mediators, physiologically generated during an acute inflammatory reaction, do not completely suppress inflammation, but promote resolution, tissue healing and microbial clearance, without compromising immune host defense mechanisms, opens interesting therapeutic scenarios for CF. In this mini-review, we present the current knowledge and perspectives of proresolving pharmacology in CF, focusing on the specialized proresolving lipid mediators and selected peptides.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Patruno
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Center on Advanced Studies and Technology (CAST), Department of Medical, Oral e Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
38
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
39
|
Liu K, Xu W, Xiao M, Zhao X, Bian C, Zhang Q, Song J, Chen K, Tian X, Liu Y, Xu KF, Zhang X. Characterization of clinical and genetic spectrum of Chinese patients with cystic fibrosis. Orphanet J Rare Dis 2020; 15:150. [PMID: 32539862 PMCID: PMC7294671 DOI: 10.1186/s13023-020-01393-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cystic fibrosis (CF) is a rare autosomal recessive disorder caused by biallelic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The clinical features and mutation spectrum of CF have been well characterized in Caucasians, while limited studies were conducted in Chinese patients. Subjects and methods A total of 20 individuals from 19 families were diagnosed with CF in this study. We analyzed the clinical features and screened all coding exons of CFTR using a combination of Sanger sequencing and multiplex ligation-dependent probe amplification analysis. Results The median age at onset was 9.3 years in our cohort, while the median age at diagnosis was 19 years. The respiratory system was most frequently affected in this study: all patients (100%, 19/19) presented diffuse bronchiectasis and 61.1% (11/18) of patients showed a forced expiratory volume in 1 s below 80% predicted. Six patients (6/20, 30%) exhibited allergic bronchopulmonary aspergillosis (ABPA). Only 4 (4/20, 20%) patients presented pancreatic exocrine insufficiency (PI). Three adult male patients receiving examinations for congenital bilateral absence of the vas deferens were all found positive for the condition. A total of 22 distinct mutations were detected in this cohort, with the variant p.G970D as the most common variant (12/38 alleles, 31.6%). Four variants (p.Y109D, p.I203F, p.D572E, and exon 2–3 deletion) were novel, which expanded the mutation spectrum of Chinese CF patients. Conclusions Chinese CF patients showed different clinical features and a distinct CFTR mutation spectrum compared with Caucasians. There is a significant diagnosis delay, suggesting the current underdiagnosis of CF in China.
Collapse
Affiliation(s)
- Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wenshuai Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Meng Xiao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xinyue Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chun Bian
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qianli Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jiaxing Song
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Keqi Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
40
|
Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, Yee D, Hitchcock IS, Sousos N, O'Sullivan J, Anderson S, Senis YA, Weinberg OK, Calicchio ML, Iskander D, Royston D, Milojkovic D, Roberts I, Bodine DM, Thongjuea S, Mead AJ. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Mol Cell 2020; 78:477-492.e8. [PMID: 32386542 PMCID: PMC7217381 DOI: 10.1016/j.molcel.2020.04.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.
Collapse
Affiliation(s)
- Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA.
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Rong Li
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Elisabeth F Heuston
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Lauren Murphy
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Daniel Yee
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Stacie Anderson
- NHGRI Flow Cytometry Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Strasbourg 67065, France
| | - Olga K Weinberg
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica L Calicchio
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deena Iskander
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dragana Milojkovic
- Centre for Haematology, Hammersmith Hospital, Imperial College of Medicine, London W12 OHS, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - David M Bodine
- Hematopoiesis Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4442, USA
| | - Supat Thongjuea
- NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK; MRC WIMM Centre for Computational Biology, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK.
| |
Collapse
|
41
|
Aksit MA, Pace RG, Vecchio-Pagán B, Ling H, Rommens JM, Boelle PY, Guillot L, Raraigh KS, Pugh E, Zhang P, Strug LJ, Drumm ML, Knowles MR, Cutting GR, Corvol H, Blackman SM. Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. J Clin Endocrinol Metab 2020; 105:dgz102. [PMID: 31697830 PMCID: PMC7236628 DOI: 10.1210/clinem/dgz102] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT Individuals with cystic fibrosis (CF) develop a distinct form of diabetes characterized by β-cell dysfunction and islet amyloid accumulation similar to type 2 diabetes (T2D), but generally have normal insulin sensitivity. CF-related diabetes (CFRD) risk is determined by both CFTR, the gene responsible for CF, and other genetic variants. OBJECTIVE To identify genetic modifiers of CFRD and determine the genetic overlap with other types of diabetes. DESIGN AND PATIENTS A genome-wide association study was conducted for CFRD onset on 5740 individuals with CF. Weighted polygenic risk scores (PRSs) for type 1 diabetes (T1D), T2D, and diabetes endophenotypes were tested for association with CFRD. RESULTS Genome-wide significance was obtained for variants at a novel locus (PTMA) and 2 known CFRD genetic modifiers (TCF7L2 and SLC26A9). PTMA and SLC26A9 variants were CF-specific; TCF7L2 variants also associated with T2D. CFRD was strongly associated with PRSs for T2D, insulin secretion, postchallenge glucose concentration, and fasting plasma glucose, and less strongly with T1D PRSs. CFRD was inconsistently associated with PRSs for insulin sensitivity and was not associated with a PRS for islet autoimmunity. A CFRD PRS comprising variants selected from these PRSs (with a false discovery rate < 0.1) and the genome-wide significant variants was associated with CFRD in a replication population. CONCLUSIONS CFRD and T2D have more etiologic and mechanistic overlap than previously known, aligning along pathways involving β-cell function rather than insulin sensitivity. Two CFRD risk loci are unrelated to T2D and may affect multiple aspects of CF. An 18-variant PRS stratifies risk of CFRD in an independent population.
Collapse
Affiliation(s)
- Melis A Aksit
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Johanna M Rommens
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Pierre-Yves Boelle
- Sorbonne Université, INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, iPLESP, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Loic Guillot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Karen S Raraigh
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Peng Zhang
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Lisa J Strug
- The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | | | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Garry R Cutting
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harriet Corvol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Scott M Blackman
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Zhong X, Yin Z, Jia G, Zhou D, Wei Q, Faucon A, Evans P, Gamazon ER, Li B, Tao R, Rzhetsky A, Bastarache L, Cox NJ. Electronic health record phenotypes associated with genetically regulated expression of CFTR and application to cystic fibrosis. Genet Med 2020; 22:1191-1200. [PMID: 32296164 DOI: 10.1038/s41436-020-0786-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The increasing use of electronic health records (EHRs) and biobanks offers unique opportunities to study Mendelian diseases. We described a novel approach to summarize clinical manifestations from patient EHRs into phenotypic evidence for cystic fibrosis (CF) with potential to alert unrecognized patients of the disease. METHODS We estimated genetically predicted expression (GReX) of cystic fibrosis transmembrane conductance regulator (CFTR) and tested for association with clinical diagnoses in the Vanderbilt University biobank (N = 9142 persons of European descent with 71 cases of CF). The top associated EHR phenotypes were assessed in combination as a phenotype risk score (PheRS) for discriminating CF case status in an additional 2.8 million patients from Vanderbilt University Medical Center (VUMC) and 125,305 adult patients including 25,314 CF cases from MarketScan, an independent external cohort. RESULTS GReX of CFTR was associated with EHR phenotypes consistent with CF. PheRS constructed using the EHR phenotypes and weights discovered by the genetic associations improved discriminative power for CF over the initially proposed PheRS in both VUMC and MarketScan. CONCLUSION Our study demonstrates the power of EHRs for clinical description of CF and the benefits of using a genetics-informed weighing scheme in construction of a phenotype risk score. This research may find broad applications for phenomic studies of Mendelian disease genes.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Genetics Institute, Nashville, TN, USA.
| | - Zhijun Yin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Gengjie Jia
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Qiang Wei
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annika Faucon
- Human Genetics Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Patrick Evans
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Nashville, TN, USA.,'Life Member' of Clare Hall, University of Cambridge, Cambridge, United Kingdom.,MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Bingshan Li
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Nashville, TN, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrey Rzhetsky
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.,Committee on Genomics, Genetics and Systems Biology, University of Chicago, Chicago, IL, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Genetics Institute, Nashville, TN, USA.
| |
Collapse
|
43
|
Paranjapye A, Ruffin M, Harris A, Corvol H. Genetic variation in CFTR and modifier loci may modulate cystic fibrosis disease severity. J Cyst Fibros 2020; 19 Suppl 1:S10-S14. [PMID: 31734115 PMCID: PMC7036019 DOI: 10.1016/j.jcf.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
In patients with cystic fibrosis (CF), genetic variants within and outside the CFTR locus contribute to the variability of the disease severity. CFTR transcription is tightly regulated by cis-regulatory elements (CREs) that control the three-dimensional structure of the locus, chromatin accessibility and transcription factor recruitment. Variants within these CREs may contribute to the pathophysiology and to the phenotypic heterogeneity by altering CFTR transcript abundance. In addition to the CREs, variants outside the CFTR locus, namely "modifiers genes", may also be associated with the clinical variability. This review addresses variants at the CFTR locus itself and CFTR CREs, together with the outcomes of the latest modifier gene studies with respect to the different CF phenotypes.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Manon Ruffin
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH, USA.
| | - Harriet Corvol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France; AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France.
| |
Collapse
|
44
|
Hobbs BD, Cho MH. Why is Disease Penetration So Variable? Role of Genetic Modifiers of Lung Function in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:214-223. [PMID: 32621460 DOI: 10.15326/jcopdf.7.3.2019.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Individuals with alpha-1 antitrypsin deficiency (AATD) have marked heterogeneity in lung function, suspected to be related to a combination of both environmental (e.g., cigarette smoking) and genetic factors. Lung function is heritable in the general population and in persons with severe AATD. Several genetic modifiers of lung function in persons with AATD have been described; however, replication is lacking. A genome-wide association study (GWAS) of lung function in persons with AATD has yet to be performed and may inform whether genetic determinants of lung function are overlapping in persons with AATD and in the general population. As GWASs require large sample sizes for adequate power, genetic risk scores offer an alternate approach to assess the overlap of genetic determinants of lung function in the general population in persons with AATD. Where GWASs are limited to common genetic variant discovery, whole genome sequencing (for rare variant discovery) and integrative genomic studies (examining the influence of genetic variants on gene, protein, and metabolite levels) offer potential for an expanded discovery of genetic modifiers of lung function in AATD. In the following review we examine past descriptions of genetic modifiers of lung function in AATD and describe a path forward to further investigate and define the likely genetic modifiers of lung function in AATD.
Collapse
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Sharma N, Cutting GR. The genetics and genomics of cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S5-S9. [PMID: 31879237 DOI: 10.1016/j.jcf.2019.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Genetics is the branch of biology concerned with study of individual genes and how they work whereas genomics is involved with the analysis of all genes and their interactions. Both of these approaches have been applied extensively to CF. Identification of the CFTR gene initiated the dissection of CF genetics at the molecular level. Subsequently, thousands of variants were found in the gene and the functional consequences of a subset have been studied in detail. The completion of the human genome ushered in a new phase of study where the role of genes beyond CFTR could be evaluated for their contribution to the severity of CF. This will be a brief overview of the contribution of these complementary methods to our understanding of CF pathogenesis.
Collapse
Affiliation(s)
- N Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - G R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
46
|
Swahn H, Sabith Ebron J, Lamar K, Yin S, Kerschner JL, NandyMazumdar M, Coppola C, Mendenhall EM, Leir S, Harris A. Coordinate regulation of ELF5 and EHF at the chr11p13 CF modifier region. J Cell Mol Med 2019; 23:7726-7740. [PMID: 31557407 PMCID: PMC6815777 DOI: 10.1111/jcmm.14646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022] Open
Abstract
E74-like factor 5 (ELF5) and ETS-homologous factor (EHF) are epithelial selective ETS family transcription factors (TFs) encoded by genes at chr11p13, a region associated with cystic fibrosis (CF) lung disease severity. EHF controls many key processes in lung epithelial function so its regulatory mechanisms are important. Using CRISPR/Cas9 technology, we removed three key cis-regulatory elements (CREs) from the chr11p13 region and also activated multiple open chromatin sites with CRISPRa in airway epithelial cells. Deletion of the CREs caused subtle changes in chromatin architecture and site-specific increases in EHF and ELF5. CRISPRa had most effect on ELF5 transcription. ELF5 levels are low in airway cells but higher in LNCaP (prostate) and T47D (breast) cancer cells. ATAC-seq in these lines revealed novel peaks of open chromatin at the 5' end of chr11p13 associated with an expressed ELF5 gene. Furthermore, 4C-seq assays identified direct interactions between the active ELF5 promoter and sites within the EHF locus, suggesting coordinate regulation between these TFs. ChIP-seq for ELF5 in T47D cells revealed ELF5 occupancy within EHF introns 1 and 6, and siRNA-mediated depletion of ELF5 enhanced EHF expression. These results define a new role for ELF5 in lung epithelial biology.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jey Sabith Ebron
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Kay‐Marie Lamar
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Shiyi Yin
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jenny L. Kerschner
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Monali NandyMazumdar
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Candice Coppola
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleALUSA
| | - Eric M. Mendenhall
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleALUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
47
|
Shanthikumar S, Neeland MN, Saffery R, Ranganathan S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr Pulmonol 2019; 54:1356-1366. [PMID: 31140758 DOI: 10.1002/ppul.24366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung disease is the major source of morbidity and mortality in cystic fibrosis (CF), with large variability in severity between patients. Although accurate prediction of lung disease severity would be extremely useful, no robust methods exist. Twin and sibling studies have highlighted the importance of non-cystic fibrosis transmembrane conductance regulator (CFTR) genes in determining lung disease severity but how these impact on the severity in CF remains unclear. METHODS A systematic review was undertaken to answer the question "In patients with CF which non-CFTR genes modify the severity of lung disease?" The method for this systematic review was based upon the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" statement, with a narrative synthesis of results planned. RESULTS A total of 1168 articles were screened for inclusion, with 275 articles undergoing detailed assessment for inclusion. One hundred and forty articles were included. Early studies focused on candidate genes, whereas more recent studies utilized genome-wide approaches and also examined epigenetic mechanisms, gene expression, and therapeutic response. DISCUSSION A large body of evidence regarding non-CFTR gene modifiers of lung disease severity has been generated, examining a wide array of genes. Limitations to existing studies include heterogeneity in outcome measures used, limited replication, and relative lack of clinical impact. Future work examining non-CFTR gene modifiers will have to overcome these limitations if gene modifiers are to have a meaningful role in the care of patients with CF.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| | - Melanie N Neeland
- Department of Paediatrics, The University of Melbourne, Australia.,Centre of Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard Saffery
- Department of Paediatrics, The University of Melbourne, Australia.,Cancer & Disease Epigenetics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarath Ranganathan
- Respiratory and Sleep Medicine Department, Royal Children's Hospital, Melbourne, Australia.,Respiratory Diseases Department, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Australia
| |
Collapse
|
48
|
Abstract
RATIONALE Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. OBJECTIVES To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. METHODS Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. RESULTS Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. CONCLUSIONS Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.
Collapse
|
49
|
Polineni D, Dang H, Gallins PJ, Jones LC, Pace RG, Stonebraker JR, Commander LA, Krenicky JE, Zhou YH, Corvol H, Cutting GR, Drumm ML, Strug LJ, Boyle MP, Durie PR, Chmiel JF, Zou F, Wright FA, O'Neal WK, Knowles MR. Airway Mucosal Host Defense Is Key to Genomic Regulation of Cystic Fibrosis Lung Disease Severity. Am J Respir Crit Care Med 2019; 197:79-93. [PMID: 28853905 DOI: 10.1164/rccm.201701-0134oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE The severity of cystic fibrosis (CF) lung disease varies widely, even for Phe508del homozygotes. Heritability studies show that more than 50% of the variability reflects non-cystic fibrosis transmembrane conductance regulator (CFTR) genetic variation; however, the full extent of the pertinent genetic variation is not known. OBJECTIVES We sought to identify novel CF disease-modifying mechanisms using an integrated approach based on analyzing "in vivo" CF airway epithelial gene expression complemented with genome-wide association study (GWAS) data. METHODS Nasal mucosal RNA from 134 patients with CF was used for RNA sequencing. We tested for associations of transcriptomic (gene expression) data with a quantitative phenotype of CF lung disease severity. Pathway analysis of CF GWAS data (n = 5,659 patients) was performed to identify novel pathways and assess the concordance of genomic and transcriptomic data. Association of gene expression with previously identified CF GWAS risk alleles was also tested. MEASUREMENTS AND MAIN RESULTS Significant evidence of heritable gene expression was identified. Gene expression pathways relevant to airway mucosal host defense were significantly associated with CF lung disease severity, including viral infection, inflammation/inflammatory signaling, lipid metabolism, apoptosis, ion transport, Phe508del CFTR processing, and innate immune responses, including HLA (human leukocyte antigen) genes. Ion transport and CFTR processing pathways, as well as HLA genes, were identified across differential gene expression and GWAS signals. CONCLUSIONS Transcriptomic analyses of CF airway epithelia, coupled to genomic (GWAS) analyses, highlight the role of heritable host defense variation in determining the pathophysiology of CF lung disease. The identification of these pathways provides opportunities to pursue targeted interventions to improve CF lung health.
Collapse
Affiliation(s)
- Deepika Polineni
- 1 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Hong Dang
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Paul J Gallins
- 3 Bioinformatics Research Center, Department of Biological Sciences
| | - Lisa C Jones
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Rhonda G Pace
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Jaclyn R Stonebraker
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Leah A Commander
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Jeanne E Krenicky
- 4 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yi-Hui Zhou
- 3 Bioinformatics Research Center, Department of Biological Sciences
| | - Harriet Corvol
- 5 Pediatric Pulmonary Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France.,6 Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R Cutting
- 7 McKusick-Nathans Institute of Genetic Medicine.,8 Department of Pediatrics, and
| | - Mitchell L Drumm
- 4 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Lisa J Strug
- 9 Program in Genetics and Genome Biology.,10 Division of Biostatistics, Dalla Lana School of Public Health, and
| | - Michael P Boyle
- 11 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter R Durie
- 12 Physiology and Experimental Medicine Research Program, and.,13 Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada; and.,14 Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - James F Chmiel
- 4 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fei Zou
- 15 Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fred A Wright
- 16 Department of Statistics, and.,17 Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Wanda K O'Neal
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| | - Michael R Knowles
- 2 Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, School of Medicine, and
| |
Collapse
|
50
|
Swahn H, Harris A. Cell-Selective Regulation of CFTR Gene Expression: Relevance to Gene Editing Therapeutics. Genes (Basel) 2019; 10:E235. [PMID: 30893953 PMCID: PMC6471542 DOI: 10.3390/genes10030235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional (3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be considered. In this review, we focus on the higher order chromatin organization required for normal CFTR locus function, together with the complex mechanisms controlling expression of the gene in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized into an invariant topologically associated domain (TAD) established by the architectural proteins CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD also recruit these factors. Although the CFTR promoter is required for basal levels of expression, cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and temporal coordination of CFTR transcription. These CREs are recruited to the promoter through chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR locus should be considered when designing gene-editing approaches, since failure to recognize their importance may disrupt gene expression and reduce the efficacy of therapies.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44067, USA.
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44067, USA.
| |
Collapse
|