1
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
2
|
Hashem SA, Georgiou M, Fujinami-Yokokawa Y, Laich Y, Daich Varela M, de Guimaraes TAC, Ali N, Mahroo OA, Webster AR, Fujinami K, Michaelides M. Genetics, Clinical Characteristics, and Natural History of PDE6B-Associated Retinal Dystrophy. Am J Ophthalmol 2024; 263:1-10. [PMID: 38364953 DOI: 10.1016/j.ajo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE To analyze the clinical characteristics, natural history, and genetics of PDE6B-associated retinal dystrophy. DESIGN Retrospective, observational cohort study. METHODS Review of medical records and retinal imaging, including fundus autofluorescence (FAF) imaging and spectral-domain optical coherence tomography (SD-OCT) of patients with molecularly confirmed PDE6B-associated retinal dystrophy in a single tertiary referral center. Genetic results were reviewed, and the detected variants were assessed. RESULTS Forty patients (80 eyes) were identified and evaluated longitudinally. The mean age (±SD, range) was 42.1 years (± 19.0, 10-86) at baseline, with a mean follow-up time of 5.2 years. Twenty-nine (72.5%) and 27 (67.5%) patients had no or mild visual acuity impairment at baseline and last visit, respectively. Best-corrected visual acuity (BCVA) was 0.56 ± 0.72 LogMAR (range -0.12 to 2.80) at baseline and 0.63 ± 0.73 LogMAR (range 0.0-2.80) at the last visit. BCVA was symmetrical in 87.5% of patients. A hyperautofluorescent ring was observed on FAF in 48 and 46 eyes at baseline and follow-up visit, respectively, with a mean area of 7.11 ± 4.13 mm2 at baseline and mean of 6.13 ± 3.62 mm2 at the follow-up visit. Mean horizontal ellipsoid zone width at baseline was 1946.1 ± 917.2 µm, which decreased to 1763.9 ± 827.9 µm at follow-up. Forty-four eyes had cystoid macular edema at baseline (55%), and 41 eyes (51.3%) at follow-up. There were statistically significant changes during the follow-up period in terms of BCVA and the ellipsoid zone width. Genetic analysis identified 43 variants in the PDE6B gene, including 16 novel variants. CONCLUSIONS This study details the natural history of PDE6B-retinopathy in the largest cohort to date. Most patients had mild to no BCVA loss, with slowly progressive disease, based on FAF and OCT metrics. There is a high degree of disease symmetry and a wide window for intervention.
Collapse
Affiliation(s)
- Shaima Awadh Hashem
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Michalis Georgiou
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences (M.G.), Little Rock, Arkansas, USA
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (Y.F.Y.), National Institute of Sensory Organs, NHONHO Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management (Y.F.Y.), Keio University School of Medicine, Tokyo, Japan
| | - Yannik Laich
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Eye Center, Faculty of Medicine, University Freiburg (Y.L.), Germany
| | - Malena Daich Varela
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Thales A C de Guimaraes
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Naser Ali
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Omar A Mahroo
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Section of Ophthalmology, King's College London, St Thomas' Hospital Campus (O.A.M.), London, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge (O.A.M.), Cambridge, United Kingdom
| | - Andrew R Webster
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom
| | - Kaoru Fujinami
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (Y.F.Y.), National Institute of Sensory Organs, NHONHO Tokyo Medical Center, Tokyo, Japan
| | - Michel Michaelides
- From the Moorfields Eye Hospital (S.A.H., M.G., Y.L., M.D.V., T.A.C.d.G., N.A., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (S.A.H., M.G., Y.F.Y., Y.L., M.D.V., T.A.C.d.G., O.A.M., A.R.W., K.F., M.M.), London, United Kingdom.
| |
Collapse
|
3
|
Georgiou M, Robson AG, Fujinami K, de Guimarães TAC, Fujinami-Yokokawa Y, Daich Varela M, Pontikos N, Kalitzeos A, Mahroo OA, Webster AR, Michaelides M. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes. Prog Retin Eye Res 2024; 100:101244. [PMID: 38278208 DOI: 10.1016/j.preteyeres.2024.101244] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Thales A C de Guimarães
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Section of Ophthalmology, King s College London, St Thomas Hospital Campus, London, United Kingdom; Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Translational Ophthalmology, Wills Eye Hospital, Philadelphia, PA, USA.
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Li X, Sedlacek M, Nath A, Szatko KP, Grimes WN, Diamond JS. A metabotropic glutamate receptor agonist enhances visual signal fidelity in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591881. [PMID: 38746092 PMCID: PMC11092665 DOI: 10.1101/2024.04.30.591881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. In rd10 mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist l-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After making in vivo electroretinogram recordings in rd10 mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recording in vitro light-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequent in vitro recordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized in rd10 retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.
Collapse
Affiliation(s)
- Xiaoyi Li
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA 21218
| | - Miloslav Sedlacek
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Klaudia P. Szatko
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
5
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
6
|
Wallen M, Aqil F, Spencer W, Gupta RC. Exosomes as an Emerging Plasmid Delivery Vehicle for Gene Therapy. Pharmaceutics 2023; 15:1832. [PMID: 37514019 PMCID: PMC10384126 DOI: 10.3390/pharmaceutics15071832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its introduction more than three decades ago, gene therapy has fallen short of its expected potential for the treatment of a broad spectrum of diseases and continues to lack widespread clinical use. The fundamental limitation in clinical translatability of this therapeutic modality has always been an effective delivery system that circumvents degradation of the therapeutic nucleic acids, ensuring they reach the intended disease target. Plasmid DNA (pDNA) for the purpose of introducing exogenous genes presents an additional challenge due to its size and potential immunogenicity. Current pDNA methods include naked pDNA accompanied by electroporation or ultrasound, liposomes, other nanoparticles, and cell-penetrating peptides, to name a few. While the topic of numerous reviews, each of these methods has its own unique set of limitations, side effects, and efficacy concerns. In this review, we highlight emerging uses of exosomes for the delivery of pDNA for gene therapy. We specifically focus on bovine milk and colostrum-derived exosomes as a nano-delivery "platform". Milk/colostrum represents an abundant, scalable, and cost-effective natural source of exosomes that can be loaded with nucleic acids for targeted delivery to a variety of tissue types in the body. These nanoparticles can be functionalized and loaded with pDNA for the exogenous expression of genes to target a wide variety of disease phenotypes, overcoming many of the limitations of current gene therapy delivery techniques.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY 40202, USA
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Aziz N, Ullah M, Rashid A, Hussain Z, Shah K, Awan A, Khan M, Ullah I, Rehman AU. A novel homozygous missense substitution p.Thr313Ile in the PDE6B gene underlies autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family. BMC Ophthalmol 2023; 23:116. [PMID: 36959549 PMCID: PMC10035148 DOI: 10.1186/s12886-023-02845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is one of the most frequent hereditary retinal diseases that often starts with night blindness and eventually leads to legal blindness. Our study aimed to identify the underlying genetic cause of autosomal recessive retinitis pigmentosa (arRP) in a consanguineous Pakistani family. METHODS Following a detailed ophthalmological examination of the patients by an ophthalmologist, whole-exome sequencing was performed on the proband's DNA to delineate the genetic cause of RP in the family. In-depth computational methods, in-silico analysis, and familial co-segregation study were performed for variant detection and validation. RESULTS We studied an inbred Pakistani family with two siblings affected by retinitis pigmentosa. The proband, a 32 years old female, was clinically diagnosed with RP at the age of 6 years. A classical night blindness symptom was reported in the proband since her early childhood. OCT report showed a major reduction in the outer nuclear layer and the ellipsoid zone width, leading to the progression of the disease. Exome sequencing revealed a novel homozygous missense mutation (c.938C > T;p.Thr313Ile) in exon 12 of the PDE6B gene. The mutation p.Thr313Ile co-segregated with RP phenotype in the family. The altered residue (p.Thr313) was super conserved evolutionarily across different vertebrate species, and all available in silico tools classified the mutation as highly pathogenic. CONCLUSION We present a novel homozygous pathogenic mutation in the PDE6B gene as the underlying cause of arRP in a consanguineous Pakistani family. Our findings highlight the importance of missense mutations in the PDE6B gene and expand the known mutational repertoire of PDE6B-related RP.
Collapse
Affiliation(s)
- Nobia Aziz
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel, University of Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Abdur Rashid
- Department of Higher Education Archives and Libraries Peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Zubair Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Azeem Awan
- LRBT Secondary Eye Hospital, Reerah Galla, Balakot Road, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan.
| |
Collapse
|
9
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
10
|
Characterization of a novel Pde6b-deficient rat model of retinal degeneration and treatment with adeno-associated virus (AAV) gene therapy. Gene Ther 2022; 30:362-368. [PMID: 36175490 DOI: 10.1038/s41434-022-00365-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
In humans, mutations in the beta subunit of cGMP-phosphodiesterase type 6 (PDE6B) cause autosomal recessive retinitis pigmentosa (RP), which typically has an aggressive clinical course of early-onset severe vision loss due to rapid photoreceptor degeneration. In this study, we describe the generation of a novel Pde6b-deficient rat model using CRISPR-Cas9 genome editing. We characterize the model at multiple time points using clinical imaging modalities as well as histology with immunohistochemistry to show rapid photoreceptor degeneration compared to wild-type and heterozygous animals. We describe the manufacture of two different adeno-associated viral (AAV) vectors (AAV2/1, AAV2/5) under current Good Manufacturing Practices (cGMP) and demonstrate their ability to drive human PDE6B expression in vivo. We further demonstrate the ability of AAV-mediated subretinal gene therapy to delay photoreceptor loss in Pde6b-deficient rats compared to untreated controls. However, severe progressive photoreceptor loss was noted even in treated eyes, likely due to the aggressive nature of the disease. These data provide useful preclinical data to guide the development of potential human gene therapy for PDE6B-associated RP. In addition, the rapid photoreceptor degeneration of the Pde6b-deficient rat with intact inner retina may provide a useful model for the study of cell replacement strategies.
Collapse
|
11
|
Han J, Zhu L, Zhang J, Guo L, Sun X, Huang C, Xu K, Zhang Y, Li W, Zhou Q. Rational engineering of adeno-associated virus capsid enhances human hepatocyte tropism and reduces immunogenicity. Cell Prolif 2022; 55:e13339. [PMID: 36135100 DOI: 10.1111/cpr.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Gene therapy based on recombinant adeno-associated viral (rAAV) vectors has been proved to be clinically effective for genetic diseases. However, there are still some limitations, including possible safety concerns for high dose delivery and a decreasing number of target patients caused by the high prevalence of pre-existing neutralizing antibodies, hindering its application. Herein, we explored whether there was an engineering strategy that can obtain mutants with enhanced transduction efficiency coupled with reduced immunogenicity. METHODS We described a new strategy for AAV capsids engineering by combining alterations of N-linked glycosylation and the mutation of PLA2-like motif. With this combined strategy, we generated novel variants derived from AAV8 and AAVS3. RESULTS The variants mediated higher transduction efficiency in human liver carcinoma cell lines and human primary hepatocytes as well as other human tissue cell lines. Importantly, all the variants screened out showed lower sensitivity to neutralizing antibody in vitro and in vivo. Moreover, the in vivo antibody profiles of variants were different from their parental AAV capsids. CONCLUSIONS Our work proposed a new combined engineering strategy and engineered two liver-tropic AAVs. We also obtained several AAV variants with a higher transduction efficiency and lower sensitivity of neutralizing antibodies. By expanding the gene delivery toolbox, these variants may further facilitate the success of AAV gene therapy.
Collapse
Affiliation(s)
- Jiabao Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liyu Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Nankai University, Tianjin, China
| | - Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Xuehan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
12
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
13
|
Szarka G, Balogh M, Tengölics ÁJ, Ganczer A, Völgyi B, Kovács-Öller T. The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res 2021; 16:1911-1920. [PMID: 33642359 PMCID: PMC8343308 DOI: 10.4103/1673-5374.308069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.
Collapse
Affiliation(s)
- Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
14
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
16
|
Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: Therapeutics, clinical trials and end points-A review. Clin Exp Ophthalmol 2021; 49:270-288. [PMID: 33686777 DOI: 10.1111/ceo.13917] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of disorders characterised by photoreceptor degeneration or dysfunction. These disorders typically present with severe vision loss that can be progressive, with disease onset ranging from congenital to late adulthood. The advances in genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRDs, with the first approved gene therapy and the commencement of multiple clinical trials. The scope of this review is to familiarise clinicians and scientists with the current management and the prospects for novel therapies for: (1) macular dystrophies, (2) cone and cone-rod dystrophies, (3) cone dysfunction syndromes, (4) Leber congenital amaurosis, (5) rod-cone dystrophies, (6) rod dysfunction syndromes and (7) chorioretinal dystrophies. We also briefly summarise the investigated end points for the ongoing trials.
Collapse
Affiliation(s)
- Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Clinical Phenotype of PDE6B-Associated Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22052374. [PMID: 33673512 PMCID: PMC7956818 DOI: 10.3390/ijms22052374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/25/2022] Open
Abstract
In this retrospective, longitudinal, observational cohort study, we investigated the phenotypic and genotypic features of retinitis pigmentosa associated with variants in the PDE6B gene. Patients underwent clinical examination and genetic testing at a single tertiary referral center, including best-corrected visual acuity (BCVA), kinetic visual field (VF), full-field electroretinography, full-field stimulus threshold, spectral domain optical coherence tomography, and fundus autofluorescence imaging. The genetic testing comprised candidate gene sequencing, inherited retinal disease gene panel sequencing, whole-genome sequencing, and testing for familial variants by Sanger sequencing. Twenty-four patients with mutations in PDE6B from 21 families were included in the study (mean age at the first visit: 32.1 ± 13.5 years). The majority of variants were putative splicing defects (8/23) and missense (7/23) mutations. Seventy-nine percent (38/48) of eyes had no visual acuity impairment at the first visit. Visual acuity impairment was mild in 4% (2/48), moderate in 13% (6/48), and severe in 4% (2/48). BCVA was symmetrical in the right and left eyes. The kinetic VF measurements were highly symmetrical in the right and left eyes, as was the horizontal ellipsoid zone (EZ) width. Regarding the genetic findings, 43% of the PDE6B variants found in our patients were novel. Thus, this study contributed substantially to the PDE6B mutation spectrum. The visual acuity impairment was mild in 83% of eyes, providing a window of opportunity for investigational new drugs. The EZ width was reduced in all patients and was highly symmetric between the eyes, making it a promising outcome measure. We expect these findings to have implications on the design of future PDE6B-related retinitis pigmentosa (RP) clinical trials.
Collapse
|
18
|
Neelam K, Dey S, Sim R, Lee J, Au Eong KG. Fructus lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients 2021; 13:246. [PMID: 33467087 PMCID: PMC7830576 DOI: 10.3390/nu13010246] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Fructus lycii (F. lycii) is an exotic "berry-type" fruit of the plant Lycium barbarum that is characterized by a complex mixture of bioactive compounds distinguished by their high antioxidant potential. F. lycii is used in traditional Chinese home cooking and in the Chinese Pharmacopeia as an aid to vision and longevity as well as a remedy for diabetes to balance "yin" and "yang" in the body for about two centuries. Although a myriad of bioactive compounds have been isolated from F. lycii, polysaccharides, carotenoids, flavonoids, and phenolics represent the key functional components of F. lycii. F. lycii has been shown to exhibit a wide range of biological activities in experimental settings including antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects. Despite its medicinal role dating back to the eighteenth century in the Far East and robust evidence of beneficial effects on ocular health and retinal diseases originating mainly from studies in animal models, the role of F. lycii in the clinical management of retinal diseases is yet to be established. This article comprehensively reviews the literature germane to F. lycii and retinal diseases with particular emphasis on age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which are commonly seen in clinical practice.
Collapse
Affiliation(s)
- Kumari Neelam
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Sonali Dey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (S.D.); (R.S.)
| | - Ralene Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (S.D.); (R.S.)
| | - Jason Lee
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
| | - Kah-Guan Au Eong
- Department of Ophthalmology and Visual Sciences, Khoo Teck Puat Hospital, Singapore 768828, Singapore; (J.L.); (K.-G.A.E.)
- International Eye Cataract Retina Center, Farrer Park Medical Center, Singapore 217562, Singapore
| |
Collapse
|
19
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
20
|
Bone Marrow-Derived Mononuclear Cell Transplants Decrease Retinal Gliosis in Two Animal Models of Inherited Photoreceptor Degeneration. Int J Mol Sci 2020; 21:ijms21197252. [PMID: 33008136 PMCID: PMC7583887 DOI: 10.3390/ijms21197252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited photoreceptor degenerations are not treatable diseases and a frequent cause of blindness in working ages. In this study we investigate the safety, integration and possible rescue effects of intravitreal and subretinal transplantation of adult human bone-marrow-derived mononuclear stem cells (hBM-MSCs) in two animal models of inherited photoreceptor degeneration, the P23H-1 and the Royal College of Surgeons (RCS) rat. Immunosuppression was started one day before the injection and continued through the study. The hBM-MSCs were injected in the left eyes and the animals were processed 7, 15, 30 or 60 days later. The retinas were cross-sectioned, and L- and S- cones, microglia, astrocytes and Müller cells were immunodetected. Transplantations had no local adverse effects and the CD45+ cells remained for up to 15 days forming clusters in the vitreous and/or a 2–3-cells-thick layer in the subretinal space after intravitreal or subretinal injections, respectively. We did not observe increased photoreceptor survival nor decreased microglial cell numbers in the injected left eyes. However, the injected eyes showed decreased GFAP immunoreactivity. We conclude that intravitreal or subretinal injection of hBM-MSCs in dystrophic P23H-1 and RCS rats causes a decrease in retinal gliosis but does not have photoreceptor neuroprotective effects, at least in the short term. However, this treatment may have a potential therapeutic effect that merits further investigation.
Collapse
|
21
|
Pandiyan VP, Maloney-Bertelli A, Kuchenbecker JA, Boyle KC, Ling T, Chen ZC, Park BH, Roorda A, Palanker D, Sabesan R. The optoretinogram reveals the primary steps of phototransduction in the living human eye. SCIENCE ADVANCES 2020; 6:6/37/eabc1124. [PMID: 32917686 PMCID: PMC9222118 DOI: 10.1126/sciadv.abc1124] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 05/05/2023]
Abstract
Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.
Collapse
Affiliation(s)
| | | | | | - Kevin C Boyle
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tong Ling
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Zhijie Charles Chen
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Austin Roorda
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
French LS, Mellough CB, Chen FK, Carvalho LS. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front Cell Neurosci 2020; 14:183. [PMID: 32733204 PMCID: PMC7363968 DOI: 10.3389/fncel.2020.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Usher syndrome is a genetic disorder causing neurosensory hearing loss and blindness from retinitis pigmentosa (RP). Adaptive techniques such as braille, digital and optical magnifiers, mobility training, cochlear implants, or other assistive listening devices are indispensable for reducing disability. However, there is currently no treatment to reduce or arrest sensory cell degeneration. There are several classes of treatments for Usher syndrome being investigated. The present article reviews the progress this research has made towards delivering commercial options for patients with Usher syndrome.
Collapse
Affiliation(s)
- Lucy S French
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
23
|
Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang Yu C, Sumaroka A, Aguirre GD, Jacobson SG. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 2020; 77:100827. [PMID: 31899291 PMCID: PMC8714059 DOI: 10.1016/j.preteyeres.2019.100827] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022]
Abstract
Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rebecca Sheplock
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Pearson
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Caberry WeiYang Yu
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Alexander Sumaroka
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
25
|
Trapani I, Auricchio A. Has retinal gene therapy come of age? From bench to bedside and back to bench. Hum Mol Genet 2020; 28:R108-R118. [PMID: 31238338 PMCID: PMC6797000 DOI: 10.1093/hmg/ddz130] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/24/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal gene therapy has advanced considerably in the past three decades. Initial efforts have been devoted to comprehensively explore and optimize the transduction abilities of gene delivery vectors, define the appropriate intraocular administration routes and obtain evidence of efficacy in animal models of inherited retinal diseases (IRDs). Successful translation in clinical trials of the initial promising proof-of-concept studies led to the important milestone of the first approved product for retinal gene therapy in both US and Europe. The unprecedented clinical development observed during the last decade in the field is however highlighting new challenges that will need to be overcome to bring gene therapy to fruition to a larger patient population within and beyond the realm of IRDs.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Advanced Biomedicine, Federico II University, Naples, Italy
| |
Collapse
|
26
|
Khateb S, Nassisi M, Bujakowska KM, Méjécase C, Condroyer C, Antonio A, Foussard M, Démontant V, Mohand-Saïd S, Sahel JA, Zeitz C, Audo I. Longitudinal Clinical Follow-up and Genetic Spectrum of Patients With Rod-Cone Dystrophy Associated With Mutations in PDE6A and PDE6B. JAMA Ophthalmol 2020; 137:669-679. [PMID: 30998820 DOI: 10.1001/jamaophthalmol.2018.6367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance A precise phenotypic characterization of retinal dystrophies is needed for disease modeling as a basis for future therapeutic interventions. Objective To compare genotype, phenotype, and structural changes in patients with rod-cone dystrophy (RCD) associated with mutations in PDE6A or PDE6B. Design, Setting, and Participants In a retrospective cohort study conducted in Paris, France, from January 2007 to September 2017, 54 patients from a cohort of 1095 index patients with RCD underwent clinical examination, including personal and familial history, best-corrected visual acuity (BCVA), color vision, slitlamp examination, full-field electroretinography, kinetic visual fields (VFs), retinophotography, optical coherence tomography, near-infrared fundus autofluorescence, and short-wavelength fundus autofluorescence imaging. Genotyping was performed using microarray analysis, targeted next-generation sequencing, and Sanger sequencing validation with familial segregation when possible. Data were analyzed from September 1, 2017, to February 1, 2018. Clinical variables were subsequently analyzed in 2018. Main Outcomes and Measures Phenotype and genotype comparison of patients carrying mutations in PDE6A or PDE6B. Results Of the 54 patients included in the study, 19 patients of 17 families (11 women [58%]; mean [SD] age at diagnosis, 14.83 [10.63] years) carried pathogenic mutations in PDE6A, and 35 patients of 26 families (17 women [49%]; mean [SD] age at diagnosis, 21.10 [11.56] years) had mutations in PDE6B, accounting for prevalences of 1.6% and 2.4%, respectively. Among 49 identified genetic variants, 14 in PDE6A and 15 in PDE6B were novel. Overall, phenotypic analysis revealed no substantial differences between the 2 groups except for night blindness as a presenting symptom that was noted to be more prevalent in the PDE6A than PDE6B group (80% vs 37%, respectively; P = .005). The mean binocular BCVA and VF decrease over time (measured as mean individual slopes coefficients) was comparable between patients with PDE6A and PDE6B mutations: 0.04 (0.12) vs 0.02 (0.05) for BCVA (P = .89) and 14.33 (7.12) vs 13.27 (6.77) for VF (P = .48). Conclusions and Relevance Mutations in PDE6A and PDE6B accounted for 1.6% and 2.4%, respectively, in a cohort of French patients with RCD. The functional and structural findings reported may constitute the basis of disease modeling that might be used for better prognostic estimation and candidate selection for photoreceptor therapeutic rescue.
Collapse
Affiliation(s)
- Samer Khateb
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France.,Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marco Nassisi
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France
| | - Kinga M Bujakowska
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Cécile Méjécase
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Christel Condroyer
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France
| | - Marine Foussard
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Vanessa Démontant
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.,Académie des Sciences-Institut de France, Paris, France
| | - Christina Zeitz
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, Inserm-Direction Générale de l'Offre de Soins, CIC1423, Paris, France.,Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, Kim HK, Seo KY, Lee JY. Development of a Pde6b Gene Knockout Rat Model for Studies of Degenerative Retinal Diseases. Invest Ophthalmol Vis Sci 2019; 60:1519-1526. [PMID: 31009522 DOI: 10.1167/iovs.18-25556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the phenotypes of a newly developed Pde6b-deficient rat model of retinal degeneration. Methods Pde6b knockout rats were produced by CRISPR-Cpf1 technology. Pde6b knockout rats were evaluated for ocular abnormalities by comparison with wild-type eyes. Eyes were imaged using fundus photography and optical coherence tomography (OCT), stained by hematoxylin and eosin (H&E), and examined by TUNEL assay. Finally, eyes were functionally assessed by electroretinograms (ERGs). Results Pde6b knockout rats exhibited visible photoreceptor degeneration at 3 weeks of postnatal age. The fundus appearance of mutants was notable for pigmentary changes, vascular attenuation with an irregular vascular pattern, and outer retinal thinning, which resembled retinitis pigmentosa (RP) in humans. OCT showed profound retinal thinning in Pde6b knockout rats; the outer nuclear layer (ONL) was significantly thinner in Pde6b knockout rats, with relative preservation of the inner retina at 3 weeks of postnatal age. H&E staining confirmed extensive degeneration of the ONL, beginning at 3 weeks of postnatal age; no ONL remained in the retina by 16 weeks of postnatal age. Retinal sections of Pde6b knockout rats were highly positive for TUNEL, specifically in the ONL. In ERGs, Pde6b knockout rats showed no detectable a- or b-waves at 8 weeks of postnatal age. Conclusions The Pde6b knockout rat exhibits photoreceptor degeneration. It may provide a better model for experimental therapy for RP because of its slower progression and larger anatomic architecture than the corresponding mouse model. Further studies in this rat model may yield insights into effective therapies for human RP.
Collapse
Affiliation(s)
- Joon Hyung Yeo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bok Kyoung Jung
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae-Sol Shin
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Kyung Kim
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Yul Seo
- Korea Mouse Sensory Phenotyping Center (KMSPC), Yonsei University College of Medicine, Seoul, Korea.,Institute for Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Vagni P, Perlini LE, Chenais NAL, Marchetti T, Parrini M, Contestabile A, Cancedda L, Ghezzi D. Gene Editing Preserves Visual Functions in a Mouse Model of Retinal Degeneration. Front Neurosci 2019; 13:945. [PMID: 31551698 PMCID: PMC6748340 DOI: 10.3389/fnins.2019.00945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large and heterogeneous group of degenerative diseases caused by mutations in various genes. Given the favorable anatomical and immunological characteristics of the eye, gene therapy holds great potential for their treatment. Our goal is to validate the preservation of visual functions by viral-free homology directed repair (HDR) in an autosomal recessive loss of function mutation. We used a tailored gene editing system based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to prevent retinal photoreceptor death in the retinal degeneration 10 (Rd10) mouse model of retinitis pigmentosa. We tested the gene editing tool in vitro and then used in vivo subretinal electroporation to deliver it to one of the retinas of mouse pups at different stages of photoreceptor differentiation. Three months after gene editing, the treated eye exhibited a higher visual acuity compared to the untreated eye. Moreover, we observed preservation of light-evoked responses both in explanted retinas and in the visual cortex of treated animals. Our study validates a CRISPR/Cas9-based therapy as a valuable new approach for the treatment of retinitis pigmentosa caused by autosomal recessive loss-of-function point mutations.
Collapse
Affiliation(s)
- Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura E Perlini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Naïg A L Chenais
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tommaso Marchetti
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martina Parrini
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Contestabile
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Dulbecco Telethon Institute, Roma, Italy
| | - Diego Ghezzi
- Laboratory of Local Micro-environment and Brain Development, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
29
|
Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. Mol Diagn Ther 2019; 23:113-120. [PMID: 30569401 DOI: 10.1007/s40291-018-0377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.
Collapse
|
30
|
Ocular gene therapies in clinical practice: viral vectors and nonviral alternatives. Drug Discov Today 2019; 24:1685-1693. [PMID: 31173914 DOI: 10.1016/j.drudis.2019.05.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Ocular gene therapy has entered into clinical practice. Although viral vectors are currently the best option to replace and/or correct genes, the optimal method to deliver these treatments to the retinal pigment epithelial (RPE) cells and/or photoreceptor cells remains to be improved to increase transduction efficacy and reduce iatrogenic risks. Beyond viral-mediated gene replacement therapies, nonviral gene delivery approaches offer the promise of sustained fine-tuned expression of secreted therapeutic proteins that can be adapted to the evolving stage of the disease course and can address more common nongenetic retinal diseases, such as age-related macular degeneration (AMD). Here, we review current gene therapy strategies for ocular diseases, with a focus on clinical stage products.
Collapse
|
31
|
Abstract
Inherited retinal degeneration (IRD), a group of rare retinal diseases that primarily lead to the progressive loss of retinal photoreceptor cells, can be inherited in all modes of inheritance: autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), and mitochondrial. Based on the pattern of inheritance of the dystrophy, retinal gene therapy has 2 main strategies. AR, XL, and AD IRDs with haploinsufficiency can be treated by inserting a functional copy of the gene using either viral or nonviral vectors (gene augmentation). Different types of viral vectors and nonviral vectors are used to transfer plasmid DNA both in vitro and in vivo. AD IRDs with gain-of-function mutations or dominant-negative mutations can be treated by disrupting the mutant allele with (and occasionally without) gene augmentation. This review article aims to provide an overview of ocular gene therapy for treating IRDs using gene augmentation with viral or nonviral vectors or gene disruption through different gene-editing tools, especially with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system.
Collapse
Affiliation(s)
- Amirmohsen Arbabi
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amelia Liu
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68:31-53. [DOI: 10.1016/j.preteyeres.2018.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
|
33
|
Jiang DJ, Xu CL, Tsang SH. Revolution in Gene Medicine Therapy and Genome Surgery. Genes (Basel) 2018; 9:E575. [PMID: 30486314 PMCID: PMC6315778 DOI: 10.3390/genes9120575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
34
|
Abstract
Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.
Collapse
Affiliation(s)
- David J Jiang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Christine L Xu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA. .,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Xiang Z, Bao Y, Zhang J, Liu C, Xu D, Liu F, Chen H, He L, Ramakrishna S, Zhang Z, Vardi N, Xu Y. Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse. Neuropharmacology 2018; 139:137-149. [DOI: 10.1016/j.neuropharm.2018.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
|
36
|
Liu F, Zhang J, Xiang Z, Xu D, So KF, Vardi N, Xu Y. Lycium Barbarum Polysaccharides Protect Retina in rd1 Mice During Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2018; 59:597-611. [PMID: 29372259 PMCID: PMC6623178 DOI: 10.1167/iovs.17-22881] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose As an active component in wolfberry, lycium barbarum polysaccharides (LBP) are capable of protecting retinal neurons in several animal disease models. Here, we asked whether LBP rescues the retinal morphology and function in rd1 mouse, a photoreceptor fast-degenerating animal model of retinitis pigmentosa, and in particular focused on LBP's effects on the function of retinal ganglion cells (RGCs) during photoreceptor degeneration. Methods An equal volume of LBP or control vehicle was daily intraperitoneal (i.p.) injected in rd1 mice from postnatal day 4 (P4) to P14, P20, or P24 when photoreceptors completely degenerate. Immunostaining, electroretinogram (ERG), visual behavior tests and multielectrode array (MEA) recordings were assessed to determine the structure and function of the treated retina. Results LBP treatment greatly promoted photoreceptor survival, enhanced ERG responses, and improved visual behaviors in rd1 mice. MEA data showed that LBP treatment in general decreased the abnormally high spontaneous spiking that occurs in rd1 mice, and increased the percentage of light-responsive RGCs as well as their light-evoked response, light sensitivity, signal-to-noise ratio, and response speed. Interestingly, LBP treatment affected ON and OFF responses differently. Conclusions LBP improves retinal morphology and function in rd1 mice, and delays the functional decay of RGCs during photoreceptor degeneration. This is the first study that has examined in detail the effects of LBP on RGC responses. Our data suggest that LBP may help extend the effective time window before more invasive RP therapeutic approaches such as retinoprosthesis are applied.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Jia Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Zongqin Xiang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
37
|
Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018; 24:669-681. [PMID: 29983335 DOI: 10.1016/j.molmed.2018.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
The retina has been at the forefront of translational gene therapy. Proof-of-concept that gene therapy could restore vision in a large animal led to the initiation of the first successful clinical trials and, in turn, to the recent approval of the first gene therapy product for an ocular disease. As dozens of clinical trials of retinal gene therapy have begun, new challenges are identified, which include delivery of large genes, counteracting gain-of-function mutations, and safe and effective gene transfer to diseased retinas. Advancements in vector design, improvements of delivery routes, and selection of optimal timing for intervention will contribute to extend the initial success of retinal gene therapy to an increasing number of inherited blinding conditions.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Advanced Biomedicine, Federico II University, Naples, Italy.
| |
Collapse
|
38
|
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest 2018; 128:2177-2188. [PMID: 29856367 DOI: 10.1172/jci120429] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- James E DiCarlo
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
39
|
Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp Eye Res 2018; 174:13-28. [PMID: 29782826 DOI: 10.1016/j.exer.2018.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
Abstract
Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats. Sheets were dissected from fetal human eyes (11-15.7 weeks gestation) and then transplanted to the subretinal space of 24-31 d old RD nude rats. Every month post surgery, eyes were imaged by high-resolution spectral-domain optical coherence tomography (SD-OCT). SD-OCT showed that transplants were placed into the subretinal space and developed laminated areas or rosettes, with clear development of plexiform layers first seen in OCT at 3 months post surgery. Several months later, as could be expected by the much slower development of human cells compared to rat cells, transplant photoreceptors developed inner and later outer segments. Retinal sections were analyzed by immunohistochemistry for human and retinal markers and confirmed the formation of several retinal subtypes within the retinal layers. Transplant cells extended processes and a lot of the cells could also be seen migrating into the host retina. At 5.8-8.6 months post surgery, selected rats were exposed to light flashes and recorded for visual responses in superior colliculus, (visual center in midbrain). Four of seven rats with transplants showed responses to flashes of light in a limited area of superior colliculus. No response with the same dim light intensity was found in age-matched RD controls (non-surgery or sham surgery). In summary, our data showed that human fetal retinal sheets transplanted to the severely disturbed subretinal space of RD nude rats develop mature photoreceptors and other retinal cells, integrate with the host and induce vision improvement.
Collapse
Affiliation(s)
- Bin Lin
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Bryce T McLelland
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Robert B Aramant
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Magdalene J Seiler
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States; Department of Physical Medicine & Rehabilitation, University of California, Irvine, United States.
| |
Collapse
|
40
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
41
|
A Practical Approach to Retinal Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1085:245-259. [PMID: 30578524 DOI: 10.1007/978-3-319-95046-4_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomic approaches to developing new diagnostic and therapeutic strategies in retinal dystrophies are among the most advanced applications of genetics (Tsang SH, Gouras P (1996) Molecular physiology and pathology of the retina. In: Duane TD, Tasman W, Jaeger AE (eds) Duane's clinical opthalmology. Lippincott-Raven, Philadelphia). The notion that "nothing can be done" for patients with retinal dystrophies is no longer true. Electrophysiological testing and autofluorescence imaging help to diagnose and predict the patient's course of disease. Better phenotyping can contribute to better-directed, cost-efficient genotyping. Combining fundoscopy, autofluorescent imaging, and electrophysiological testing is essential in approaching patients with retinal dystrophies. Emerging are new gene-based treatments for these devastating conditions.
Collapse
|
42
|
Edwards TL. Discovery of Māori and Polynesian phototransduction pathway founder mutation: what is the gene and what does it mean? Clin Exp Ophthalmol 2017; 45:854-856. [PMID: 29271598 DOI: 10.1111/ceo.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas L Edwards
- Centre for Eye Research Australia, Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res 2017; 188:40-57.e4. [PMID: 28754419 DOI: 10.1016/j.trsl.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event.
Collapse
|
44
|
Brown HDH, Woodall RL, Kitching RE, Baseler HA, Morland AB. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 2017; 36:240-65. [PMID: 27112223 PMCID: PMC4855621 DOI: 10.1111/opo.12293] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/25/2023]
Abstract
Purpose Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post‐mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non‐invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia. Recent Findings Structural MRI has demonstrated significant abnormalities within both grey and white matter densities across both visual and non‐visual areas. Functional MRI studies have also provided extensive evidence of functional changes throughout the whole of the visual pathway following visual loss, particularly in amblyopia. MR spectroscopy techniques have also revealed several abnormalities in metabolite concentrations in both glaucoma and age‐related macular degeneration. GABA‐edited MR spectroscopy on the other hand has identified possible evidence of plasticity within visual cortex. Summary Collectively, using MRI to investigate the effects on the visual pathway following disease and dysfunction has revealed a rich pattern of results allowing for better characterisation of disease. In the future MRI will likely play an important role in assessing the impact of eye disease on the visual pathway and how it progresses over time.
Collapse
Affiliation(s)
| | | | | | - Heidi A Baseler
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| | - Antony B Morland
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| |
Collapse
|
45
|
Mowat FM, Occelli LM, Bartoe JT, Gervais KJ, Bruewer AR, Querubin J, Dinculescu A, Boye SL, Hauswirth WW, Petersen-Jones SM. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa. Front Neurosci 2017; 11:342. [PMID: 28676737 PMCID: PMC5476745 DOI: 10.3389/fnins.2017.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A) gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29-44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies.
Collapse
Affiliation(s)
- Freya M. Mowat
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleigh, NC, United States
| | - Laurence M. Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| | - Joshua T. Bartoe
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| | - Kristen J. Gervais
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| | - Ashlee R. Bruewer
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| | - Janice Querubin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida College of MedicineGainesville, FL, United States
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida College of MedicineGainesville, FL, United States
| | - William W. Hauswirth
- Department of Ophthalmology, University of Florida College of MedicineGainesville, FL, United States
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State UniversityEast Lansing, MI, United States
| |
Collapse
|
46
|
Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol Ther 2017; 25:1076-1094. [PMID: 28391961 DOI: 10.1016/j.ymthe.2017.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022] Open
Abstract
Over the past 20 years, there has been tremendous progress in retinal gene therapy. The safety and efficacy results in one early-onset severe blinding disease may lead to the first gene therapy drug approval in the United States. Here, we review how far the field has come over the past two decades and speculate on the directions that the field will take in the future.
Collapse
|
47
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
48
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|
49
|
Santos-Ferreira TF, Borsch O, Ader M. Rebuilding the Missing Part-A Review on Photoreceptor Transplantation. Front Syst Neurosci 2017; 10:105. [PMID: 28105007 PMCID: PMC5214672 DOI: 10.3389/fnsys.2016.00105] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Vision represents one of the main senses for humans to interact with their environment. Our sight relies on the presence of fully functional light sensitive cells – rod and cone photoreceptors — allowing us to see under dim (rods) and bright (cones) light conditions. Photoreceptor degeneration is one of the major causes for vision impairment in industrialized countries and it is highly predominant in the population above the age of 50. Thus, with the continuous increase in life expectancy it will make retinal degeneration reach an epidemic proportion. To date, there is no cure established for photoreceptor loss, but several therapeutic approaches, spanning from neuroprotection, pharmacological drugs, gene therapy, retinal prosthesis, and cell (RPE or photoreceptor) transplantation, have been developed over the last decade with some already introduced in clinical trials. In this review, we focus on current developments in photoreceptor transplantation strategies, its major breakthroughs, current limitations and the next challenges to translate such cell-based approaches toward clinical application.
Collapse
Affiliation(s)
- Tiago F Santos-Ferreira
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Oliver Borsch
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
50
|
Abstract
Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hemant Khanna
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|