1
|
Zhao X, Yang J, Wang H, Xu H, Zhou Y, Duan L. MicroRNAs in Plants Development and Stress Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255181 DOI: 10.1111/pce.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025]
Abstract
Plant growth and development are governed by a rigorously timed sequence of ontogenetic programmes. MicroRNAs (miRNAs), a class of short noncoding RNAs, function as master regulators of gene expression by targeting mRNAs for cleavage or direct translational inhibition at the posttranscriptional level in eukaryotes. Numerous miRNA molecules that control significant agronomic properties in plants have been found. On the one hand, miRNAs target transcription factors (TFs) to determine plant structure, such as root development, internode elongation, leaf morphogenesis, sex determination and nutrient transition. On the other hand, miRNAs alter expression levels to adapt to biological and abiotic stresses, including fungi, bacteria, viruses, drought, waterlogging, high temperature, low temperature, salinity, nutrient deficiencies, heavy metals and other abiotic stresses. To fully understand the role of miRNAs in plants, we review the regulatory role of miRNAs in plant development and stress resistance. Beyond that, we propose that the novel miRNA in review can be effectively further studied with artificial miRNA (amiRNA) or short tandem target mimics (STTM) and miRNA delivery in vitro can be used to improve crop yield and agricultural sustainability.
Collapse
Affiliation(s)
- Xi Zhao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haiyan Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haidong Xu
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Ali A, Shahbaz M, Ölmez F, Fatima N, Umar UUD, Ali MA, Akram M, Seelan JSS, Baloch FS. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. World J Microbiol Biotechnol 2024; 40:339. [PMID: 39358476 DOI: 10.1007/s11274-024-04143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, 54000, Lahore, Punjab, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus, Bosan Road, 60800, Multan, Pakistan
| | - Md Arshad Ali
- Biotechnology Program, Faculty of Science and Natural, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, 63100, Bahawalpur, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia.
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir Mersin, Turkey.
| |
Collapse
|
4
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
5
|
Jiang C, Zhang X, Rao J, Luo S, Luo L, Lu W, Li M, Zhao S, Ren D, Liu J, Song Y, Zheng Y, Sun YB. Enhancing Pseudomonas syringae pv. Actinidiae sensitivity in kiwifruit by repressing the NBS-LRR genes through miRNA-215-3p and miRNA-29-3p identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1403869. [PMID: 39086918 PMCID: PMC11288850 DOI: 10.3389/fpls.2024.1403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.
Collapse
Affiliation(s)
- Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhang
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiahui Rao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shu Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Liang Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhao
- Key Laboratory of Agricultural Engineering in Structure and Environment, China Agricultural University, Beijing, China
| | - Dan Ren
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiaming Liu
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Yu Song
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Naresh M, Purkayastha A, Dasgupta I. P4 protein of an Indian isolate of rice tungro bacilliform virus modulates gene silencing. Virus Genes 2024; 60:55-64. [PMID: 38055154 DOI: 10.1007/s11262-023-02039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Plant hosts and their viral pathogens are engaged in a constant cycle of defense and counter-defense as part of a molecular arms race, principal among them being the plant RNAi defense and the viral RNAi suppressor counter-defense. Rice tungro bacilliform virus (RTBV), member of the family Caulimoviridae, genus Tungrovirus, species Tungrovirus oryzae, infects rice in South- and Southeast Asia and causes severe symptoms of stunting, yellow-orange discoloration and twisting of leaf tips. To better understand the possible counter-defensive roles of RTBV against the host RNAi defense system, we explored the ability of the P4 protein of an Indian isolate of RTBV to act as a possible modulator of RNAi. Using a transient silencing and silencing suppression assay in Nicotiana benthamiana, we show that P4 not only displays an RNAi suppressor function, but also potentially enhances RNAi. The results also suggests that the N-terminal 168 amino acid residues of P4 are sufficient to maintain RNAi suppressor activity. Taken together with the earlier reports this work strengthens the view that the P4 protein carries out RNAi suppressor and a potential RNAi enhancer function.
Collapse
Affiliation(s)
- Madhvi Naresh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Arunima Purkayastha
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
8
|
Iida E, Kuriyama K, Tabara M, Takeda A, Suzuki N, Moriyama H, Fukuhara T. Structural features of T-DNA that induce transcriptional gene silencing during agroinfiltration. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:289-299. [PMID: 38434119 PMCID: PMC10905568 DOI: 10.5511/plantbiotechnology.23.0719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 03/05/2024]
Abstract
Agrobacterium tumefaciens (Rhizobium radiobacter) is used for the transient expression of foreign genes by the agroinfiltration method, but the introduction of foreign genes often induces transcriptional and/or post-transcriptional gene silencing (TGS and/or PTGS). In this study, we characterized the structural features of T-DNA that induce TGS during agroinfiltration. When A. tumefaciens cells harboring an empty T-DNA plasmid containing the cauliflower mosaic virus (CaMV) 35S promoter were infiltrated into the leaves of Nicotiana benthamiana line 16c with a GFP gene over-expressed under the control of the same promoter, no small interfering RNAs (siRNAs) were derived from the GFP sequence. However, siRNAs derived from the CaMV 35S promoter were detected, indicating that TGS against the GFP gene was induced. When the GFP gene was inserted into the T-DNA plasmid, PTGS against the GFP gene was induced whereas TGS against the CaMV 35S promoter was suppressed. We also showed the importance of terminator sequences in T-DNA for gene silencing. Therefore, depending on the combination of promoter, terminator and coding sequences on T-DNA and the host nuclear genome, either or both TGS and/or PTGS could be induced by agroinfiltration. Furthermore, we showed the possible involvement of three siRNA-producing Dicers (DCL2, DCL3 and DCL4) in the induction of TGS by the co-agroinfiltration method. Especially, DCL2 was probably the most important among them in the initial step of TGS induction. These results are valuable for controlling gene expression by agroinfiltration.
Collapse
Affiliation(s)
- Emi Iida
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kazunori Kuriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
9
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
10
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
11
|
Bilir Ö, Göl D, Hong Y, McDowell JM, Tör M. Small RNA-based plant protection against diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:951097. [PMID: 36061762 PMCID: PMC9434005 DOI: 10.3389/fpls.2022.951097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Plant diseases cause significant decreases in yield and quality of crops and consequently pose a very substantial threat to food security. In the continuous search for environmentally friendly crop protection, exploitation of RNA interferance machinery is showing promising results. It is well established that small RNAs (sRNAs) including microRNA (miRNA) and small interfering RNA (siRNA) are involved in the regulation of gene expression via both transcriptional and post-transcriptional RNA silencing. sRNAs from host plants can enter into pathogen cells during invasion and silence pathogen genes. This process has been exploited through Host-Induced Gene Silencing (HIGS), in which plant transgenes that produce sRNAs are engineered to silence pest and pathogen genes. Similarly, exogenously applied sRNAs can enter pest and pathogen cells, either directly or via the hosts, and silence target genes. This process has been exploited in Spray-Induced Gene Silencing (SIGS). Here, we focus on the role of sRNAs and review how they have recently been used against various plant pathogens through HIGS or SIGS-based methods and discuss advantages and drawbacks of these approaches.
Collapse
Affiliation(s)
- Özlem Bilir
- Department of Biotechnology, Trakya Agricultural Research Institute, Edirne, Turkey
| | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Yiguo Hong
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
12
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Tiwari M, Mishra AK, Chakrabarty D. Agrobacterium-mediated gene transfer: recent advancements and layered immunity in plants. PLANTA 2022; 256:37. [PMID: 35819629 PMCID: PMC9274631 DOI: 10.1007/s00425-022-03951-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/19/2022] [Indexed: 05/15/2023]
Abstract
Plant responds to Agrobacterium via three-layered immunity that determines its susceptibility or resistance to Agrobacterium infection. Agrobacterium tumefaciens is a soil-borne Gram-negative bacterium that causes crown gall disease in plants. The remarkable feat of interkingdom gene transfer has been extensively utilised in plant biotechnology to transform plant as well as non-host systems. In the past two decades, the molecular mode of the pathogenesis of A. tumefaciens has been extensively studied. Agrobacterium has also been utilised as a premier model to understand the defence response of plants during plant-Agrobacterium interaction. Nonetheless, the threat of Agrobacterium-mediated crown gall disease persists and is associated with a huge loss of plant vigour in agriculture. Understanding the molecular dialogues between these two interkingdom species might provide a cure for crown gall disease. Plants respond to A. tumefaciens by mounting a three-layered immune response, which is manipulated by Agrobacterium via its virulence effector proteins. Comparative studies on plant defence proteins versus the counter-defence of Agrobacterium have shed light on plant susceptibility and tolerance. It is possible to manipulate a plant's immune system to overcome the crown gall disease and increase its competence via A. tumefaciens-mediated transformation. This review summarises the recent advances in the molecular mode of Agrobacterium pathogenesis as well as the three-layered immune response of plants against Agrobacterium infection.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
|
15
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
16
|
Hou W, Singh RK, Martins V, Tenllado F, Franklin G, Dias ACP. Transcriptional responses of Hypericum perforatum cells to Agrobacterium tumefaciens and differential gene expression in dark glands. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:936-947. [PMID: 34112313 DOI: 10.1071/fp20292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Hypericum perforatum L. (St. John's wort) is a well-known medicinal plant that possesses secondary metabolites with beneficial pharmacological properties. However, improvement in the production of secondary metabolites via genetic manipulation is a challenging task as H. perforatum remains recalcitrant to Agrobacterium tumefaciens-mediated transformation. Here, the transcripts of key genes involved in several plant defence responses (secondary metabolites, RNA silencing, reactive oxygen species (ROS) and specific defence genes) were investigated in H. perforatum suspension cells inoculated with A. tumefaciens by quantitative real-time PCR. Results indicated that key genes from the xanthone, hypericin and melatonin biosynthesis pathways, the ROS-detoxification enzyme HpAOX, as well as the defence genes Hyp-1 and HpPGIP, were all upregulated to rapidly respond to A. tumefaciens elicitation in H. perforatum. By contrast, expression levels of genes involved in hyperforin and flavonoid biosynthesis pathways were markedly downregulated upon A. tumefaciens elicitation. In addition, we compared the expression patterns of key genes in H. perforatum leaf tissues with and without dark glands, a major site of secondary metabolite production. Overall, we provide evidence for the upregulation of several phenylpropanoid pathway genes in response to elicitation by Agrobacterium, suggesting that production of secondary metabolites could modulate H. perforatum recalcitrance to A. tumefaciens-mediated transformation.
Collapse
Affiliation(s)
- Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal; and Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh K Singh
- Centro de Química de Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain; and Corresponding authors. Emails: ;
| | - Gregory Franklin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Alberto C P Dias
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal; and Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; and Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal; and Corresponding authors. Emails: ;
| |
Collapse
|
17
|
Waheed S, Anwar M, Saleem MA, Wu J, Tayyab M, Hu Z. The Critical Role of Small RNAs in Regulating Plant Innate Immunity. Biomolecules 2021; 11:biom11020184. [PMID: 33572741 PMCID: PMC7912340 DOI: 10.3390/biom11020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plants, due to their sessile nature, have an innate immune system that helps them to defend against different pathogen infections. The defense response of plants is composed of a highly regulated and complex molecular network, involving the extensive reprogramming of gene expression during the presence of pathogenic molecular signatures. Plants attain proper defense against pathogens through the transcriptional regulation of genes encoding defense regulatory proteins and hormone signaling pathways. Small RNAs are emerging as versatile regulators of plant development and act in different tiers of plant immunity, including pathogen-triggered immunity (PTI) and effector-triggered immunity (ETI). The versatile regulatory functions of small RNAs in plant growth and development and response to biotic and abiotic stresses have been widely studied in recent years. However, available information regarding the contribution of small RNAs in plant immunity against pathogens is more limited. This review article will focus on the role of small RNAs in innate immunity in plants.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.A.); (Z.H.)
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (M.A.); (Z.H.)
| |
Collapse
|
18
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Franklin G, Dias ACP. Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153268. [PMID: 32947246 DOI: 10.1016/j.jplph.2020.153268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Hypericum perforatum L is a remarkable source of high-value secondary metabolites with increasing applications in pharmaceutical industry. However, improvement in the production of secondary metabolites through genetic engineering is a demanding task, as H. perforatum is not amenable to Agrobacterium tumefaciens-mediated transformation. In this study, we identified a Polygalacturonase-inhibiting protein (PGIP) gene from a subtractive cDNA library of A. tumefaciens-treated H. perforatum suspension cells. The role of HpPGIP in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum overexpressing HpPGIP alone or fused at the N-terminus to Phenolic oxidative coupling protein (Hyp-1), a gene that positively modulates resistance to A. tumefaciens. Furthermore, virus-induced gene silencing was employed to knock down the expression of the PGIP homologous in N. benthamiana. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in both HpPGIP and Hyp-1-PGIP transgenic plants, as assessed by GUS staining assays. However, silencing of PGIP in N. benthamiana increased the resistance to A. tumefaciens rather than susceptibility, which correlated with induction of pathogenesis-related proteins (PRs). The expression of core genes involved in several defense pathways was also analyzed in transgenic tobacco plants. Overexpression of HpPGIP led to up-regulation of key genes involved in hormone signaling, microRNA-based gene silencing, homeostasis of reactive oxygen species, and the phenylpropanoid pathway. Overexpression of Hyp-1-PGIP seemed to enhance the effect of PGIP on the expression of most genes analyzed. Moreover, HpPGIP was detected in the cytoplasm, nucleus and the plasma membrane or cell wall by confocal microscopy. Overall, our findings suggest HpPGIP modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centre of chemistry of Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.
| | - Gregory Franklin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal; Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
19
|
Ricci A, Sabbadini S, Prieto H, Padilla IM, Dardick C, Li Z, Scorza R, Limera C, Mezzetti B, Perez-Jimenez M, Burgos L, Petri C. Genetic Transformation in Peach ( Prunus persica L.): Challenges and Ways Forward. PLANTS (BASEL, SWITZERLAND) 2020; 9:E971. [PMID: 32752031 PMCID: PMC7465125 DOI: 10.3390/plants9080971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Almost 30 years have passed since the first publication reporting regeneration of transformed peach plants. Nevertheless, the general applicability of genetic transformation of this species has not yet been established. Many strategies have been tested in order to obtain an efficient peach transformation system. Despite the amount of time and the efforts invested, the lack of success has significantly limited the utility of peach as a model genetic system for trees, despite its relatively short generation time; small, high-quality genome; and well-studied genetic resources. Additionally, the absence of efficient genetic transformation protocols precludes the application of many biotechnological tools in peach breeding programs. In this review, we provide an overview of research on regeneration and genetic transformation in this species and summarize novel strategies and procedures aimed at producing transgenic peaches. Promising future approaches to develop a robust peach transformation system are discussed, focusing on the main bottlenecks to success including the low efficiency of A. tumefaciens-mediated transformation, the low level of correspondence between cells competent for transformation and those that have regenerative competence, and the high rate of chimerism in the few shoots that are produced following transformation.
Collapse
Affiliation(s)
- Angela Ricci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Humberto Prieto
- Laboratorio de Biotecnología, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, La Pintana, Santiago 11610, Chile
| | - Isabel Mg Padilla
- Área de Genómica y Biotecnología, Grupo de Morfogénesis y Modificación Genética, IFAPA-Centro de Churriana, Cortijo de la Cruz s/n, 29140 Málaga, Spain
| | - Chris Dardick
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zhijian Li
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Ralph Scorza
- Ralph Scorza LLC, Plant Breeding and Biotechnology Consulting Services, P.O. Box 1191, Shepherdstown, WV 25443, USA
| | - Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Margarita Perez-Jimenez
- Mejora Genética de Cítricos, Instituto Murciano de Investigación y Desarrollo Agroalimentario (IMIDA), C/ Mayor s/n, 30150 Murcia, Spain
| | - Lorenzo Burgos
- Departamento de Mejora Vegetal, Grupo de Biotecnología de Frutales, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain
| | - Cesar Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n. 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
20
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
21
|
Hou W, Singh RK, Zhao P, Martins V, Aguilar E, Canto T, Tenllado F, Dias ACP. Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. PLANTA 2019; 251:13. [PMID: 31776675 DOI: 10.1007/s00425-019-03310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/02/2019] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Phenolic oxidative coupling protein (Hyp-1) isolated from Hypericum perforatum L. was characterized as a defense gene involved in H. perforatum recalcitrance to Agrobacterium tumefaciens-mediated transformation Hypericum perforatum L. is a reservoir of high-value secondary metabolites of increasing interest to researchers and to the pharmaceutical industry. However, improving their production via genetic manipulation is a challenging task, as H. perforatum is recalcitrant to Agrobacterium tumefaciens-mediated transformation. Here, phenolic oxidative coupling protein (Hyp-1), a pathogenesis-related (PR) class 10 family gene, was selected from a subtractive cDNA library from A. tumefaciens-treated H. perforatum suspension cells. The role of Hyp-1 in defense against A. tumefaciens was analyzed in transgenic Nicotiana tabacum and Lactuca sativa overexpressing Hyp-1, and in Catharanthus roseus silenced for its homologous Hyp-1 gene, CrIPR. Results showed that Agrobacterium-mediated expression efficiency greatly decreased in Hyp-1 transgenic plants. However, silencing of CrIPR induced CrPR-5 expression and decreased expression efficiency of Agrobacterium. The expression of core genes involved in several defense pathways was also analyzed in Hyp-1 transgenic tobacco plants. Overexpression of Hyp-1 led to an ample down-regulation of key genes involved in auxin signaling, microRNA-based gene silencing, detoxification of reactive oxygen species, phenylpropanoid pathway and PRs. Moreover, Hyp-1 was detected in the nucleus, plasma membrane and the cytoplasm of epidermal cells by confocal microscopy. Overall, our findings suggest Hyp-1 modulates recalcitrance to A. tumefaciens-mediated transformation in H. perforatum.
Collapse
Affiliation(s)
- Weina Hou
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real (CQ-VR), UTAD, 5000-801, Vila Real, Portugal
| | - Pan Zhao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Viviana Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| | - Alberto Carlos Pires Dias
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal.
- Center of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
22
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
23
|
García-Cano E, Hak H, Magori S, Lazarowitz SG, Citovsky V. The Agrobacterium F-Box Protein Effector VirF Destabilizes the Arabidopsis GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:576-586. [PMID: 29264953 PMCID: PMC5953515 DOI: 10.1094/mpmi-07-17-0188-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium-mediated genetic transformation not only represents a technology of choice to genetically manipulate plants, but it also serves as a model system to study mechanisms employed by invading pathogens to counter the myriad defenses mounted against them by the host cell. Here, we uncover a new layer of plant defenses that is targeted by A. tumefaciens to facilitate infection. We show that the Agrobacterium F-box effector VirF, which is exported into the host cell, recognizes an Arabidopsis transcription factor VFP4 and targets it for proteasomal degradation. We hypothesize that VFP4 resists Agrobacterium infection and that the bacterium utilizes its VirF effector to degrade VFP4 and thereby mitigate the VFP4-based defense. Indeed, loss-of-function mutations in VFP4 resulted in differential expression of numerous biotic stress-response genes, suggesting that one of the functions of VFP4 is to control a spectrum of plant defenses, including those against Agrobacterium tumefaciens. We identified one such gene, ATL31, known to mediate resistance to bacterial pathogens. ATL31 was transcriptionally repressed in VFP4 loss-of-function plants and activated in VFP4 gain-of-function plants. Gain-of-function lines of VFP4 and ATL31 exhibited recalcitrance to Agrobacterium tumorigenicity, suggesting that A. tumefaciens may utilize the host ubiquitin/proteasome system to destabilize transcriptional regulators of the host disease response machinery.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Hagit Hak
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Corresponding author: Hagit Hak;
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Sondra G. Lazarowitz
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
24
|
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. SCIENCE CHINA-LIFE SCIENCES 2018; 61:138-147. [DOI: 10.1007/s11427-017-9237-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
25
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
26
|
Nazari F, Safaie N, Soltani BM, Shams-Bakhsh M, Sharifi M. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-Tobacco interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:98-106. [PMID: 28624685 DOI: 10.1016/j.plaphy.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P < 0.05 in 3dpi). While the expression level of nta-miR167 was more than the expression of nta-miR393 in other treatments including tobacco plants treated only with B. subtilis (2.1 folds, P < 0.05) and the plants treated with both of the bacteria (3.9 folds, P < 0.05) in 3 dpi. Also, the composition and concentration of rutin, myrecetin, daidzein and vitexin flavanoid derivatives were detected using HPLC and analysed according the standard curves. All of the tested flavanoid compounds were highly detected in Tobacco plants which were only challenged with A. tumefaciens. The amount of these compounds in the plants which were challenged with the B. subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum.
Collapse
Affiliation(s)
- Fahimeh Nazari
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Peláez P, Hernández-López A, Estrada-Navarrete G, Sanchez F. Small RNAs Derived from the T-DNA of Agrobacterium rhizogenes in Hairy Roots of Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2017; 8:96. [PMID: 28203245 PMCID: PMC5285386 DOI: 10.3389/fpls.2017.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
28
|
Increasing a Stable Transformation Efficiency of Arabidopsis by Manipulating the Endogenous Gene Expression Using Virus-Induced Gene Silencing. Methods Mol Biol 2016. [PMID: 27770369 DOI: 10.1007/978-1-4899-7708-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virus-induced gene silencing (VIGS) is a powerful epigenetic tool that allows in a relatively short period of time to down-regulate the expression of an endogenous gene in infected plants for either monitoring the resulting phenotype or enhancing/modifying a particular trait associated with the gene. Here, we describe the utilization of Tobacco rattle virus (TRV) as a vector for the VIGS technique in Arabidopsis plants. The unique ability of TRV to infect both somatic tissues and gametes allows deciphering the role of genes in these tissues simultaneously. As an example, we demonstrate the utilization of TRV to down-regulate the expression of AGO2 and NRPD1a genes in ovules of Arabidopsis plants in order to boost the stable transformation efficiency by floral dip.
Collapse
|
29
|
Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. THE NEW PHYTOLOGIST 2015; 208:241-56. [PMID: 25967282 DOI: 10.1111/nph.13445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.
Collapse
Affiliation(s)
- Dennis B Holt
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Dörte Meyer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
30
|
Corrigendum: Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 2015; 47:847. [PMID: 26111511 DOI: 10.1038/ng0715-847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Shah JM, Ramakrishnan AM, Singh AK, Ramachandran S, Unniyampurath U, Jayshankar A, Balasundaram N, Dhanapal S, Hyde G, Baskar R. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains. BMC PLANT BIOLOGY 2015; 15:210. [PMID: 26307100 PMCID: PMC4549908 DOI: 10.1186/s12870-015-0595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. RESULTS For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently dropped below levels seen in uninfected controls, consistent with the results of the single time-point study. CONCLUSIONS The rates of various classes of mutations that result from Agrobacterium infection depend upon the duration of infection and the type of pathogen derived factors (such as Vir proteins, oncoproteins or T-DNA) possessed by the strain. Strains with vir genes, including the type used for plant transformation, suppressed selected classes of somatic mutations. Our study also provides evidence of a pathogen that can at least partly counter the induction of mutations in an infected plant.
Collapse
Affiliation(s)
- Jasmine M Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
- Department of Plant Science, Central University of Kerala, Kasaragod, 671328, India.
| | - Anantha Maharasi Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Amit Kumar Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Subalakshmi Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | | | - Ajitha Jayshankar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Nithya Balasundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Shanmuhapreya Dhanapal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| | - Geoff Hyde
- , 14 Randwick St, Sydney, 2031, Australia.
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600036, India.
| |
Collapse
|
32
|
Zhang D, Liu M, Tang M, Dong B, Wu D, Zhang Z, Zhou B. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:24-32. [PMID: 26089149 DOI: 10.1016/j.plantsci.2015.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
The RNaseIII enzyme Dicer-like 1 (DCL1) processes the microRNA biogenesis and plays a determinant role in plant development. In this study, we reported the function of OsDCL1 in the immunity to rice blast, the devastating disease caused by the fungal pathogen, Magnaporthe oryzae. Expression profiling demonstrated that different OsDCLs responded dynamically and OsDCL1 reduced its expression upon the challenge of rice blast pathogen. In contrast, miR162a predicted to target OsDCL1 increased its expression, implying a negative feedback loop between OsDCL1 and miR162a in rice. In addition to developmental defects, the OsDCL1-silencing mutants showed enhanced resistance to virulent rice blast strains in a non-race specific manner. Accumulation of hydrogen peroxide and cell death were observed in the contact cells with infectious hyphae, revealing that silencing of OsDCL1 activated cellular defense responses. In OsDCL1 RNAi lines, 12 differentially expressed miRNAs were identified, of which 5 and 7 were down- and up-regulated, respectively, indicating that miRNAs responded dynamically in the interaction between rice and rice blast. Moreover, silencing of OsDCL1 activated the constitutive expression of defense related genes. Taken together, our results indicate that rice is capable of activating basal resistance against rice blast by perturbing OsDCL1-dependent miRNA biogenesis pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Mingzhi Tang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bo Dong
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bo Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines.
| |
Collapse
|
33
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Small RNAs in plants: recent development and application for crop improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:208. [PMID: 25883599 PMCID: PMC4382981 DOI: 10.3389/fpls.2015.00208] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 05/19/2023]
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Mohan Kamthan
- Indian Institute of Toxicology ResearchLucknow, India
| | - Asis Datta
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
34
|
Bulgakov VP, Veremeichik GN, Shkryl YN. The rolB gene activates the expression of genes encoding microRNA processing machinery. Biotechnol Lett 2014; 37:921-5. [DOI: 10.1007/s10529-014-1743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
35
|
Kovacova V, Zluvova J, Janousek B, Talianova M, Vyskot B. The evolutionary fate of the horizontally transferred agrobacterial mikimopine synthase gene in the genera Nicotiana and Linaria. PLoS One 2014; 9:e113872. [PMID: 25420106 PMCID: PMC4242671 DOI: 10.1371/journal.pone.0113872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum.
Collapse
Affiliation(s)
- Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Martina Talianova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno, Czech Republic
| |
Collapse
|
36
|
Koch A, Kogel KH. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:821-31. [PMID: 25040343 DOI: 10.1111/pbi.12226] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host-induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany
| | | |
Collapse
|
37
|
Bilichak A, Yao Y, Kovalchuk I. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:590-600. [PMID: 24472037 DOI: 10.1111/pbi.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.
Collapse
MESH Headings
- Agrobacterium/physiology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Arabidopsis Proteins/metabolism
- Blotting, Southern
- DNA Breaks, Double-Stranded
- DNA Methylation/genetics
- DNA, Bacterial/genetics
- DNA-Directed RNA Polymerases/metabolism
- Down-Regulation
- Epigenesis, Genetic
- Genes, Plant
- Genetic Loci
- Models, Genetic
- Mutation/genetics
- Plants, Genetically Modified
- Protein Binding
- Protein Subunits/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
38
|
Liou MR, Huang YW, Hu CC, Lin NS, Hsu YH. A dual gene-silencing vector system for monocot and dicot plants. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:330-43. [PMID: 24283212 DOI: 10.1111/pbi.12140] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 05/16/2023]
Abstract
Plant virus-based gene-silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus-induced gene-silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene-silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co-agro-inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat-shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV- but not BaMV-based vector could enhance gene-silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA-dependant RNA polymerase 6. The dual gene-silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.
Collapse
Affiliation(s)
- Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
40
|
Liu Q, Wang F, Axtell MJ. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. THE PLANT CELL 2014; 26:741-53. [PMID: 24510721 PMCID: PMC3967037 DOI: 10.1105/tpc.113.120972] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) guide RNA-induced silencing complexes to target RNAs based on miRNA-target complementarity. Using a dual-luciferase based sensor system in Nicotiana benthamiana, we quantitatively assessed the relationship between miRNA-target complementarity and silencing efficacy measured at both the RNA and protein levels, using several conserved miRNAs and their known target sites from Arabidopsis thaliana. We found that naturally occurring sites have variable efficacies attributable to their complementarity patterns. We also observed that sites with a few mismatches to the miRNA 3' regions, which are common in plants, are often equally effective and sometimes more effective than perfectly matched sites. By contrast, mismatches to the miRNA 5' regions strongly reduce or eliminate repression efficacy but are nonetheless present in several natural sites, suggesting that in some cases, suboptimal miRNA efficacies are either tolerated or perhaps selected for. Central mismatches fully abolished repression efficacy in our system, but such sites then became effective miRNA target mimics. Complementarity patterns that are functional in animals (seed sites, 3'-supplementary sites, and centered sites) did not reliably confer repression, regardless of context (3'-untranslated region or open reading frame) or measurement type (RNA or protein levels). Overall, these data provide a robust and empirical foundation for understanding, predicting, and designing functional miRNA target sites in plants.
Collapse
Affiliation(s)
- Qikun Liu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Feng Wang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael J. Axtell
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
41
|
Bilichak A, Kovalchuk I. Manipulation of epigenetic factors and the DNA repair machinery for improving the frequency of plant transformation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Abstract
RNA silencing is a natural defence mechanism against viruses in plants, and transgenes expressing viral RNA-derived sequences were previously shown to confer silencing-based enhanced resistance against the cognate virus in several species. However, RNA silencing was shown to dysfunction at low temperatures in several species, questioning the relevance of this strategy in perennial plants such as grapevines, which are often exposed to low temperatures during the winter season. Here, we show that inverted-repeat (IR) constructs trigger a highly efficient silencing reaction in all somatic tissues in grapevines. Similarly to other plant species, IR-derived siRNAs trigger production of secondary transitive siRNAs. However, and in sharp contrast to other species tested to date where RNA silencing is hindered at low temperature, this process remained active in grapevine cultivated at 4°C. Consistently, siRNA levels remained steady in grapevines cultivated between 26°C and 4°C, whereas they are severely decreased in Arabidopsis grown at 15°C and almost undetectable at 4°C. Altogether, these results demonstrate that RNA silencing operates in grapevine in a conserved manner but is resistant to far lower temperatures than ever described in other species.
Collapse
|
43
|
Current issues in cereal crop biodiversity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 147:1-35. [PMID: 24352706 DOI: 10.1007/10_2013_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.
Collapse
|
44
|
Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. FRONTIERS IN PLANT SCIENCE 2013; 4:519. [PMID: 24391655 PMCID: PMC3866890 DOI: 10.3389/fpls.2013.00519] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/02/2013] [Indexed: 05/19/2023]
Abstract
The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to "yes" or "no." This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner.
Collapse
Affiliation(s)
- Andrea Pitzschke
- *Correspondence: Andrea Pitzschke, Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna A-1190, Austria e-mail:
| |
Collapse
|
45
|
Galambos A, Zok A, Kuczmog A, Oláh R, Putnoky P, Ream W, Szegedi E. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. PLANT CELL REPORTS 2013; 32:1751-1757. [PMID: 23903949 DOI: 10.1007/s00299-013-1488-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. ABSTRACT Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.
Collapse
Affiliation(s)
- A Galambos
- Department of Genetics and Molecular Biology, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Peláez P, Sanchez F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. FRONTIERS IN PLANT SCIENCE 2013; 4:343. [PMID: 24046772 PMCID: PMC3763480 DOI: 10.3389/fpls.2013.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant-microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant-bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins.
Collapse
Affiliation(s)
| | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
47
|
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. TRENDS IN PLANT SCIENCE 2013; 18:382-92. [PMID: 23684690 DOI: 10.1016/j.tplants.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral suppressors of RNA silencing (VSRs) that target various stages of the silencing mechanisms. Recent findings from in planta analyses have provided new insights into the mode of action of VSRs and revealed that plants react to the perturbation of the silencing pathways brought by viral infection by deploying a battery of counter-counterdefense measures. As well as discussing which experimental approaches have been most effective in delivering clear and unambiguous results, this review provides a detailed account of the surprising variety of offensive and defensive strategies set forth by both viruses and hosts in their struggle for survival.
Collapse
Affiliation(s)
- Marco Incarbone
- IBMP-CNRS, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
48
|
Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. THE NEW PHYTOLOGIST 2013; 198:1178-1190. [PMID: 23528052 PMCID: PMC3666093 DOI: 10.1111/nph.12218] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
· Small RNAs play important roles in resistance to plant viruses and the complex responses against pathogens and leaf-chewing insects. · We investigated whether small RNA pathways are involved in Arabidopsis resistance against a phloem-feeding insect, the green peach aphid (Myzus persicae). We used a 2-wk fecundity assay to assess aphid performance on Arabidopsis RNA silencing and defence pathway mutants. Quantitative real-time polymerase chain reaction was used to monitor the transcriptional activity of defence-related genes in plants of varying aphid susceptibility. High-performance liquid chromatography-mass spectrometry was employed to measure the accumulation of the antimicrobial compound camalexin. Artificial diet assays allowed the assessment of the effect of camalexin on aphid performance. · Myzus persicae produces significantly less progeny on Arabidopsis microRNA (miRNA) pathway mutants. Plants unable to process miRNAs respond to aphid infestation with increased induction of PHYTOALEXIN DEFICIENT3 (PAD3) and production of camalexin. Aphids ingest camalexin when feeding on Arabidopsis and are more successful on pad3 and cyp79b2/cyp79b3 mutants defective in camalexin production. Aphids produce less progeny on artificial diets containing camalexin. · Our data indicate that camalexin functions beyond antimicrobial defence to also include hemipteran insects. This work also highlights the extensive role of the miRNA-mediated regulation of secondary metabolic defence pathways with relevance to resistance against a hemipteran pest.
Collapse
Affiliation(s)
- Graeme J Kettles
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Claire Drurey
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Andy J Maule
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Saskia A Hogenhout
- Department of Cell and Developmental Biology, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| |
Collapse
|
49
|
Ho YP, Tan CM, Li MY, Lin H, Deng WL, Yang JY. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:419-30. [PMID: 23252460 DOI: 10.1094/mpmi-06-12-0164-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.
Collapse
Affiliation(s)
- Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R. DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet 2013; 9:e1003267. [PMID: 23408907 PMCID: PMC3567176 DOI: 10.1371/journal.pgen.1003267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Collapse
Affiliation(s)
- Jochen Gohlke
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Claus-Juergen Scholz
- IZKF Laboratory for Microarray Applications, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Dana Weber
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Rosalia Deeken
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|