1
|
Samuels M, Karakostas C, Besta S, Lauer Betrán A, Tsilingiri K, Turner C, Shirazi Nia R, Poudine N, Goodyear R, Jones W, Klinakis A, Giamas G. LMTK3 regulation of EV biogenesis and cargo sorting promotes tumour growth by reducing monocyte infiltration and driving pro-tumourigenic macrophage polarisation in breast cancer. Mol Cancer 2025; 24:149. [PMID: 40405280 PMCID: PMC12100856 DOI: 10.1186/s12943-025-02346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Lemur Tail Kinase 3 (LMTK3) promotes cell proliferation, invasiveness and therapy resistance, and its expression correlates with poor survival in several different malignancies, including breast cancer. Crosstalk through extracellular vesicles (EVs) is an increasingly appreciated mechanism of cell communication within the tumour immune microenvironment, which contributes to different aspects of cancer progression and plays a pivotal role in shaping tumour fate. METHODS Nanoparticle tracking analysis and transmission electron microscopy were used to study the effects of LMTK3 on EV size, while single particle interferometry allowed us to examine LMTK3-dependent effects on the subpopulation distribution of EVs. Quantitative mass spectrometry was used to profile LMTK3-dependent proteomics changes in breast cancer-derived EVs. Bioinformatics analysis of clinical data along with in vitro and cell-based assays were implemented to explore the effects of LMTK3-dependent EV protein cargo on the tumour immune microenvironment. To elucidate the mechanism through which LMTK3 impacts endosomal trafficking and regulates EV biogenesis, we used a variety of approaches, including in vitro kinase assays, confocal and electron microscopy, as well as in vivo subcutaneous and orthotopic breast cancer mouse models. RESULTS Here, we report that LMTK3 increases the average size of EVs, modulates immunoregulatory EV proteomic cargo and alters the subpopulation distribution of EVs released by breast cancer cells. Mechanistically, we provide evidence that LMTK3 phosphorylates Rab7, a key regulator of multivesicular body (MVB) trafficking, thereby reducing the fusion of MVBs with lysosomes and subsequent degradation of intralumenal vesicles, resulting in altered EV release. Moreover, LMTK3 causes increased packaging of phosphoserine aminotransferase 1 (PSAT1) in EVs, leading to a paracrine upregulation of phosphoglycerate dehydrogenase (PHGDH) in monocytes when these EVs are taken up. PSAT1 and PHGDH play key roles in the serine biosynthesis pathway, which is closely linked to cancer progression and regulation of monocyte behaviour. LMTK3 EV-induced elevated PHGDH expression in monocytes reduces their infiltration into breast cancer 3D spheroids and in vivo breast cancer mouse models. Furthermore, these infiltrating monocytes preferentially differentiate into pro-tumourigenic M2-like macrophages. Additional breast cancer mouse studies highlight the contribution of LMTK3-dependent EVs in the observed immunosuppressive macrophage phenotype. Finally, in vitro experiments show that pharmacological inhibition of LMTK3 reverses the pro-tumourigenic and immunomodulatory effects mediated by EVs derived from LMTK3 overexpressing cells. CONCLUSION Overall, this study advances our knowledge on the mechanisms of EV biogenesis and highlights a novel oncogenic role of LMTK3 in the breast TME, further supporting it as a target for cancer therapy.
Collapse
Affiliation(s)
- Mark Samuels
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Christos Karakostas
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Simoni Besta
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Andrea Lauer Betrán
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Katerina Tsilingiri
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Charlotte Turner
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Reza Shirazi Nia
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Niloufar Poudine
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Richard Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Giamas
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
2
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
4
|
Saed GM, Fletcher NM, Sharma H, Tullberg AS, Ittner E, Parris TZ, Pettersson D, Kovács A, Rönnerman EW, Dahm-Kähler P, Portela A, Garzone PD, Morris R, Helou K. Lemur tail kinase 3 serves as a predictor of patient outcomes and a target for the treatment of ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200864. [PMID: 39290318 PMCID: PMC11406030 DOI: 10.1016/j.omton.2024.200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Lemur tail kinase 3 (LMTK3) belongs to a family of tyrosine kinases that are known to correlate with tumor grade and patient survival in some cancers. Here, we validated LMTK3 as a specific target and a prognostic biomarker in ovarian cancer (OC). In samples from 204 stage I-II OC patients, immunohistochemical studies revealed a higher cytoplasmic-to-nuclear staining intensity of LMTK3, which correlated with worse overall survival (p < 0.001). Efficacy studies utilizing novel LMTK3 binding peptides (LMTK3BPs) showed that all chemosensitive and chemoresistant OC cells were killed without affecting normal cells (p < 0.005), with synergistic effects shown following cisplatin and docetaxel treatment. In an orthotopic xenograft mouse model of OC, we saw a 35% tumor reduction in response to intravenous injections of 2 mg/kg LMTK3BP given three times a week for 3 weeks. Furthermore, in vivo safety studies showed no signs of toxicity after LMTK3BP treatment, even at doses as high as 40 mg/kg. This study highlights LMTK3 as a predictor of patient clinical outcomes. More importantly, novel LMTK3BPs represent potential safe treatment options, either alone or in combination with therapies, for OC.
Collapse
Affiliation(s)
- Ghassan M Saed
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harvey Sharma
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Dahm-Kähler
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Portela
- Xenopat C/Feixa Llarga sn. Edifici Bioincubadora, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Cho N, Kontou G, Smalley JL, Bope C, Dengler J, Montrose K, Deeb TZ, Brandon NJ, Yamamoto T, Davies PA, Giamas G, Moss SJ. The brain-specific kinase LMTK3 regulates neuronal excitability by decreasing KCC2-dependent neuronal Cl - extrusion. iScience 2024; 27:109512. [PMID: 38715938 PMCID: PMC11075064 DOI: 10.1016/j.isci.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 05/13/2024] Open
Abstract
LMTK3 is a brain-specific transmembrane serine/threonine protein kinase that acts as a scaffold for protein phosphatase-1 (PP1). Although LMKT3 has been identified as a risk factor for autism and epilepsy, its physiological significance is unknown. Here, we demonstrate that LMTK3 copurifies and binds to KCC2, a neuron-specific K+/Cl- transporter. KCC2 activity is essential for Cl--mediated hyperpolarizing GABAAR receptor currents, the unitary events that underpin fast synaptic inhibition. LMTK3 acts to promote the association of KCC2 with PP1 to promote the dephosphorylation of S940 within its C-terminal cytoplasmic domain, a process the diminishes KCC2 activity. Accordingly, acute inhibition of LMTK3 increases KCC2 activity dependent upon S940 and increases neuronal Cl- extrusion. Consistent with this, LMTK3 inhibition reduced intrinsic neuronal excitability and the severity of seizure-like events in vitro. Thus, LMTK3 may have profound effects on neuronal excitability as an endogenous modulator of KCC2 activity.
Collapse
Affiliation(s)
- Noell Cho
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Georgina Kontou
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Joshua L. Smalley
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Christopher Bope
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jacob Dengler
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Kristopher Montrose
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Tarek Z. Deeb
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Paul A. Davies
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Georgios Giamas
- Department for Biochemistry and Biomedicine, University of Sussex Brighton, Brighton BN1 9RH, UK
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, UK
| |
Collapse
|
6
|
Alrumaihi F. Chemoinformatics and machine learning techniques to identify novel inhibitors of the lemur tyrosine kinase-3 receptor involved in breast cancer. Front Mol Biosci 2024; 11:1366763. [PMID: 38638686 PMCID: PMC11025642 DOI: 10.3389/fmolb.2024.1366763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Breast cancer is still the largest cause of cancer death in women, and around 70% of primary breast cancer patients are estrogen receptor (ER)-positive, which is the most frequent kind of breast cancer. The lemur tyrosine kinase-3 (LMTK3) receptor has been linked to estrogen responsiveness in breast cancer. However, the function of LMTK3 in reaction to cytotoxic chemotherapy has yet to be studied. Breast cancer therapy research remains tricky due to a paucity of structural investigations on LMTK3. We performed structural investigations on LMTK3 using molecular docking and molecular dynamics (MD) simulations of the LMTK3 receptor in complex with the top three inhibitor molecules along with a control inhibitor. Analysis revealed the top three compounds show the best binding affinities during docking simulations. Interactive analysis of hydrogen bonds inferred hotspot residues Tyr163, Asn138, Asp133, Tyr56, Glu52, Ser132, Asp313, and Asp151. Some other residues in the 5-Å region determined strong alkyl bonds and conventional hydrogen bond linkages. Furthermore, protein dynamics analysis revealed significant modifications among the top complexes and the control system. There was a transition from a loop to a-helix conformation in the protein-top1 complex, and in contrast, in complexes top2 and top3, the formation of a stabilizing sheet in the C chain was observed, which limited significant mobility and increased complex stability. Significant structural alterations were observed in the protein-top complexes, including a shorter helix region and the creation of some loop regions in comparison to the control system. Interestingly, binding free energies, including MMGB/PBSA WaterSwap analysis estimation, reveals that the top1 complex system was more stable than other systems, especially in comparison to the control inhibitor complex system. These results suggest a the plausible mode of action for the novel inhibitors. Therefore, the current investigation contributes to understanding the mechanism of action, serving as a basis for future experimental studies.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
7
|
Vella V, Ditsiou A, Chalari A, Eravci M, Wooller SK, Gagliano T, Bani C, Kerschbamer E, Karakostas C, Xu B, Zhang Y, Pearl FM, Lopez G, Peng L, Stebbing J, Klinakis A, Giamas G. Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306027. [PMID: 38353396 PMCID: PMC11022721 DOI: 10.1002/advs.202306027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/23/2023] [Indexed: 02/17/2024]
Abstract
Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.
Collapse
Affiliation(s)
- Viviana Vella
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Angeliki Ditsiou
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Anna Chalari
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Murat Eravci
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Sarah K. Wooller
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Cecilia Bani
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Christos Karakostas
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Bin Xu
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubei430064China
| | - Yongchang Zhang
- Department of Medical OncologyLung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan430064China
| | - Frances M.G. Pearl
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Gianluca Lopez
- Division of PathologyFondazione IRCCS Ca' Granda – Ospedale Maggiore PoliclinicoMilan20122Italy
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilan20122Italy
| | - Ling Peng
- Department of Respiratory DiseaseZhejiang Provincial People's HospitalHangzhouZhejiang310003China
| | - Justin Stebbing
- Department of Life SciencesAnglia Ruskin UniversityEast RoadCambridgeCB1 1PTUK
| | - Apostolos Klinakis
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Georgios Giamas
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| |
Collapse
|
8
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
9
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
10
|
Mórotz GM, Bradbury NA, Caluseriu O, Hisanaga SI, Miller CCJ, Swiatecka-Urban A, Lenz HJ, Moss SJ, Giamas G. A revised nomenclature for the lemur family of protein kinases. Commun Biol 2024; 7:57. [PMID: 38191649 PMCID: PMC10774328 DOI: 10.1038/s42003-023-05671-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.
Collapse
Affiliation(s)
- Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, 60064, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 92-0397, Japan
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Heinz-Josef Lenz
- Department of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, 90033, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1 6BT, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
11
|
Du M, Gu D, Xin J, Peters U, Song M, Cai G, Li S, Ben S, Meng Y, Chu H, Chen L, Wang Q, Zhu L, Fu Z, Zhang Z, Wang M. Integrated multi-omics approach to distinct molecular characterization and classification of early-onset colorectal cancer. Cell Rep Med 2023; 4:100974. [PMID: 36921601 PMCID: PMC10040411 DOI: 10.1016/j.xcrm.2023.100974] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Incidence of early-onset colorectal cancer (EOCRC), defined by a diagnosed age under 50 years, is increasing, but its heterogeneous etiologies that differ from general CRC remain undetermined. We initially characterize the genome, epigenome, transcriptome, and proteome of tumors from 79 patients in a Chinese CRC cohort. Data for an additional 126 EOCRC subjects are obtained from the International Cancer Genome Consortium Chinese cohort and The Cancer Genome Atlas European cohort. We observe that early-onset tumors have a high tumor mutation burden; increased DNA repair features by mutational signature 3 and multi-layer pathway enrichments; strong perturbations at effects of DNA methylation and somatic copy-number alteration on gene expression; and upregulated immune infiltration as hot tumors underlying immunophenotypes. Notably, LMTK3 exhibits ancestral mutation disparity, potentially being a functional modulator and biomarker that drives molecular alterations in EOCRC development and immunotherapies. This integrative omics study provides valuable knowledge for precision oncology of CRC.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yixuan Meng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215005, China.
| |
Collapse
|
12
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
13
|
Zhou J, Li X, Ma Y, Wu Z, Xie Z, Zhang Y, Wei Y. Optimal modeling of anti-breast cancer candidate drugs screening based on multi-model ensemble learning with imbalanced data. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5117-5134. [PMID: 36896538 DOI: 10.3934/mbe.2023237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The imbalanced data makes the machine learning model seriously biased, which leads to false positive in screening of therapeutic drugs for breast cancer. In order to deal with this problem, a multi-model ensemble framework based on tree-model, linear model and deep-learning model is proposed. Based on the methodology constructed in this study, we screened the 20 most critical molecular descriptors from 729 molecular descriptors of 1974 anti-breast cancer drug candidates and, in order to measure the pharmacokinetic properties and safety of the drug candidates, the screened molecular descriptors were used in this study for subsequent bioactivity, absorption, distribution metabolism, excretion, toxicity, and other prediction tasks. The results show that the method constructed in this study is superior and more stable than the individual models used in the ensemble approach.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Yuanting Ma
- School of Economics and Management, East China Jiaotong University, Nanchang 330013, China
| | - Zejiu Wu
- School of Science, East China Jiaotong University, Nanchang 330013, China
| | - Ziruo Xie
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Yuqi Zhang
- School of Foreign Languages, East China Jiaotong University, Nanchang 330013, China
| | - Yiming Wei
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
14
|
The Inhibitory Properties of a Novel, Selective LMTK3 Kinase Inhibitor. Int J Mol Sci 2023; 24:ijms24010865. [PMID: 36614307 PMCID: PMC9821308 DOI: 10.3390/ijms24010865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Recently, the oncogenic role of lemur tyrosine kinase 3 (LMTK3) has been well established in different tumor types, highlighting it as a viable therapeutic target. In the present study, using in vitro and cell-based assays coupled with biophysical analyses, we identify a highly selective small molecule LMTK3 inhibitor, namely C36. Biochemical/biophysical and cellular studies revealed that C36 displays a high in vitro selectivity profile and provides notable therapeutic effect when tested in the National Cancer Institute (NCI)-60 cancer cell line panel. We also report the binding affinity between LMTK3 and C36 as demonstrated via microscale thermophoresis (MST). In addition, C36 exhibits a mixed-type inhibition against LMTK3, consistent with the inhibitor overlapping with both the adenosine 5'-triphosphate (ATP)- and substrate-binding sites. Treatment of different breast cancer cell lines with C36 led to decreased proliferation and increased apoptosis, further reinforcing the prospective value of LMTK3 inhibitors for cancer therapy.
Collapse
|
15
|
Schield DR, Perry BW, Card DC, Pasquesi GIM, Westfall AK, Mackessy SP, Castoe TA. The Rattlesnake W Chromosome: A GC-Rich Retroelement Refugium with Retained Gene Function Across Ancient Evolutionary Strata. Genome Biol Evol 2022; 14:evac116. [PMID: 35867356 PMCID: PMC9447483 DOI: 10.1093/gbe/evac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a "refugium" for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Giulia I M Pasquesi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
16
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Macías-Silva M, Sosa-Garrocho M, López-Camarillo C. Novel Breast Cancer Treatment by Targeting Estrogen Receptor-Alpha Stability Using Proteolysis-Targeting Chimeras (PROTACs) Technology. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-protacs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Novel Zinc and Vanadium (V) Hydroquinonate Complexes: Synthesis and Biological Solution Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Krishnan A, Dhamodharan D, Sundaram T, Sundaram V, Byun HS. Computational discovery of novel human LMTK3 inhibitors by high throughput virtual screening using NCI database. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
20
|
Synthesis and biological evaluation of a new chalconate Co (II/III) complex with cytotoxic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Cairns J, Ingle JN, Kalari KR, Goetz MP, Weinshilboum RM, Gao H, Li H, Bari MG, Wang L. Anastrozole Regulates Fatty Acid Synthase in Breast Cancer. Mol Cancer Ther 2022; 21:206-216. [PMID: 34667110 PMCID: PMC8742770 DOI: 10.1158/1535-7163.mct-21-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Our previous matched case-control study of postmenopausal women with resected early-stage breast cancer revealed that only anastrozole, but not exemestane or letrozole, showed a significant association between the 6-month estrogen concentrations and risk of breast cancer. Anastrozole, but not exemestane or letrozole, is a ligand for estrogen receptor α. The mechanisms of endocrine resistance are heterogenous and with the new mechanism of anastrozole, we have found that treatment of anastrozole maintains fatty acid synthase (FASN) protein level by limiting the ubiquitin-mediated FASN degradation, leading to increased breast cancer cell growth. Mechanistically, anastrozole decreases the guided entry of tail-anchored proteins factor 4 (GET4) expression, resulting in decreased BCL2-associated athanogene cochaperone 6 (BAG6) complex activity, which in turn, prevents RNF126-mediated degradation of FASN. Increased FASN protein level can induce a negative feedback loop mediated by the MAPK pathway. High levels of FASN are associated with poor outcome only in patients with anastrozole-treated breast cancer, but not in patients treated with exemestane or letrozole. Repressing FASN causes regression of breast cancer cell growth. The anastrozole-FASN signaling pathway is eminently targetable in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N. Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P. Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mehrab Ghanat Bari
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author: Liewei Wang, Gonda 19-460, 200 1 Street SW, Rochester MN USA 55905. Phone: +1 507 284-5264; Fax: +1 507-284-4455;
| |
Collapse
|
22
|
Mai H, Cai C, Lin K, Zhang L, Wang Y, He M, Qu Y, Xu Y, Fu L, Pi L, Zhou H, Zeng D, Che D, Zuo L. Association between the rs3802201 polymorphism of the lncRNA MIR2052HG gene and the risk of recurrent miscarriage in a Southern Chinese population. J Clin Lab Anal 2022; 36:e24167. [PMID: 34910326 PMCID: PMC8761428 DOI: 10.1002/jcla.24167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Plenty of studies have indicated that some genetic polymorphisms of the breast cancer which associated with its susceptibility may also be related to the susceptibility of abortion. MIR2052HG plays an important role in the onset and progression of breast cancer by maintaining the level of ERα, but to the best of our knowledge, the correlation between risk of recurrent abortion and MIR2052HG rs3802201 C>G polymorphism is still unclear. Therefore, we conducted this case-control study to investigate whether MIR2052HG rs3802201 C>G polymorphism is associated with susceptibility of recurrent miscarriage (RM). METHODS We recruited 392 healthy controls and 248 patients with RM to process this research, the participants were all from southern China, and genotyping was performed by TaqMan method. RESULTS Our results showed that there was no evidence indicates the MIR2052HG rs3802201 C>G is related to RM (CG and CC: adjusted OR = 0.970, 95% CI = 0.694-1.355, p = 0.8577; GG and CC: adjusted OR = 0.743, 95% CI = 0.416-1.330, p = 0.3174; dominant model: adjusted OR = 0.925, 95% CI = 0.672-1.272, p = 0.6298; recessive model: adjusted OR = 0.751, 95% CI = 0.430-1.321, p = 0.3233). CONCLUSION We verified that the MIR2052HG rs3802201 C>G allele might be uncorrelated to the RM risk, but these findings require further validation in multicenter studies with larger sample size and different ethnicities.
Collapse
Affiliation(s)
- Hanran Mai
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of AndrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Canhong Cai
- Department of Clinical LabChaozhou People’s HospitalChaozhouChina
| | - Kun Lin
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Linyuan Zhang
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Yishuai Wang
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Menghua He
- School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Yanxia Qu
- Department of GynecologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Yufen Xu
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Lanyan Fu
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Lei Pi
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Huazhong Zhou
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Dingke Zeng
- Department of SurgeryGuangzhou Chest HospitalGuangzhouChina
| | - Di Che
- Department of Clinical Biological Resource BankGuangzhou Institute of PediatricsGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Liandong Zuo
- Department of AndrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
23
|
Diving into the dark kinome: lessons learned from LMTK3. Cancer Gene Ther 2021; 29:1077-1079. [PMID: 34819628 DOI: 10.1038/s41417-021-00408-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
|
24
|
Cai G, Sun W, Bi F, Wang D, Yang Q. Knockdown of LMTK3 in the Endometrioid Adenocarcinoma Cell Line Ishikawa: Inhibition of Growth and Estrogen Receptor α. Front Oncol 2021; 11:692282. [PMID: 34745935 PMCID: PMC8564183 DOI: 10.3389/fonc.2021.692282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective The curative effect of high-efficiency progesterone and other therapeutic drugs for endometrioid adenocarcinoma patients with preservation of reproductive capacity has not been satisfactory so far. Novel therapeutic drugs need to be explored. Methods We investigated the cytoplastic and nuclear expression levels of LMTK3 between endometrioid adenocarcinoma tissues and adjacent endometrial tissues by immunohistochemistry. We detected the effects of LMTK3 on cell viability of Ishikawa cells by CCK-8. We detected the effects of LMTK3 on cell cycle and apoptosis of Ishikawa cells by flow cytometry. We also detected the effects of LMTK3 knockdown on mRNA and protein levels of ERα by qRT-PCR and western blotting, respectively. We also used the cBioPortal online database to analyze the coexpression of LMTK3 and ESR1 in 1647 UCEC samples. Results We used TMAs to identify that LMTK3 was mainly detected in the cytoplasm of endometrioid tissues, and cytoplasmic LMTK3 expression in endometrioid tissues was higher than that in adjacent endometrial tissues (P < 0.05). LMTK3 knockdown decreased the proliferation of Ishikawa cells through decreasing cell viability (P < 0.01), increasing G1 (P < 0.001) arrest, and promoting apoptosis (P < 0.01). There was a positive correlation between the mRNA expression levels of LMTK3 and ESR1 (Spearman: P=2.011e-5, R=0.13; Pearson: P=7.18e-8, R=0.17). Knockdown of LMTK3 also reduced the mRNA (P < 0.001) and protein (P < 0.001) levels of ERα. Conclusions Inhibitors of LMTK3 may be a possible future treatment for ERα and LMTK3 highly expressed endometrioid adenocarcinoma following appropriate studies.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021; 11:210218. [PMID: 34582708 PMCID: PMC8478525 DOI: 10.1098/rsob.210218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Christos Tolias
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Neurosurgery, Royal Sussex County Hospital, Brighton and Sussex University Hospitals (BSUH) NHS Trust, Millennium Building, Brighton BN2 5BE, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
26
|
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST, Anwer F. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol 2021; 17:193-208. [PMID: 32970929 DOI: 10.1111/ajco.13449] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
A hallmark feature of tumorigenesis is uncontrolled cell division. Autophagy is regulated by more than 30 genes and it is one of several mechanisms by which cells maintain homeostasis. Autophagy promotes cancer progression and drug resistance. Several genes play important roles in autophagy-induced tumorigenesis and drug resistance including Beclin-1, MIF, HMGB1, p53, PTEN, p62, RAC3, SRC3, NF-2, MEG3, LAPTM4B, mTOR, BRAF and c-MYC. These genes alter cell growth, cellular microenvironment and cell division. Mechanisms involved in tumorigenesis and drug resistance include microdeletions, genetic mutations, loss of heterozygosity, hypermethylation, microsatellite instability and translational modifications at a molecular level. Disrupted or altered autophagy has been reported in hematological malignancies like lymphoma, leukemia and myeloma as well as multiple solid organ tumors like colorectal, hepatocellular, gall bladder, pancreatic, gastric and cholangiocarcinoma among many other malignancies. In addition, defects in autophagy also play a role in drug resistance in cancers like osteosarcoma, ovarian and lung carcinomas following treatment with drugs such as doxorubicin, paclitaxel, cisplatin, gemcitabine and etoposide. Therapeutic approaches that modulate autophagy are a novel future direction for cancer drug development that may help to prevent issues with disease progression and overcome drug resistance.
Collapse
Affiliation(s)
- Rana Muhammad Usman
- Department of Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Arshia Akbar
- Department of Medical Intensive Care, Holy Family Hospital, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Azka Latif
- Department of Medicine, Crieghton University, Omaha, NE, USA
| | - Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Jianjun Zhao
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Carew
- Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | | | - Faiz Anwer
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Cilibrasi C, Ditsiou A, Papakyriakou A, Mavridis G, Eravci M, Stebbing J, Gagliano T, Giamas G. LMTK3 inhibition affects microtubule stability. Mol Cancer 2021; 20:53. [PMID: 33731143 PMCID: PMC7968321 DOI: 10.1186/s12943-021-01345-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - George Mavridis
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - Murat Eravci
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London, W12 0NN, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
- Department of Medical Science, University of Udine, 33100, Udine, Italy
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
28
|
A New Anti-Estrogen Discovery Platform Identifies FDA-Approved Imidazole Anti-Fungal Drugs as Bioactive Compounds against ERα Expressing Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22062915. [PMID: 33805656 PMCID: PMC8000495 DOI: 10.3390/ijms22062915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
17β-estradiol (E2) exerts its physiological effects through the estrogen receptor α (i.e., ERα). The E2:ERα signaling allows the regulation of cell proliferation. Indeed, E2 sustains the progression of ERα positive (ERα+) breast cancers (BCs). The presence of ERα at the BC diagnosis drives their therapeutic treatment with the endocrine therapy (ET), which restrains BC progression. Nonetheless, many patients develop metastatic BCs (MBC) for which a treatment is not available. Consequently, the actual challenge is to complement the drugs available to fight ERα+ primary and MBC. Here we exploited a novel anti-estrogen discovery platform to identify new Food and Drug Administration (FDA)-approved drugs inhibiting E2:ERα signaling to cell proliferation in cellular models of primary and MBC cells. We report that the anti-fungal drugs clotrimazole (Clo) and fenticonazole (Fenti) induce ERα degradation and prevent ERα transcriptional signaling and proliferation in cells modeling primary and metastatic BC. The anti-proliferative effects of Clo and Fenti occur also in 3D cancer models (i.e., tumor spheroids) and in a synergic manner with the CDK4/CDK6 inhibitors palbociclib and abemaciclib. Therefore, Clo and Fenti behave as “anti-estrogens”-like drugs. Remarkably, the present “anti-estrogen” discovery platform represents a valuable method to rapidly identify bioactive compounds with anti-estrogenic activity.
Collapse
|
29
|
Dou J, Puttabyatappa M, Padmanabhan V, Bakulski KM. Developmental programming: Adipose depot-specific transcriptional regulation by prenatal testosterone excess in a sheep model of PCOS. Mol Cell Endocrinol 2021; 523:111137. [PMID: 33359827 PMCID: PMC7854529 DOI: 10.1016/j.mce.2020.111137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Prenatal testosterone (T)-treated female sheep manifest adipose depot-specific disruptions in inflammatory/oxidative state, adipocyte differentiation and thermogenic adipocyte distribution. The objective of this study was to identify common and divergent gene pathways underlying prenatal T excess-induced adipose depot-specific disruptions. RNA sequencing and network analyses were undertaken with visceral (VAT), subcutaneous (SAT), epicardiac (ECAT) and perirenal (PRAT) adipose tissues from control and prenatal T-treated (100 mg T propionate twice a week from days 30-90 of gestation) female sheep at 21 months of age. Increased expression of adiposity and inflammation-related genes in VAT and genes that promote differentiation of white adipocytes in SAT were congruous with their metabolic roles with SAT favoring uptake/storage of free fatty acids and triglycerides and VAT favoring higher rate of fatty acid turnover and lipolysis. Selective upregulation of cardiac muscle and renoprotection genes in ECAT and PRAT respectively are suggestive of protective paracrine actions. Expression profile in prenatal T-treated sheep paralleled depot-specific dysfunctions with increased proinflammatory genes in VAT, reduced adipocyte differentiation genes in VAT and SAT and increased vascular related gene expression in PRAT. The high expression of genes involved in cardiomyocyte function in ECAT is suggestive of cardioprotective function being maintained to overcome the prenatal T-induced cardiac dysfunction and hypertension. These findings coupled with changes in gene pathways and networks involved in chromatin modification, extracellular matrix, immune and mitochondrial function, and endoplasmic reticulum to Golgi transport suggest that dysregulation in gene expression underlie prenatal T-treatment induced functional differences among adipose depots and manifestation of metabolic dysfunction.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Ditsiou A, Cilibrasi C, Simigdala N, Papakyriakou A, Milton-Harris L, Vella V, Nettleship JE, Lo JH, Soni S, Smbatyan G, Ntavelou P, Gagliano T, Iachini MC, Khurshid S, Simon T, Zhou L, Hassell-Hart S, Carter P, Pearl LH, Owen RL, Owens RJ, Roe SM, Chayen NE, Lenz HJ, Spencer J, Prodromou C, Klinakis A, Stebbing J, Giamas G. The structure-function relationship of oncogenic LMTK3. SCIENCE ADVANCES 2020; 6:6/46/eabc3099. [PMID: 33188023 PMCID: PMC7673765 DOI: 10.1126/sciadv.abc3099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Nikiana Simigdala
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," 15341 Athens, Greece
| | - Leanne Milton-Harris
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Joanne E Nettleship
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Panagiota Ntavelou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Maria Chiara Iachini
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Sahir Khurshid
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Philip Carter
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - S Mark Roe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Naomi E Chayen
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Chrisostomos Prodromou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
31
|
Allam L, Arrouchi H, Ghrifi F, El Khazraji A, Kandoussi I, Bendahou MA, El Amri H, El Absi M, Ibrahimi A. AKT1 Polymorphism (rs10138227) and Risk of Colorectal Cancer in Moroccan Population: A Case Control Study. Asian Pac J Cancer Prev 2020; 21:3165-3170. [PMID: 33247671 PMCID: PMC8033122 DOI: 10.31557/apjcp.2020.21.11.3165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND LMTK3 and AKT1 each have a role in carcinogenesis and tumor progression. The analysis of single nucleotide polymorphisms of AKT1 and LMTK3 could lead to more complete and accurate risk estimates for colorectal cancer. AIM We evaluated the association between single nucleotide polymorphisms (SNPs) of AKT1 and LMTK3 and the risk of colorectal cancer in a case-control study in Moroccan population. METHODS Genomic DNA from 70 colorectal cancer patients and 50 healthy control subjects was extracted from whole blood. Genotyping was performed by direct sequencing after polymerase chain reactions for the 7 SNPs (AKT1rs1130214G/T, AKT1rs10138227C/T, AKT1rs3730358C/T, AKT1rs1000559097G/A, AKT1rs2494737A/T, LMTK3rs8108419G/A, and LMTK3rs9989661A/G.). Study subjects provided detailed information during the collection. All P values come from bilateral tests. RESULTS In the logistic regression analysis, a significantly high risk of colorectal cancer was associated with TC/TT genotypes of rs10138227 with adjusted odds ratio [OR] equal to 2.82 and 95% confidence interval [CI] of 1.15 to 6.91. CONCLUSION Our results suggest that the SNP AKT1rs10138227 could affect susceptibility to CRC, probably by modulating the transcriptional activity of AKT1. However, larger independent studies are needed to validate our results.
Collapse
Affiliation(s)
- Loubna Allam
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco.,Instituts Des Analyses Génétique De La Gendarmerie Royale De Rabat, Maroc, Morocco
| | - Housna Arrouchi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Fatima Ghrifi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Abdelhak El Khazraji
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Ilham Kandoussi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| | - Mohammed Amine Bendahou
- Biotechnology Laboratory (Medbiotech), Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morroco
| | - Hamid El Amri
- Instituts Des Analyses Génétique De La Gendarmerie Royale De Rabat, Maroc, Morocco
| | - Mohamed El Absi
- Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V Rabat, Rabaat Maroc, Morocco
| | - Azeddine Ibrahimi
- Laboratoire De Biotechnologie (MedBiotech), Faculté De Medecine Et De Pharmacie De Rabat, Université Mohamed V De Rabat, Rabat, Maroc, Morocco
| |
Collapse
|
32
|
Jiang T, Lu X, Yang F, Wang M, Yang H, Xing N. LMTK3 promotes tumorigenesis in bladder cancer via the ERK/MAPK pathway. FEBS Open Bio 2020; 10:2107-2121. [PMID: 32865871 PMCID: PMC7530379 DOI: 10.1002/2211-5463.12964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Lemur tyrosine kinase 3 (LMTK3) is a key member of the serine–threonine tyrosine kinase family. It plays an important role in breast cancer tumorigenesis and progression. However, its biological role in bladder cancer remains elusive. In this study, we demonstrated that LMTK3 was overexpressed in bladder cancer and was positively correlated with bladder cancer malignancy. High LMTK3 expression predicted poor overall survival. Knockdown of LMTK3 in bladder cancer cells triggered cell‐cycle arrest at G2/M phase, suppressed cell growth, and induced cell apoptosis in bladder cancer cells. Furthermore, Transwell assays revealed that reduction of LMTK3 decreased cell migration by regulating the epithelial‐to‐mesenchymal transition pathway. Conversely, LKTM3 overexpression was shown to promote proliferation and migration of bladder cancer cells. We assessed phosphorylation of MEK and ERK1/2 in bladder cancer cells depleted of LMTK3 and demonstrated a reduced phosphorylation status compared with the control group. Using an MAPK signaling‐specific inhibitor, U0126, we could rescue the promotion of proliferation and viability in LMTK3‐overexpressing cells. In conclusion, we extend the status of LMTK3 as an oncogene in bladder cancer and provide evidence for its function via the activation of the ERK/MAPK pathway. Thus, targeting LMTK3 may hold potential as a diagnostic and prognostic biomarker and as a possible future treatment for bladder cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Zayas J, Qin S, Yu J, Ingle JN, Wang L. Functional genomics based on germline genome-wide association studies of endocrine therapy for breast cancer. Pharmacogenomics 2020; 21:615-625. [PMID: 32539536 DOI: 10.2217/pgs-2019-0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women worldwide. Functional follow-up of breast cancer genome-wide association studies has led to the discovery of genes that regulate endocrine therapy response in a SNP- and drug-dependent manner. Here, we will present four examples in which functional genomic studies from breast cancer clinical trials led to novel pharmacogenomic insights and molecular mechanisms of selective estrogen receptor modulators and aromatase inhibitors. The approach utilized for studying genetic variability described in this review offers substantial potential for meaningful discoveries that move the field toward precision medicine for patients.
Collapse
Affiliation(s)
- Jacqueline Zayas
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic School of Medicine & Mayo Clinic Medical Scientist Training Program, Rochester, MN 55905, USA
| | - Sisi Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Long Noncoding RNAs Involved in the Endocrine Therapy Resistance of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061424. [PMID: 32486413 PMCID: PMC7353012 DOI: 10.3390/cancers12061424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides that do not encode proteins. Recent studies have demonstrated that numerous lncRNAs are expressed in humans and play key roles in the development of various types of cancers. Intriguingly, some lncRNAs have been demonstrated to be involved in endocrine therapy resistance for breast cancer through their own mechanisms, suggesting that lncRNAs could be promising new biomarkers and therapeutic targets of breast cancer. Here, we summarize the functions and mechanisms of lncRNAs related to the endocrine therapy resistance of breast cancer.
Collapse
|
35
|
Ortiz MA, Michaels H, Molina B, Toenjes S, Davis J, Marconi GD, Hecht D, Gustafson JL, Piedrafita FJ, Nefzi A. Discovery of cyclic guanidine-linked sulfonamides as inhibitors of LMTK3 kinase. Bioorg Med Chem Lett 2020; 30:127108. [PMID: 32192797 DOI: 10.1016/j.bmcl.2020.127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is oncogenic in various cancers. In breast cancer, LMTK3 phosphorylates and modulates the activity of estrogen receptor-α (ERα) and is essential for the growth of ER-positive cells. LMTK3 is highly expressed in ER-negative breast cancer cells, where it promotes invasion via integrin β1. LMTK3 abundance and/or high nuclear expression have been linked to shorter disease free and overall survival time in a variety of cancers, supporting LMTK3 as a potential target for anticancer drug development. We sought to identify small molecule inhibitors of LMTK3 with the ultimate goal to pharmacologically validate this kinase as a novel target in cancer. We used a homogeneous time resolve fluorescence (HTRF) assay to screen a collection of mixture-based combinatorial chemical libraries containing over 18 million compounds. We identified several cyclic guanidine-linked sulfonamides with sub-micromolar activity and evaluated their binding mode using a 3D homology model of the LMTK3 KD.
Collapse
Affiliation(s)
- Maria A Ortiz
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Heather Michaels
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Brandon Molina
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Sean Toenjes
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - Jennifer Davis
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio, Cheti-Pescara, Via dei vestini, 31, Italy
| | - David Hecht
- Southwestern College, Department of Chemistry, Chula Vista, CA, United States
| | - Jeffrey L Gustafson
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - F Javier Piedrafita
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States.
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States; Florida International University, Miami, FL, United States.
| |
Collapse
|
36
|
The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis. Nat Commun 2019; 10:3778. [PMID: 31439835 PMCID: PMC6706407 DOI: 10.1038/s41467-019-11378-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
MCF7 cells acquire estrogen-independent proliferation after long-term estrogen deprivation (LTED), which recapitulates endocrine therapy resistance. LTED cells can become primed for apoptosis, but the underlying mechanism is largely unknown. We previously reported that Eleanor non-coding RNAs (ncRNAs) upregulate the ESR1 gene in LTED cells. Here, we show that Eleanors delineate the topologically associating domain (TAD) of the ESR1 locus in the active nuclear compartment of LTED cells. The TAD interacts with another transcriptionally active TAD, which is 42.9 Mb away from ESR1 and contains a gene encoding the apoptotic transcription factor FOXO3. Inhibition of a promoter-associated Eleanor suppresses all genes inside the Eleanor TAD and the long-range interaction between the two TADs, but keeps FOXO3 active to facilitate apoptosis in LTED cells. These data indicate a role of ncRNAs in chromatin domain regulation, which may underlie the apoptosis-prone nature of therapy-resistant breast cancer cells and could be good therapeutic targets. Long term estrogen deprivation can result in apoptosis in breast cancer cells. Here, the authors show that this apoptosis is induced by the long-range chromatin interaction of loci containing the ESR1 and FOXO3 genes, resulting in FOXO3-mediated apoptosis.
Collapse
|
37
|
Whitman NA, Lin ZW, Kenney RM, Albertini L, Lockett MR. Hypoxia differentially regulates estrogen receptor alpha in 2D and 3D culture formats. Arch Biochem Biophys 2019; 671:8-17. [PMID: 31163125 PMCID: PMC6688900 DOI: 10.1016/j.abb.2019.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia is a common feature in solid tumors. Clinical samples show a positive correlation between the expression of the hypoxia-inducible factor HIF-1α and estrogen receptor alpha (ERα) and a negative correlation between HIF-1α and hormone sensitivity. Results from monolayer cultures are in contention with clinical observations, showing that ER (+) cell lines no longer express ERα under hypoxic conditions (1% O2). Here, we compared the impact of hypoxia on the ERα signaling pathway for T47D cells in a 2D and 3D culture format. In the 2D format, the cells were cultured as monolayers. In the 3D format, paper-based scaffolds supported cells suspended in a collagen matrix. Using ELISA, Western blot, and immunofluorescence measurements, we show that hypoxia differentially regulates ERα protein levels in a culture environment-dependent manner. In the 2D format, the protein levels are significantly decreased in hypoxia. In the 3D format, the protein levels are maintained in hypoxia. Hypoxia reduced ERα transcriptional activation in both culture formats. These results highlight the importance of considering tissue dimensionality for in vitro studies. They also show that ERα protein levels in hypoxia are not an accurate indicator of ERα transcriptional activity, and confirm that a positive stain for ERα in a clinical sample may not necessarily indicate hormone sensitivity.
Collapse
Affiliation(s)
- Nathan A Whitman
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Zhi-Wei Lin
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Leonardo Albertini
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
38
|
Cairns J, Ingle JN, Kalari KR, Shepherd LE, Kubo M, Goetz MP, Weinshilboum RM, Wang L. The lncRNA MIR2052HG regulates ERα levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Res 2019; 21:47. [PMID: 30944027 PMCID: PMC6448248 DOI: 10.1186/s13058-019-1130-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
Background Our previous genome-wide association study using the MA.27 aromatase inhibitors adjuvant trial identified SNPs in the long noncoding RNA MIR2052HG associated with breast cancer-free interval. MIR2052HG maintained ERα both by promoting AKT/FOXO3-mediated ESR1 transcription and by limiting ubiquitin-mediated ERα degradation. Our goal was to further elucidate MIR2052HG’s mechanism of action. Methods RNA-binding protein immunoprecipitation assays were performed to demonstrate that the transcription factor, early growth response protein 1 (EGR1), worked together with MIR2052HG to regulate that lemur tyrosine kinase-3 (LMTK3) transcription in MCF7/AC1 and CAMA-1 cells. The location of EGR1 on the LMTK3 gene locus was mapped using chromatin immunoprecipitation assays. The co-localization of MIR2052HG RNA and the LMTK3 gene locus was determined using RNA-DNA dual fluorescent in situ hybridization. Single-nucleotide polymorphisms (SNP) effects were evaluated using a panel of human lymphoblastoid cell lines. Results MIR2052HG depletion in breast cancer cells results in a decrease in LMTK3 expression and cell growth. Mechanistically, MIR2052HG interacts with EGR1 and facilitates its recruitment to the LMTK3 promoter. LMTK3 sustains ERα levels by reducing protein kinase C (PKC) activity, resulting in increased ESR1 transcription mediated through AKT/FOXO3 and reduced ERα degradation mediated by the PKC/MEK/ERK/RSK1 pathway. MIR2052HG regulated LMTK3 in a SNP- and aromatase inhibitor-dependent fashion: the variant SNP increased EGR1 binding to LMTK3 promoter in response to androstenedione, relative to wild-type genotype, a pattern that can be reversed by aromatase inhibitor treatment. Finally, LMTK3 overexpression abolished the effect of MIR2052HG on PKC activity and ERα levels. Conclusions Our findings support a model in which the MIR2052HG regulates LMTK3 via EGR1, and LMTK3 regulates ERα stability via the PKC/MEK/ERK/RSK1 axis. These results reveal a direct role of MIR2052HG in LMTK3 regulation and raise the possibilities of targeting MIR2052HG or LMTK3 in ERα-positive breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1130-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lois E Shepherd
- NCIC Clinical Trials Group, Kingston, Ontario, K7L 3N6, Canada
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama City, 230-0045, Japan
| | - Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells. Curr Drug Targets 2019; 20:690-704. [DOI: 10.2174/1389450119666181015114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiologia Celular. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| |
Collapse
|
40
|
Zhou T, Yi F, Wang Z, Guo Q, Liu J, Bai N, Li X, Dong X, Ren L, Cao L, Song X. The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer. Int J Biol Sci 2019; 15:909-918. [PMID: 31182912 PMCID: PMC6535783 DOI: 10.7150/ijbs.31972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. DSB damage is the most toxic type of DNA damage to cells and is related to genomic instability. Multiple roles for RNF8 have been identified in DNA damage response as well as in other functions, such as telomere protection, cell cycle control and transcriptional regulation. These functions are closely correlated to tumorigenesis and cancer progression. Indeed, deficiency of RNF8 caused spontaneous tumorigenesis in a mouse model. Deciphering these mechanisms of RNF8 may shed light on strategies for cancer treatment. In this review, we summarize the current understanding of both classical and nonclassical functions of RNF8, and discuss its roles in the pathogenesis and progression of tumor.
Collapse
Affiliation(s)
- Tingting Zhou
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Fei Yi
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiang Dong
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ling Ren
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
41
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
42
|
The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1867:165372. [PMID: 30597196 DOI: 10.1016/j.bbadis.2018.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways.
Collapse
|
43
|
Allam L, Fatima G, Wiame L, Hamid EA, Azeddine I. Molecular screening and docking analysis of LMTK3and AKT1 combined inhibitors. Bioinformation 2018; 14:499-503. [PMID: 31223209 PMCID: PMC6563661 DOI: 10.6026/97320630014499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
The abnormal activation of AKT/mTOR signaling pathway and overexpression of LMTK3, are the main factors involved in the
generation of drug resistance. Therefore, the use of computer-aided drug design in the inhibitors discovery offers an advantage to
provide new candidates for the treatment of this resistance. We realised the virtual screening and molecular docking of AKT1 and
LMTK3 proteins by the Dockblaster server. In addition, with abundance of candidates under development for AKT1 kinase, we have
also conducted a Quantitative Structure-Activity Relationship (QSAR) study based on these compounds, in order to design more active
compounds and predict their activity for development of a new inhibitor of AKT1. QSAR tests were performed for AKT1 using the
Partial Least Squares method with a correlation coefficient of R2=0.8062 and a cross-validation of q2=0.6995. This test has selected five
compounds as competitive inhibitors-AKT1-ATP with a better biological activities. In parallel the molecular screening has selected five
other compounds as competitive ATP-inhibitors of LMTK3. One of them is a common inhibitor with AKT1, and it is marketed as a
moderate to severe pain therapy. The ADME predictions confirmed the inhibitors pharmacological activity of these compounds for
potential consideration as drug candidates.
Collapse
Affiliation(s)
- Loubna Allam
- Biotechnology Laboratory (Medbiotech), BioInova Research center, Rabat Medical and Pharmacy School, MedBiotech Center,Mohammed V University in Rabat, Rabat, 10000, Morroco.,Genetics Laboratory of Royal Gendarmery, Rabat, Morocco. Loubna Allam
| | - Ghrifi Fatima
- Biotechnology Laboratory (Medbiotech), BioInova Research center, Rabat Medical and Pharmacy School, MedBiotech Center,Mohammed V University in Rabat, Rabat, 10000, Morroco
| | - Lakhlili Wiame
- Biotechnology Laboratory (Medbiotech), BioInova Research center, Rabat Medical and Pharmacy School, MedBiotech Center,Mohammed V University in Rabat, Rabat, 10000, Morroco
| | - El Amri Hamid
- Genetics Laboratory of Royal Gendarmery, Rabat, Morocco. Loubna Allam
| | - Ibrahim Azeddine
- Biotechnology Laboratory (Medbiotech), BioInova Research center, Rabat Medical and Pharmacy School, MedBiotech Center,Mohammed V University in Rabat, Rabat, 10000, Morroco
| |
Collapse
|
44
|
Klug LR, Bannon AE, Javidi-Sharifi N, Town A, Fleming WH, VanSlyke JK, Musil LS, Fletcher JA, Tyner JW, Heinrich MC. LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene 2018; 38:1200-1210. [PMID: 30242244 PMCID: PMC6365197 DOI: 10.1038/s41388-018-0508-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
Certain cancers, including gastrointestinal stromal tumor (GIST) and subsets of melanoma, are caused by somatic KIT mutations that result in KIT receptor tyrosine kinase constitutive activity, which drives proliferation. The treatment of KIT-mutant GIST has been revolutionized with the advent of KIT-directed cancer therapies. KIT tyrosine kinase inhibitors (TKI) are superior to conventional chemotherapy in their ability to control advanced KIT-mutant disease. However, these therapies have a limited duration of activity due to drug-resistant secondary KIT mutations that arise (or that are selected for) during KIT TKI treatment. To overcome the problem of KIT TKI resistance, we sought to identify novel therapeutic targets in KIT-mutant GIST and melanoma cells using a human tyrosine kinome siRNA screen. From this screen, we identified lemur tyrosine kinase 3 (LMTK3) and herein describe its role as a novel KIT regulator in KIT-mutant GIST and melanoma cells. We find that LMTK3 regulated the translation rate of KIT, such that loss of LMTK3 reduced total KIT, and thus KIT downstream signaling in cancer cells. Silencing of LMTK3 decreased cell viability and increased cell death in KIT-dependent, but not KIT-independent GIST and melanoma cell lines. Notably, LMTK3 silencing reduced viability of all KIT-mutant cell lines tested, even those with drug-resistant KIT secondary mutations. Furthermore, targeting of LMTK3 with siRNA delayed KIT-dependent GIST growth in a xenograft model. Our data suggest the potential of LMTK3 as a target for treatment of patients with KIT-mutant cancer, particularly after failure of KIT TKIs.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. .,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA.
| | - Amber E Bannon
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Nathalie Javidi-Sharifi
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Ajia Town
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - William H Fleming
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA.,Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA
| | - Judy K VanSlyke
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
45
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
46
|
Structure-Based Virtual Screening of High-Affinity ATP-Competitive Inhibitors Against Human Lemur Tyrosine Kinase-3 (LMTK3) Domain: A Novel Therapeutic Target for Breast Cancer. Interdiscip Sci 2018; 11:527-541. [PMID: 30066129 DOI: 10.1007/s12539-018-0302-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
Human lemur tyrosine kinase-3 (LMTK3) is an oncogenic kinase known to regulate ER-α through phosphorylation and is considered to be a novel therapeutic target for breast cancer. In this work, we have studied the ATP-binding mechanism with LMTK3 domain and also carried out virtual screening on LMTK3 to identify lead compounds using Dock blaster server. The top scored compounds obtained from Dock blaster were then narrowed down further to six lead compounds (ZINC37996511, ZINC83363046, ZINC3745998, ZINC50456700, ZINC83351792 and ZINC83364581) based on high-binding affinity and non-bonding interactions with LMTK3 using Autodock 4.2 program. We found in comparison to ATP, the lead compounds bind relatively stronger to LMTK3. The relative binding free energy results from MM-PBSA/GBSA method further indicate the strong binding affinity of lead compounds over ATP to LMTK3 in the dynamic system. Further, potential of mean force (PMF) study for ATP and lead compounds with LMTK3 have been performed to explore the unbinding processes and the free energy barrier. From the PMF results, we observed that the lead compounds have higher dissociation energy barriers than the ATP. Our findings suggest that these lead compounds may compete with ATP, and could act as probable potential inhibitors for LMTK3.
Collapse
|
47
|
Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, Wendler F, Simon T, Szabó KS, O'Hanlon T, Dean M, Roslani AC, Cheah SH, Lee SC, Giamas G. LMTK3 confers chemo-resistance in breast cancer. Oncogene 2018; 37:3113-3130. [PMID: 29540829 PMCID: PMC5992129 DOI: 10.1038/s41388-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and post-chemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer.
Collapse
Affiliation(s)
- Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Kalpit Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lei Cheng Lit
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Teresa Gagliano
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Tingting Wang
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Franz Wendler
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Thomas Simon
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Krisztina Sára Szabó
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Timothy O'Hanlon
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, MD, 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - April Camilla Roslani
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Swee Hung Cheah
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Georgios Giamas
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
48
|
Anbarasu K, Jayanthi S. Identification of curcumin derivatives as human LMTK3 inhibitors for breast cancer: a docking, dynamics, and MM/PBSA approach. 3 Biotech 2018; 8:228. [PMID: 29719770 DOI: 10.1007/s13205-018-1239-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/02/2018] [Indexed: 02/04/2023] Open
Abstract
Human lemur tyrosine kinase-3 (LMTK3) is primarily involved in regulation of estrogen receptor-α (ERα) by phosphorylation activity. LMTK3 acts as key biomarker for ERα positive breast cancer and identified as novel drug target for breast cancer. Due to the absence of experimental reports, the computational approach has been followed to screen LMTK3 inhibitors from natural product curcumin derivatives based on rational inhibitor design. The initial virtual screening and re-docking resulted in identification of top three leads with favorable binding energy and strong interactions in critical residues of ATP-binding cavity. ADME prediction confirmed the pharmacological activity of the leads with various properties. The stability and binding affinity of leads were well refined in dynamic system from 25 ns MD simulations. The behavior of protein motion towards closure of ATP-binding cavity was evaluated based on eigenvectors by PCA. In addition, MM/PBSA calculations also confirmed the relative binding free energy of LMTK3-lead complexes in favor of the effective binding. From our study, novel LMTK3 inhibitors tetrahydrocurcumin, curcumin 4,4'-diacetate, and demethoxycurcumin have been proposed with inhibition mechanism. Further experimental evaluation on reported lead candidates might prove its role in breast cancer therapeutics.
Collapse
Affiliation(s)
- K Anbarasu
- Computational Drug Design Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, TamilNadu 632014 India
| | - S Jayanthi
- Computational Drug Design Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, TamilNadu 632014 India
| |
Collapse
|
49
|
Ma L, Liang Z, Zhou H, Qu L. Applications of RNA Indexes for Precision Oncology in Breast Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:108-119. [PMID: 29753129 PMCID: PMC6112337 DOI: 10.1016/j.gpb.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Precision oncology aims to offer the most appropriate treatments to cancer patients mainly based on their individual genetic information. Genomics has provided numerous valuable data on driver mutations and risk loci; however, it remains a formidable challenge to transform these data into therapeutic agents. Transcriptomics describes the multifarious expression patterns of both mRNAs and non-coding RNAs (ncRNAs), which facilitates the deciphering of genomic codes. In this review, we take breast cancer as an example to demonstrate the applications of these rich RNA resources in precision medicine exploration. These include the use of mRNA profiles in triple-negative breast cancer (TNBC) subtyping to inform corresponding candidate targeted therapies; current advancements and achievements of high-throughput RNA interference (RNAi) screening technologies in breast cancer; and microRNAs as functional signatures for defining cell identities and regulating the biological activities of breast cancer cells. We summarize the benefits of transcriptomic analyses in breast cancer management and propose that unscrambling the core signaling networks of cancer may be an important task of multiple-omic data integration for precision oncology.
Collapse
Affiliation(s)
- Liming Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zirui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lianghu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
50
|
Szpak D, Izem L, Verbovetskiy D, Soloviev DA, Yakubenko VP, Pluskota E. α Mβ 2 Is Antiatherogenic in Female but Not Male Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:2426-2438. [PMID: 29459405 DOI: 10.4049/jimmunol.1700313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 01/24/2018] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a complex inflammatory process characterized by monocyte recruitment into the arterial wall, their differentiation into macrophages, and lipid accumulation. Because integrin αMβ2 (CD11b/CD18) mediates multiple diverse functions of leukocytes, we examined its role in atherogenesis. αM-/-/ApoE-/- and ApoE-/- mice were fed a control or high fat diet for 3 or 16 wk to induce atherogenesis. Unexpectedly, αM deficiency accelerated development of atherosclerosis in female but not in male mice. The size of aortic root lesions was 3-4.5-fold larger in female αM-/-/ApoE-/- than in ApoE-/- mice. Monocyte and macrophage content within the lesions was increased 2.5-fold in female αM-/-/ApoE-/- mice due to enhanced proliferation. αMβ2 elimination promoted gender-dependent foam cell formation due to enhanced uptake of cholesterol by αM-/-/ApoE-/- macrophages. This difference was attributed to enhanced expression of lipid uptake receptors, CD36 and scavenger receptor A1 (SR-A1), in female mice. Macrophages from female αM-/-/ApoE-/- mice showed dramatically reduced expression of FoxM1 transcription factor and estrogen receptors (ER) α and β. As their antagonists inhibited the effect of 17β-estradiol (E2), E2 decreased CD36, SR-A1, and foam cell formation in ApoE-/- macrophages in an ERα- and ERβ-dependent manner. However, female αM-/-/ApoE-/- macrophages failed to respond to E2 and maintained elevated CD36, SR-A1, and lipid accumulation. FoxM1 inhibition in ApoE-/- macrophages reduced ERs and enhanced CD36 and SR-A1 expression, whereas FoxM1 overexpression in αM-/-/ApoE-/- macrophages reversed their proatherogenic phenotype. We demonstrate a new, surprising atheroprotective role of αMβ2 in female ApoE-/- mice. αMβ2 maintains ER expression in macrophages and E2-dependent inhibition of foam cell formation.
Collapse
Affiliation(s)
- Dorota Szpak
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195
| | - Lahoucine Izem
- Department of Molecular and Cellular Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | | | - Dmitry A Soloviev
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, Johnson City, TN 37614
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|