1
|
Shang J, Qiao Y, Mao G, Qian L, Liu G, Wang H. Bleomycin-Fe(II) agent with potentiality for treating drug-resistant H1N1 influenza virus: A study using electrochemical RNA beacons. Anal Chim Acta 2021; 1180:338862. [PMID: 34538316 DOI: 10.1016/j.aca.2021.338862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Rapid emergence of new strains of drug-resistant H1N1 influenza viruses calls for effective drugs for the controls prior to their outbreaks. In the present work, electrochemical H1N1 RNA beacons have been newly designed for exploring the potentiality of an anticancer agent of Bleomycin (BLM) with Fe (ΙΙ) ions (BLM-Fe(ΙΙ)) alternatively the treatment of drug-resistant H1N1 strains with H274Y gene mutation. Herein, biotinylated (-) ssRNA of H1N1 virus and its complementary (+) ssRNA were labeled with electrochemical signal probes of ferrocene and anthraquinone, respectively. The resultants were hybridized and conjugated with avidin-modified magnetic beads to create electrochemical RNA beacons. The electrochemical signal variation of the H1N1 RNA beacon treated with the RNA degradation agent of BLM-Fe(ΙΙ) were monitored. Results indicate that the BLM-Fe(ΙΙ) agent could effectively cleave both H1N1 dsRNAs and ssRNAs at selective cutting sites, as evidenced by the mass spectrometry analysis. This indicates that the BLM-Fe(II) agent could be utilized to block the viral-host infection process by curbing the host-cell viral RNA-mRNA transcription or inactivate the viruses through the cleavage of viral genomes. The efficiency of the BLM-Fe(ΙΙ) agent was verified with clinical seasonal H1N1 samples using real-time polymerase chain reaction. The therapeutic gene drug of BLM-Fe(ΙΙ) holds great potential for controlling new strains of H1N1 virus resistant to clinical antiviral drugs. More importantly, the so designed RNA beacons may provide a rapid, sensitive and cost-effective platform of drug screening by monitoring the drug-DNA/RNA interactions.
Collapse
Affiliation(s)
- Jizhen Shang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchun Qiao
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Ministry of Education, Henan Normal University, Xinxiang, 453007, PR China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, PR China.
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang Province, 313000, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
2
|
Flupyranochromene, a novel inhibitor of influenza virus cap-dependent endonuclease, from Penicillium sp. f28743. J Antibiot (Tokyo) 2019; 72:125-133. [DOI: 10.1038/s41429-018-0134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
|
3
|
Massari S, Goracci L, Desantis J, Tabarrini O. Polymerase Acidic Protein-Basic Protein 1 (PA-PB1) Protein-Protein Interaction as a Target for Next-Generation Anti-influenza Therapeutics. J Med Chem 2016; 59:7699-718. [PMID: 27046062 DOI: 10.1021/acs.jmedchem.5b01474] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited therapeutic options against the influenza virus (flu) and increasing challenges in drug resistance make the search for next-generation agents imperative. In this context, heterotrimeric viral PA/PB1/PB2 RNA-dependent RNA polymerase is an attractive target for a challenging but strategic protein-protein interaction (PPI) inhibition approach. Since 2012, the inhibition of the polymerase PA-PB1 subunit interface has become an active field of research following the publication of PA-PB1 crystal structures. In this Perspective, we briefly discuss the validity of flu polymerase as a drug target and its inhibition through a PPI inhibition strategy, including a comprehensive analysis of available PA-PB1 structures. An overview of all of the reported PA-PB1 complex formation inhibitors is provided, and approaches used for identification of the inhibitors, the hit-to-lead studies, and the emerged structure-activity relationship are described. In addition to highlighting the strengths and weaknesses of all of the PA-PB1 heterodimerization inhibitors, we analyze their hypothesized binding modes and alignment with a pharmacophore model that we have developed.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia , 06123 Perugia, Italy
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia , 06123 Perugia, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia , 06123 Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia , 06123 Perugia, Italy
| |
Collapse
|
4
|
Yamada H, Nagase S, Takahashi K, Sakoda Y, Kida H, Okamoto S. Toll-like receptor 9 ligand D-type oligodeoxynucleotide D35 as a broad inhibitor for influenza A virus replication that is associated with suppression of neuraminidase activity. Antiviral Res 2016; 129:81-92. [PMID: 26923882 PMCID: PMC7113795 DOI: 10.1016/j.antiviral.2016.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
The most effective drugs available to treat influenza are neuraminidase (NA) inhibitors, which provide important additional measures for the control of influenza virus infections. However, since the emergence of NA inhibitor-resistant viruses may compromise the clinical utility of this class of anti-influenza agents, it is very important to develop new anti-influenza agents which target a different region in NA responsible for its sensitivity from that for NA inhibitors and could be used to treat NA inhibitors-resistant isolates. The oligodeoxynucleotide D35, multimerized and aggregated, suppressed replication of influenza A viruses except A/WSN/33 (WSN). The suppressive viral replication by D35 depended on G-terad and multimer formation. The range of the suppressive viral replication at the late stage, including virus assembly and release from infected cells, was much larger than that at the initial stage, viral attachment and entry. D35 suppressed NA activity of influenza A viruses. Furthermore, replacing the NA gene of A/Puerto Rico/8/34 (PR8), in which viral replication was inhibited by D35 at the late stage, with the NA gene from WSN, in which viral replication was not inhibited, eliminated the D35-dependent suppression. D35 showed an additive anti-influenza effect with oseltamivir. It was also effective in vivo. These results suggest that the influenza virus NA mainly contributse to the D35-suppressible virus release from infected cells at the late stage. In addition, because administration of D35 into the virus-infected mice suppressed viral replication and weight loss, clinical application of D35 could be considered. The oligodeoxynucleotide D35 suppressed replication of some influenza A viruses. D35 inhibits viral replication at the late step which is dependent on NA activity. Antiviral mechanism by D35 is different from that by oseltamivir.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Laboratory of Virology and Vaccinology, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Satoshi Nagase
- Department of Laboratory Sciences, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Takahashi
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shigefumi Okamoto
- Department of Laboratory Sciences, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| |
Collapse
|
5
|
Shi F, Li Z, Kong L, Xie Y, Zhang T, Xu W. Synthesis and crystal structure of 6-fluoro-3-hydroxypyrazine-2-carboxamide. Drug Discov Ther 2015; 8:117-20. [PMID: 25031043 DOI: 10.5582/ddt.2014.01028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a RNA polymerase inhibitor, 6-fluoro-3-hydroxypyrazine-2-carboxamide commercially named favipiravir has been proved to have potent inhibitory activity against RNA viruses in vitro and in vivo. A four-step synthesis of the compound is described in this article, amidation, nitrification, reduction and fluorination with an overall yield of about 8%. In addition, we reported the crystal structure of the title compound. The molecule is almost planar and the intramolecular O-H(•••)O hydrogen bond makes a 6-member ring. In the crystal, molecules are packing governed by both hydrogen bonds and stacking interactions.
Collapse
Affiliation(s)
- Fangyuan Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University
| | | | | | | | | | | |
Collapse
|
6
|
Yamada H, Nagao C, Haredy AM, Mori Y, Mizuguchi K, Yamanishi K, Okamoto S. Dextran sulfate-resistant A/Puerto Rico/8/34 influenza virus is associated with the emergence of specific mutations in the neuraminidase glycoprotein. Antiviral Res 2014; 111:69-77. [PMID: 25234090 DOI: 10.1016/j.antiviral.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 11/28/2022]
Abstract
Dextran sulfate (DS) is a negatively charged sulfated polysaccharide that suppresses the replication of influenza A viruses. The suppression was thought to be associated with inhibition of the hemagglutinin-dependent fusion activity. However, we previously showed that suppression by DS was observed not only at the initial stage of viral infection, but also later when virus is released from infected cells due to inhibition of neuraminidase (NA) activity. In the present study, we isolated DS-resistant A/Puerto Rico/8/34 (PR8) influenza viruses and analyzed the inhibition by DS. We found six mutations in NA genes of five independent resistant PR8 viruses and each resistant NA gene had two mutations. All mutations were from basic to acidic or neutral amino acids. In addition, R430L, K432E or K435E in the 430-435 region was a common mutation in all resistant NA genes. To determine which amino acid(s) are responsible for this resistance, a panel of recombinant viruses containing a PR8 and A/WSN/33(WSN) chimeric NA gene or an NA gene with different mutation(s) was generated using reverse genetics. Using recombinant viruses containing a PR8/WSN chimeric NA, we showed that one third of the C-terminal region of PR8 NA was responsible for DS-sensitivity. Recombinant viruses with a single mutation in NA replicated better than wild-type PR8 in the presence of DS, but were still DS-sensitive. However, replication of recombinant viruses with double mutations from the resistant viruses was not affected by the presence or absence of DS. In addition, resistant recombinant viruses were found to be sensitive to the NA inhibitor, oseltamivir and the oseltamivir-resistant recombinant virus was sensitive to DS. These results suggested that DS is an NA inhibitor with a different mechanism of action from the currently used NA inhibitors and that DS could be used in combination with these inhibitors to treat influenza virus infections.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | - Chioko Nagao
- National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Ahmad M Haredy
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Koichi Yamanishi
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Shigefumi Okamoto
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| |
Collapse
|
7
|
Tauran Y, Anjard C, Kim B, Rhimi M, Coleman AW. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes. Chem Commun (Camb) 2014; 50:11404-6. [DOI: 10.1039/c4cc04805a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endonuclease enzymes can be inhibited in the micromolar range by sulphonated calix-arenes, sulphated cyclodextrin and sulphated cyclodextrin nanoparticles.
Collapse
Affiliation(s)
- Yannick Tauran
- LMI CNRS UMR 5615
- Univ. Lyon 1
- Villeurbanne, France
- LIMMS/CNRS-IIS (UMI 2820)
- University of Tokyo
| | | | - Beomjoon Kim
- LIMMS/CNRS-IIS (UMI 2820)
- University of Tokyo
- Tokyo, Japan
- CIRMM
- Institute of Industrial Science
| | - Moez Rhimi
- INRA
- UMR 1319 Micalis
- Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Massari S, Nannetti G, Goracci L, Sancineto L, Muratore G, Sabatini S, Manfroni G, Mercorelli B, Cecchetti V, Facchini M, Palù G, Cruciani G, Loregian A, Tabarrini O. Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly. J Med Chem 2013; 56:10118-31. [DOI: 10.1021/jm401560v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Serena Massari
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| | - Giulio Nannetti
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Laura Goracci
- Department
of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Luca Sancineto
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| | - Giulia Muratore
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Stefano Sabatini
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| | | | - Violetta Cecchetti
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| | - Marzia Facchini
- Department of Infectious, Parasitic, and Immunomediated Diseases,
WHO National Influenza Centre, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Gabriele Cruciani
- Department
of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Oriana Tabarrini
- Department of Chemistry and Technology
of Drugs, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
9
|
Han N, Mu Y. Locking the 150-cavity open: in silico design and verification of influenza neuraminidase inhibitors. PLoS One 2013; 8:e73344. [PMID: 24015302 PMCID: PMC3755005 DOI: 10.1371/journal.pone.0073344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022] Open
Abstract
Neuraminidase (NA) of influenza is a key target for virus infection control and the recently discovered open 150-cavity in group-1 NA provides new opportunity for novel inhibitors design. In this study, we used a combination of theoretical methods including fragment docking, molecular linking and molecular dynamics simulations to design ligands that specifically target at the 150-cavity. Through in silico screening of a fragment compound library on the open 150-cavity of NA, a few best scored fragment compounds were selected to link with Zanamivir, one NA-targeting drug. The resultant new ligands may bind both the active site and the 150-cavity of NA simultaneously. Extensive molecular dynamics simulations in explicit solvent were applied to validate the binding between NA and the designed ligands. Moreover, two control systems, a positive control using Zanamivir and a negative control using a low-affinity ligand 3-(p-tolyl) allyl-Neu5Ac2en (ETT, abbreviation reported in the PDB) found in a recent experimental work, were employed to calibrate the simulation method. During the simulations, ETT was observed to detach from NA, on the contrary, both Zanamivir and our designed ligand bind NA firmly. Our study provides a prospective way to design novel inhibitors for controlling the spread of influenza virus.
Collapse
Affiliation(s)
- Nanyu Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
10
|
Abstract
Every year, influenza causes seasonal epidemics and is responsible for increased morbidity and mortality worldwide. In general, clinical signs include fever, respiratory symptoms and myalgia. Human influenza viruses include influenza viruses A/H1N1, A/H3N2, A/H1N1pdm09, influenza virus B and influenza virus C. Wild waterfowl are the natural reservoir of influenza A virus. On a sporadic basis novel viruses can emerge from the zoonotic reservoir and cross the species barrier. In such events clinical presentation in humans can range from mild (e.g. conjunctivitis) to severe pneumonia and acute respiratory distress syndrome (ARDS). In early 2013, a novel avian influenza A virus H7N9 emerged in China and the clinical presentation included bilateral pneumonia with ARDS and a high case fatality rate. In this article a summary is given on diagnosis, therapy and prophylaxis of influenza and on future developments.
Collapse
Affiliation(s)
- M. Panning
- Department für Medizinische Mikrobiologie und Hygiene, Institut für Virologie, Universitätsklinikum Freiburg, Hermann-Herder Str. 11, 70104 Freiburg, Deutschland
| |
Collapse
|
11
|
Han N, Mu Y. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations. PLoS One 2013; 8:e60995. [PMID: 23593372 PMCID: PMC3622661 DOI: 10.1371/journal.pone.0060995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/05/2013] [Indexed: 11/22/2022] Open
Abstract
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Collapse
Affiliation(s)
- Nanyu Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
12
|
Saladino R, Neri V, Checconi P, Celestino I, Nencioni L, Palamara AT, Crucianelli M. Synthesis of 2'-deoxy-1'-homo-N-nucleosides with anti-influenza activity by catalytic methyltrioxorhenium (MTO)/H2O2 oxyfunctionalization. Chemistry 2012; 19:2392-404. [PMID: 23225323 DOI: 10.1002/chem.201201285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/15/2012] [Indexed: 01/22/2023]
Abstract
This paper describes a new route for the synthesis of 1'-homo-N-nucleoside derivatives by means of either methyltrioxorhenium (MTO) or supported MTO catalysts, with H(2)O(2) as the primary oxidant. Under these selective conditions, the oxyfunctionalization of the heterocyclic ring and the N heteroatom oxidation were operative processes, regardless of the type of substrate used, that is, purine or pyrimidine derivatives. In addition, the oxidation of 1'-homo-N-thionucleosides, showed the occurrence of site-specific oxidative nucleophilic substitutions of the heterocyclic ring. The MTO/H(2)O(2) system showed, in general, high reactivity under both homogeneous and heterogeneous conditions, affording the final products with high conversion values of substrates and from medium to high yields. Many of the novel 1'-homo-N-nucleoside analogues were active against the influenza A virus, without any cytotoxic effects, retaining their activity in both protected and unprotected forms.
Collapse
Affiliation(s)
- Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, via S. Camillo de Lellis, I-01100 Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yang CW. A comparative study of short linear motif compositions of the influenza A virus ribonucleoproteins. PLoS One 2012; 7:e38637. [PMID: 22715401 PMCID: PMC3371030 DOI: 10.1371/journal.pone.0038637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions through short linear motifs (SLiMs) are an emerging concept that is different from interactions between globular domains. The SLiMs encode a functional interaction interface in a short (three to ten residues) poorly conserved sequence. This characteristic makes them much more likely to arise/disappear spontaneously via mutations, and they may be more evolutionarily labile than globular domains. The diversity of SLiM composition may provide functional diversity for a viral protein from different viral strains. This study is designed to determine the different SLiM compositions of ribonucleoproteins (RNPs) from influenza A viruses (IAVs) from different hosts and with different levels of virulence. The 96 consensus sequences (regular expressions) of SLiMs from the ELM server were used to conduct a comprehensive analysis of the 52,513 IAV RNP sequences. The SLiM compositions of RNPs from IAVs from different hosts and with different levels of virulence were compared. The SLiM compositions of 845 RNPs from highly virulent/pandemic IAVs were also analyzed. In total, 292 highly conserved SLiMs were found in RNPs regardless of the IAV host range. These SLiMs may be basic motifs that are essential for the normal functions of RNPs. Moreover, several SLiMs that are rare in seasonal IAV RNPs but are present in RNPs from highly virulent/pandemic IAVs were identified. The SLiMs identified in this study provide a useful resource for experimental virologists to study the interactions between IAV RNPs and host intracellular proteins. Moreover, the SLiM compositions of IAV RNPs also provide insights into signal transduction pathways and protein interaction networks with which IAV RNPs might be involved. Information about SLiMs might be useful for the development of anti-IAV drugs.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Shih-Lin, Taipei, Taiwan, Republic of China.
| |
Collapse
|
14
|
Pearton M, Kang SM, Song JM, Kim YC, Quan FS, Anstey A, Ivory M, Prausnitz MR, Compans RW, Birchall JC. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 2010; 28:6104-13. [PMID: 20685601 PMCID: PMC3371415 DOI: 10.1016/j.vaccine.2010.05.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 11/22/2022]
Abstract
Virus-like particles (VLPs) have a number of features that make them attractive influenza vaccine candidates. Microneedle (MN) devices are being developed for the convenient and pain-free delivery of vaccines across the skin barrier layer. Whilst MN-based vaccines have demonstrated proof-of-concept in mice, it is vital to understand how MN targeting of VLPs to the skin epidermis affects activation and migration of Langerhans cells (LCs) in the real human skin environment. MNs coated with vaccine reproducibly penetrated freshly excised human skin, depositing 80% of the coating within 60 s of insertion. Human skin experiments showed that H1 (A/PR/8/34) and H5 (A/Viet Nam/1203/04) VLPs, delivered via MN, stimulated LCs resulting in changes in cell morphology and a reduction in cell number in epidermal sheets. LC response was significantly more pronounced in skin treated with H1 VLPs, compared with H5 VLPs. Our data provides strong evidence that MN-facilitated delivery of influenza VLP vaccines initiates a stimulatory response in LCs in human skin. The results support and validate animal data, suggesting that dendritic cells (DCs) targeted through deposition of the vaccine in skin generate immune response. The study also demonstrates the value of using human skin alongside animal studies for preclinical testing of intra-dermal (ID) vaccines.
Collapse
Affiliation(s)
- Marc Pearton
- Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3NB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boivin S, Cusack S, Ruigrok RWH, Hart DJ. Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 2010; 285:28411-7. [PMID: 20538599 DOI: 10.1074/jbc.r110.117531] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The heterotrimeric RNA-dependent RNA polymerase of influenza viruses catalyzes RNA replication and transcription activities in infected cell nuclei. The nucleotide polymerization activity is common to both replication and transcription processes, with an additional cap-snatching function being employed during transcription to steal short 5'-capped RNA primers from host mRNAs. Cap-binding, endonuclease, and polymerase activities have long been studied biochemically, but structural studies on the polymerase and its subunits have been hindered by difficulties in producing sufficient quantities of material. Recently, because of heightened effort and advances in expression and crystallization technologies, a series of high resolution structures of individual domains have been determined. These shed light on intrinsic activities of the polymerase, including cap snatching, subunit association, and nucleocytoplasmic transport, and open up the possibility of structure-guided development of new polymerase inhibitors. Furthermore, the activity of influenza polymerase is highly host- and cell type-specific, being dependent on the identity of a few key amino acid positions in the different subunits, especially in the C-terminal region of PB2. New structures demonstrate the surface exposure of these residues, consistent with ideas that they might modulate interactions with host-specific factors that enhance or restrict activity. Recent proteomic and genome-wide interactome and RNA interference screens have suggested the identities of some of these potential regulators of polymerase function.
Collapse
Affiliation(s)
- Stéphane Boivin
- Unit of Virus Host-Cell Interactions, UMI3265, UJF-EMBL-CNRS, France
| | | | | | | |
Collapse
|
16
|
The 2009 A (H1N1) influenza virus pandemic: A review. Vaccine 2010; 28:4895-902. [PMID: 20553769 DOI: 10.1016/j.vaccine.2010.05.031] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
In March and early April 2009 a new swine-origin influenza virus (S-OIV), A (H1N1), emerged in Mexico and the USA. The virus quickly spread worldwide through human-to-human transmission. In view of the number of countries and communities which were reporting human cases, the World Health Organization raised the influenza pandemic alert to the highest level (level 6) on June 11, 2009. The propensity of the virus to primarily affect children, young adults and pregnant women, especially those with an underlying lung or cardiac disease condition, and the substantial increase in rate of hospitalizations, prompted the efforts of the pharmaceutical industry, including new manufacturers from China, Thailand, India and South America, to develop pandemic H1N1 influenza vaccines. All currently registered vaccines were tested for safety and immunogenicity in clinical trials on human volunteers. All were found to be safe and to elicit potentially protective antibody responses after the administration of a single dose of vaccine, including split inactivated vaccines with or without adjuvant, whole-virion vaccines and live-attenuated vaccines. The need for an increased surveillance of influenza virus circulation in swine is outlined.
Collapse
|