1
|
Niu W, Guo J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem Rev 2024; 124:10577-10617. [PMID: 39207844 PMCID: PMC11470805 DOI: 10.1021/acs.chemrev.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
2
|
Daniilidis M, Sperl LE, Müller BS, Babl A, Hagn F. Efficient Segmental Isotope Labeling of Integral Membrane Proteins for High-Resolution NMR Studies. J Am Chem Soc 2024; 146:15403-15410. [PMID: 38787792 PMCID: PMC11157531 DOI: 10.1021/jacs.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
High-resolution structural NMR analyses of membrane proteins are challenging due to their large size, resulting in broad resonances and strong signal overlap. Among the isotope labeling methods that can remedy this situation, segmental isotope labeling is a suitable strategy to simplify NMR spectra and retain high-resolution structural information. However, protein ligation within integral membrane proteins is complicated since the hydrophobic protein fragments are insoluble, and the removal of ligation side-products is elaborate. Here, we show that a stabilized split-intein system can be used for rapid and high-yield protein trans-splicing of integral membrane proteins under denaturing conditions. This setup enables segmental isotope labeling experiments within folded protein domains for NMR studies. We show that high-quality NMR spectra of markedly reduced complexity can be obtained in detergent micelles and lipid nanodiscs. Of note, the nanodisc insertion step specifically selects for the ligated and correctly folded membrane protein and simultaneously removes ligation byproducts. Using this tailored workflow, we show that high-resolution NMR structure determination is strongly facilitated with just two segmentally isotope-labeled membrane protein samples. The presented method will be broadly applicable to structural and dynamical investigations of (membrane-) proteins and their complexes by solution and solid-state NMR but also other structural methods where segmental labeling is beneficial.
Collapse
Affiliation(s)
- Melina Daniilidis
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Laura E. Sperl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Benedikt S. Müller
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Antonia Babl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
- Institute
of Structural Biology, Helmholtz Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
4
|
Cucuzza S, Sitnik M, Jurt S, Michel E, Dai W, Müntener T, Ernst P, Häussinger D, Plückthun A, Zerbe O. Unexpected dynamics in femtomolar complexes of binding proteins with peptides. Nat Commun 2023; 14:7823. [PMID: 38016954 PMCID: PMC10684580 DOI: 10.1038/s41467-023-43596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Malgorzata Sitnik
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Erich Michel
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Wenzhao Dai
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| |
Collapse
|
5
|
Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, Mittas DM, Karguth N, Otify DY, Böhm S, Weber VJ, Bartoschek MD, Splith V, Brümmer M, Ferreira R, Boon N, Wögenstein GM, Grimm C, Wijnholds J, Mehlfeld V, Michalakis S, Fenske S, Biel M, Becirovic E. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun 2023; 14:6578. [PMID: 37852949 PMCID: PMC10584818 DOI: 10.1038/s41467-023-42386-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.
Collapse
Affiliation(s)
- Lisa Maria Riedmayr
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | | | - David Manuel Mittas
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Nina Karguth
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Dina Yehia Otify
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | - Valentin Johannes Weber
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | | | | | - Manuela Brümmer
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Raphael Ferreira
- Genetics Department, Harvard Medical School, Boston, MA, 02115, USA
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
| | - Gabriele Maria Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, Netherlands
| | - Verena Mehlfeld
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Stefanie Fenske
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, 81377, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland.
| |
Collapse
|
6
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
7
|
Tibble RW, Gross JD. A call to order: Examining structured domains in biomolecular condensates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107318. [PMID: 36657879 PMCID: PMC10878105 DOI: 10.1016/j.jmr.2022.107318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States.
| |
Collapse
|
8
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
9
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Ye Q, Lin X, Wang T, Cui Y, Jiang H, Lu Y. Programmable protein topology via
SpyCatcher‐SpyTag
chemistry in one‐pot cell‐free expression system. Protein Sci 2022; 31:e4335. [DOI: 10.1002/pro.4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Qingning Ye
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
- College of New Energy and Materials China University of Petroleum Beijing China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Yuntao Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| | - Hao Jiang
- School of Materials Science and Engineering Beijing Institute of Technology Beijing China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
11
|
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022; 79:130. [PMID: 35152318 PMCID: PMC8840918 DOI: 10.1007/s00018-022-04175-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
AbstractSince the revolutionary discovery of the CRISPR-Cas technology for programmable genome editing, its range of applications has been extended by multiple biotechnological tools that go far beyond its original function as “genetic scissors”. One of these further developments of the CRISPR-Cas system allows genes to be activated in a targeted and efficient manner. These gene-activating CRISPR-Cas modules (CRISPRa) are based on a programmable recruitment of transcription factors to specific loci and offer several key advantages that make them particularly attractive for therapeutic applications. These advantages include inter alia low off-target effects, independence of the target gene size as well as the potential to develop gene- and mutation-independent therapeutic strategies. Herein, I will give an overview on the currently available CRISPRa modules and discuss recent developments, future potentials and limitations of this approach with a focus on therapeutic applications and in vivo delivery.
Collapse
Affiliation(s)
- Elvir Becirovic
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
12
|
Yu G, Qiao Y, Blankenship LR, Liu WR. Protein Synthesis via Activated Cysteine-Directed Protein Ligation. Methods Mol Biol 2022; 2530:159-167. [PMID: 35761048 DOI: 10.1007/978-1-0716-2489-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins with a functionalized C-terminus are critical to synthesizing large proteins via expressed protein ligation. To overcome the limitations of currently available C-terminus functionalization strategies, we established an approach based on a small molecule cyanylating reagent that chemically activates a cysteine in a recombinant protein at its N-side amide for undergoing nucleophilic acyl substitution with amines. We demonstrated the versatility of this approach by successfully synthesizing RNAse H with its RNA hydrolyzing activity restored and in vitro nucleosome build with a C-terminal posttranslational modified histone H2A. This technique will expand the landscape of protein chemical synthesis and its application in new research fields significantly.
Collapse
Affiliation(s)
- Ge Yu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Yuchen Qiao
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Lauren R Blankenship
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong X, Wu C, Xue C, Yu Y, Zhou Q. Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technol Cancer Res Treat 2021; 20:15330338211010117. [PMID: 33929911 PMCID: PMC8111546 DOI: 10.1177/15330338211010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Wei Kang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lun Yi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinyi Tong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Wu
- Xiamen Medical College, Xiamen, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Banerjee I, Ghosh KC, Oheix E, Jean M, Naubron JV, Réglier M, Iranzo O, Sinha S. Synthesis of Protected 3,4- and 2,3-Dimercaptophenylalanines as Building Blocks for Fmoc-Peptide Synthesis and Incorporation of the 3,4-Analogue in a Decapeptide Using Solid-Phase Synthesis. J Org Chem 2021; 86:2210-2223. [PMID: 33491451 DOI: 10.1021/acs.joc.0c02359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Dimercaptophenylalanines and 2,3-dimercaptophenylalanines have been synthesized for the first time by nucleophilic substitution of a protected aminomalonate on 3,4- and 2,3-dimercaptobenzyl bromide derivatives. The dithiol functions were protected as thioketals, and the key precursors, diphenylthioketal-protected dimercaptobenzyl bromides, were synthesized via two distinct routes from either dihydroxy benzoates or toluene-3,4-dithiol. Racemic mixtures of the fully protected amino acids were separated by chiral HPLC into the corresponding enantiomers. The absolute configuration of both 3,4- and 2,3-analogues could be assigned based on X-ray crystallography and VCD/DFT measurements. Thioketal groups were deprotected upon reaction with mercury oxide and aqueous tetrafluoroboric acid followed by treatment with H2S gas under an argon atmosphere to obtain the corresponding dimercapto amino acids. The optically pure l-Fmoc-protected 3,4-analogue (S- enantiomer) was successfully incorporated into a decapeptide using standard solid-phase peptide synthesis. Therefore, dithiolene-functionalized peptides are now accessible from a simple synthetic procedure, and this should afford new molecular tools for research into the catalysis, diagnostic, and nanotechnology fields.
Collapse
Affiliation(s)
- Isita Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Keshab Ch Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Emmanuel Oheix
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM-Spectropole,, 13397 Marseille, France
| | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Olga Iranzo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
15
|
Wu AM. Protein Engineering for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Shimamoto S, Mitsuoka N, Takahashi S, Kawakami T, Hidaka Y. Chemical Digestion of the -Asp-Cys- Sequence for Preparation of Post-translationally Modified Proteins. Protein J 2020; 39:711-716. [PMID: 33175310 DOI: 10.1007/s10930-020-09940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Numerous studies of native proteins have been reported on protein folding in this half century. Recently, post-translationally modified proteins are also focused on protein folding. However, it is still difficult to prepare such types of proteins because it requires not only the chemical but also the recombinant techniques. Native chemical ligation (NCL) is a powerful technique for producing target proteins when combined with recombinant techniques, such as expressed protein ligation (EPL). NCL basically requires an N-terminal peptide with a thioester and a C-terminal peptide which should possess a Cys residue at the N-terminus. Numerous efforts have been made to prepare N-terminal peptides carrying a thioester or a derivative thereof. However, a method for preparing C-terminal Cys-peptides with post-translational modifications has not been well developed, making it difficult to prepare such C-terminal Cys-peptides, except for chemical syntheses or enzymatic digestion. We report here on the development of a convenient technique that involves acid hydrolysis at the -Asp-Cys- sequence, to effectively obtain a C-terminal peptide fragment that can be used for any protein synthesis when combined with EPL, even under denatured conditions. Thus, this chemical digestion strategy permits the NCL strategy to be dramatically accelerated for protein syntheses in which post-translational modifications, such as glycosylation, phosphorylation, etc. are involved. In addition, this method should be useful to prepare the post-translationally modified proteins for protein folding.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Natsumi Mitsuoka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Saki Takahashi
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Hidaka
- Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
17
|
Khoo KK, Galleano I, Gasparri F, Wieneke R, Harms H, Poulsen MH, Chua HC, Wulf M, Tampé R, Pless SA. Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing. Nat Commun 2020; 11:2284. [PMID: 32385250 PMCID: PMC7210297 DOI: 10.1038/s41467-020-16208-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Manipulation of proteins by chemical modification is a powerful way to decipher their function. However, most ribosome-dependent and semi-synthetic methods have limitations in the number and type of modifications that can be introduced, especially in live cells. Here, we present an approach to incorporate single or multiple post-translational modifications or non-canonical amino acids into proteins expressed in eukaryotic cells. We insert synthetic peptides into GFP, NaV1.5 and P2X2 receptors via tandem protein trans-splicing using two orthogonal split intein pairs and validate our approach by investigating protein function. We anticipate the approach will overcome some drawbacks of existing protein enigineering methods.
Collapse
Affiliation(s)
- K K Khoo
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - I Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - F Gasparri
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - H Harms
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - H C Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M Wulf
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - S A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Qiao Y, Yu G, Kratch KC, Wang XA, Wang WW, Leeuwon SZ, Xu S, Morse JS, Liu WR. Expressed Protein Ligation without Intein. J Am Chem Soc 2020; 142:7047-7054. [PMID: 32212692 DOI: 10.1021/jacs.0c00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins with a functionalized C-terminus such as a C-terminal thioester are key to the synthesis of larger proteins via expressed protein ligation. They are usually made by recombinant fusion to intein. Although powerful, the intein fusion approach suffers from premature hydrolysis and low compatibility with denatured conditions. To totally bypass the involvement of an enzyme for expressed protein ligation, here we showed that a cysteine in a recombinant protein was chemically activated by a small molecule cyanylating reagent at its N-side amide for undergoing nucleophilic acyl substitution with amines including a number of l- and d-amino acids and hydrazine. The afforded protein hydrazides could be used further for expressed protein ligation. We demonstrated the versatility of this activated cysteine-directed protein ligation (ACPL) approach with the successful synthesis of ubiquitin conjugates, ubiquitin-like protein conjugates, histone H2A with a C-terminal posttranslational modification, RNase H that actively hydrolyzed RNA, and exenatide that is a commercial therapeutic peptide. The technique, which is exceedingly simple but highly useful, expands to a great extent the synthetic capacity of protein chemistry and will therefore make a large avenue of new research possible.
Collapse
Affiliation(s)
- Yuchen Qiao
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ge Yu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kaci C Kratch
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaoyan Aria Wang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wesley Wei Wang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sunshine Z Leeuwon
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jared S Morse
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Molecular & Cellular Medicine Department, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Wang W, Gao J. N, S-Double Labeling of N-Terminal Cysteines via an Alternative Conjugation Pathway with 2-Cyanobenzothiazole. J Org Chem 2020; 85:1756-1763. [PMID: 31880156 DOI: 10.1021/acs.joc.9b02959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conjugation of 2-cyanobenzothiazole (CBT) with N-terminal cysteines (NCys) typically gives a luciferin product. We herein report an alternative reaction pathway leading to an N-terminal amidine rendering the side chain thiol available for further modification. Examination of peptide sequence dependence of this amidine conjugation reveals a tripeptide tag CIS that allows facile N, S-double labeling of a protein of interest with >90% yield. This alternative reaction pathway of CBT-NCys condensation presents a significant addition to the toolbox for site-specific protein modifications.
Collapse
Affiliation(s)
- Wenjian Wang
- Department of Chemistry , Boston College , Merkert Chemistry Center, 2609 Beacon Street , Chestnut Hill , Massachusetts 02467 , United States
| | - Jianmin Gao
- Department of Chemistry , Boston College , Merkert Chemistry Center, 2609 Beacon Street , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
20
|
Abstract
Expressed protein ligation is a method of protein semisynthesis and typically involves the reaction of recombinant protein C-terminal thioesters with N-cysteine containing synthetic peptides in a chemoselective ligation. The recombinant protein C-terminal thioesters are produced by exploiting the action of nature's inteins which are protein modules that catalyze protein splicing. This chapter discusses the basic principles of expressed protein ligation and recent advances and applications in this protein semisynthesis field. Comparative strengths and weaknesses of the method and future challenges are highlighted.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Tian F, Li G, Zheng B, Liu Y, Shi S, Deng Y, Zheng P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chem Commun (Camb) 2020; 56:3943-3946. [DOI: 10.1039/d0cc00714e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SMFS and MD simulations revealed a closed conformation and a decreased stability of sortase-mediated polyprotein I27 when a linker with a high content of glycine is used.
Collapse
Affiliation(s)
- Fang Tian
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
22
|
Matico R, Szewczuk LM, Pietrak B, Chen S, Dul E, Bonnette WG, Meinhold DW, Quinque G, Totoritis R, Lewis T, Grimes M, Fornwald D, McCormick PM, Schaber M, Jiang Y, Bledsoe R, Holbert MA. Modular Protein Ligation: A New Paradigm as a Reagent Platform for Pre-Clinical Drug Discovery. Sci Rep 2019; 9:13078. [PMID: 31511536 PMCID: PMC6739470 DOI: 10.1038/s41598-019-49149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Significant resource is spent by drug discovery project teams to generate numerous, yet unique target constructs for the multiple platforms used to drive drug discovery programs including: functional assays, biophysical studies, structural biology, and biochemical high throughput screening campaigns. To improve this process, we developed Modular Protein Ligation (MPL), a combinatorial reagent platform utilizing Expressed Protein Ligation to site-specifically label proteins at the C-terminus with a variety of cysteine-lysine dipeptide conjugates. Historically, such proteins have been chemically labeled non-specifically through surface amino acids. To demonstrate the feasibility of this approach, we first applied MPL to proteins of varying size in different target classes using different recombinant protein expression systems, which were then evaluated in several different downstream assays. A key advantage to the implementation of this paradigm is that one construct can generate multiple final products, significantly streamlining the reagent generation for multiple early drug discovery project teams.
Collapse
Affiliation(s)
- Rosalie Matico
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | - Lawrence M Szewczuk
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | - Beth Pietrak
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | - Stephanie Chen
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Ed Dul
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - William G Bonnette
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | | | - Geoffrey Quinque
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Rachel Totoritis
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Tia Lewis
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Maggie Grimes
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Daniel Fornwald
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | | | - Michael Schaber
- Janssen Pharmaceutical Companies of Johnson and Johnson, 1400 McKean Rd., Springhouse, Pa, 19477, USA
| | - Yong Jiang
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Randy Bledsoe
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA
| | - Marc A Holbert
- GlaxoSmithKline, 1250S Collegeville Rd., Collegeville, Pa, 19426, USA.
| |
Collapse
|
23
|
Zhang Y, Hirota T, Kuwata K, Oishi S, Gramani SG, Bode JW. Chemical Synthesis of Atomically Tailored SUMO E2 Conjugating Enzymes for the Formation of Covalently Linked SUMO-E2-E3 Ligase Ternary Complexes. J Am Chem Soc 2019; 141:14742-14751. [PMID: 31436980 DOI: 10.1021/jacs.9b06820] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
E2 conjugating enzymes are the key catalytic actors in the transfer of ubiquitin, SUMO, and other ubiquitin-like modifiers to their substrate proteins. Their high rates of transfer and promiscuous binding complicate studies of their interactions and binding partners. To access specific, covalently linked conjugates of the SUMO E2 conjugating enzyme Ubc9, we prepared synthetic variants bearing site-specific non-native modifications including the following: (1) replacement of Cys93 to 2,3-diaminopropionic acid to form the amide-linked stable E2-SUMO conjugate, which is known to have high affinity for E3 ligases; (2) a photoreactive group (diazirine) to trap E3 ligases upon UV irradiation; and (3) an N-terminal biotin for purification and detection. To construct these Ubc9 variants in a flexible, convergent manner, we combined the three leading methods: native chemical ligation (NCL), α-ketoacid-hydroxylamine (KAHA) ligation, and serine/threonine ligation (STL). Using the synthetic proteins, we demonstrated the selective formation of Ubc9-SUMO conjugates and the trapping of an E3 ligase (RanBP2) to form the stable, covalently linked SUMO1-Ubc9-RanBP2 ternary complex. The powerful combination of ligation methods-which minimizes challenges of functional group manipulations-will enable chemical probes based on E2 conjugating enzymes to trap E3 ligases and facilitate the synthesis of other protein classes.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Subramanian G Gramani
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan.,Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich 8093 , Switzerland
| |
Collapse
|
24
|
Cortens D, Hansen R, Graulus GJ, Steen Redeker E, Adriaensens P, Guedens W. A deeper understanding of the spontaneous derepression of the URA3 gene in MaV203 Saccharomyces cerevisiae and its implications for protein engineering and the reverse two-hybrid system. Yeast 2019; 36:701-710. [PMID: 31389616 DOI: 10.1002/yea.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 06/28/2019] [Accepted: 08/04/2019] [Indexed: 11/10/2022] Open
Abstract
Within the field of protein-based biomaterials, the need exists for both covalent and oriented bioconjugation strategies for improved performance. Such bioconjugation reactions can be facilitated by engineering proteins with chemically activated amino acids at strategically chosen sites. The incorporation of these unnatural amino acids (uAAs) can be achieved by using the nonsense suppression technique. This requires an aminoacyl-tRNA-synthetase (aaRS) that exclusively recognizes the uAA and loads it to the corresponding tRNA. Appropriate (aaRS) mutants can be found through reverse engineering using the Saccharomyces cerevisiae strain MaV203. This strain contains a counterselectable, Gal4p-inducible SPAL10::URA3 fusion and deletions in the endogenous GAL80 and GAL4 genes. Therefore, it has been used extensively for the screening of aaRS mutant libraries. It is generally assumed that the SPAL10 promoter actively represses the URA3 gene in the absence of Gal4p, resulting in MaV203 cells with a Ura- phenotype. The current contribution reveals that in a small fraction of MaV203 cells, a basal expression of the URA3 gene occurs. The unexpected URA3 expression is reported for the first time, and the nature of the mutation causing this expression was identified as a spontaneous recessive mutation in a single gene of a protein involved in the repression of the SPAL10 promoter. The basal URA3 expression causes aaRS mutants to be missed, which affects the outcome of the library screening. It is demonstrated that the use of diploid cells can circumvent the MaV203 Ura+ phenotype, allowing for an optimization of S. cerevisiae library screening.
Collapse
Affiliation(s)
- David Cortens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Rebekka Hansen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Erik Steen Redeker
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium.,Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium.,Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
25
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
26
|
Wang XW, Zhang WB. SpyTag-SpyCatcher Chemistry for Protein Bioconjugation In Vitro and Protein Topology Engineering In Vivo. Methods Mol Biol 2019; 2033:287-300. [PMID: 31332761 DOI: 10.1007/978-1-4939-9654-4_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of "molecular superglue," such as SpyTag-SpyCatcher chemistry, has tremendously expanded our capability in manipulating protein shape and architecture via conjugation. Telechelic proteins bearing the SpyTag and SpyCatcher reactive sequences can be expressed and purified for bioconjugation in vitro, giving protein conjugates, branched proteins, and circular proteins. By encoding both reactive sequences in the same construct for expression in vivo, the nascent protein undergoes programmed posttranslational modification guided by protein folding and reaction, leading to diverse nonlinear topologies in situ. In this chapter, we present the SpyTag-SpyCatcher chemistry as a versatile platform for protein bioconjugation and topology engineering.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Wang XW, Zhang WB. Chemical Topology and Complexity of Protein Architectures. Trends Biochem Sci 2018; 43:806-817. [DOI: 10.1016/j.tibs.2018.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
|
28
|
Sereikaitė V, Jensen TMT, Bartling CRO, Jemth P, Pless SA, Strømgaard K. Probing Backbone Hydrogen Bonds in Proteins by Amide-to-Ester Mutations. Chembiochem 2018; 19:2136-2145. [PMID: 30073762 DOI: 10.1002/cbic.201800350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/09/2023]
Abstract
All proteins contain characteristic backbones formed of consecutive amide bonds, which can engage in hydrogen bonds. However, the importance of these is not easily addressed by conventional technologies that only allow for side-chain substitutions. By contrast, technologies such as nonsense suppression mutagenesis and protein ligation allow for manipulation of the protein backbone. In particular, replacing the backbone amide groups with ester groups, that is, amide-to-ester mutations, is a powerful tool to examine backbone-mediated hydrogen bonds. In this minireview, we showcase examples of how amide-to-ester mutations can be used to uncover pivotal roles of backbone-mediated hydrogen bonds in protein recognition, folding, function, and structure.
Collapse
Affiliation(s)
- Vita Sereikaitė
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Thomas M T Jensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123, Uppsala, Sweden
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| |
Collapse
|
29
|
Sato K, Tanaka S, Yamamoto K, Tashiro Y, Narumi T, Mase N. Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chem Commun (Camb) 2018; 54:9127-9130. [PMID: 29882948 DOI: 10.1039/c8cc03591a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report a simple and promising synthetic method to oxidize peptide hydrazides containing N-terminal thiazolidine as a protected cysteine. This yields the corresponding thioester via a peptide azide without decomposition of the thiazolidine ring. The newly developed protocol was validated by the synthesis of the bioactive peptide LacZα.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Zhang C, Cheng L, Dong G, Han G, Yang X, Tang C, Li X, Zhou Y, Du L, Li M. Novel photoactivatable substrates for Renilla luciferase imaging in vitro and in vivo. Org Biomol Chem 2018; 16:4789-4792. [PMID: 29926875 PMCID: PMC6165844 DOI: 10.1039/c8ob01192c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To develop a photoactivatable bioluminescence imaging technique, a set of high and efficient photoactivatable substrates for Renilla luciferase has been well designed and synthesized. Surprisingly, all of them could release the free luciferin that presented robust bioluminescent signals ex vivo and in living animals after UV irradiation at 365 nm.
Collapse
Affiliation(s)
- Chaochao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Lin Cheng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Guangxi Han
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Chunchao Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China, ; Fax: +86-531-8838-2076; Tel: +86-531-8838-2076
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
31
|
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7607463. [PMID: 29849913 PMCID: PMC5937447 DOI: 10.1155/2018/7607463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.
Collapse
|
32
|
Harvey JA, Itzhaki LS, Main ERG. Programmed Protein Self-Assembly Driven by Genetically Encoded Intein-Mediated Native Chemical Ligation. ACS Synth Biol 2018; 7:1067-1074. [PMID: 29474065 DOI: 10.1021/acssynbio.7b00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Harnessing and controlling self-assembly is an important step in developing proteins as novel biomaterials. With this goal, here we report the design of a general genetically programmed system that covalently concatenates multiple distinct protein domains into specific assembled arrays. It is driven by iterative intein-mediated native chemical ligation (NCL) under mild native conditions. The system uses a series of initially inert recombinant protein fusions that sandwich the protein modules to be ligated between one of a number of different affinity tags and an intein protein domain. Orthogonal activation at opposite termini of compatible protein fusions, via protease and intein cleavage, coupled with sequential mixing directs an irreversible and traceless stepwise assembly process. This gives total control over the composition and arrangement of component proteins within the final product, enabled the limits of the system-reaction efficiency and yield-to be investigated, and led to the production of "functional" assemblies.
Collapse
Affiliation(s)
- Joseph A. Harvey
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ewan R. G. Main
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
33
|
Ma W, Saccardo A, Roccatano D, Aboagye-Mensah D, Alkaseem M, Jewkes M, Di Nezza F, Baron M, Soloviev M, Ferrari E. Modular assembly of proteins on nanoparticles. Nat Commun 2018; 9:1489. [PMID: 29662234 PMCID: PMC5902510 DOI: 10.1038/s41467-018-03931-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold-sulfur bonds (Au-S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond.
Collapse
Affiliation(s)
- Wenwei Ma
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Angela Saccardo
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Danilo Roccatano
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | | | - Mohammad Alkaseem
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Matthew Jewkes
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Francesca Di Nezza
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090, Pesche, Italy
| | - Mark Baron
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Mikhail Soloviev
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Enrico Ferrari
- College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
34
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
35
|
Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0122] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
37
|
Gupta S, Tycko R. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:103-114. [PMID: 29464399 PMCID: PMC5832360 DOI: 10.1007/s10858-017-0162-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15N,13C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Collapse
Affiliation(s)
- Sebanti Gupta
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
- National Institutes of Health, Building 5, Room 409, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
38
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
39
|
Romero O, de las Rivas B, Lopez-Tejedor D, Palomo JM. Effect of Site-Specific Peptide-Tag Labeling on the Biocatalytic Properties of Thermoalkalophilic Lipase from Geobacillus thermocatenulatus. Chembiochem 2018; 19:369-378. [DOI: 10.1002/cbic.201700466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Oscar Romero
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| | - Blanca de las Rivas
- Laboratorio de Biotecnología Microbiana; Instituto de Ciencia y Tecnología de alimentos y Nutrición (ICTAN-CSIC); José Antonio Novais, 10 28040 Madrid Spain
| | - David Lopez-Tejedor
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| | - Jose M. Palomo
- Department of Biocatalysis; Institute of Catalysis (CSIC); Marie Curie 2 Cantoblanco CampusUAM 28049 Madrid Spain
| |
Collapse
|
40
|
Engineered Ssp DnaX inteins for protein splicing with flanking proline residues. Saudi J Biol Sci 2017; 26:854-859. [PMID: 31049014 PMCID: PMC6486613 DOI: 10.1016/j.sjbs.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022] Open
Abstract
Inteins are internal protein sequences capable of catalyzing a protein splicing reaction by self-excising from a precursor protein and simultaneously joining the flanking sequences with a peptide bond. Split inteins have separate pieces (N-intein and C-intein) that reassemble non-covalently to catalyze a protein trans-splicing reaction joining two polypeptides. Protein splicing has become increasingly useful tools in many fields of biological research and biotechnology. However, natural and engineered inteins have failed previously to function when being flanked by proline residue at the -1 or +2 positions, which limits general uses of inteins. In this study, different engineered inteins were tested. We found that engineered Ssp DnaX mini-intein and split inteins could carry out protein splicing with proline at the +2 positions or at both -1 and +2 positions. Under in vivo conditions in E. coli cells, the mini-intein, S1 split intein, and S11 split intein spliced efficiently, whereas the S0 split intein did not splice with proline at both -1 and +2 positions. The S1 and S11 split inteins also trans-spliced efficiently in vitro with proline at the +2 positions or at both -1 and +2 positions, but the S0 split intein trans-spliced inefficiently with proline at the +2 position and did not trans-splice with proline at both -1 and +2 positions. These findings contribute significantly to the toolbox of intein-based technologies by allowing the use of inteins in proteins having proline at the splicing point.
Collapse
|
41
|
Abstract
The formation of well-defined protein bioconjugates is critical for many studies and technologies in chemical biology. Tried-and-true methods for accomplishing this typically involve the targeting of cysteine residues, but the rapid growth of contemporary bioconjugate applications has required an expanded repertoire of modification techniques. One very powerful set of strategies involves the modification of proteins at their N termini, as these positions are typically solvent exposed and provide chemically distinct sites for many protein targets. Several chemical techniques can be used to modify N-terminal amino acids directly or convert them into unique functional groups for further ligations. A growing number of N-terminus-specific enzymatic ligation strategies have provided additional possibilities. This Perspective provides an overview of N-terminal modification techniques and the chemical rationale governing each. Examples of specific N-terminal protein conjugates are provided, along with their uses in a number of diverse biological applications.
Collapse
|
42
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Jacobsen MT, Erickson PW, Kay MS. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg Med Chem 2017; 25:4946-4952. [PMID: 28651912 DOI: 10.1016/j.bmc.2017.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States.
| |
Collapse
|
44
|
Corpuz N, Schwans JP. Generation of a cysteine sulfinic acid analog for incorporation in peptides using solid phase peptide synthesis. Bioorg Med Chem Lett 2017; 27:2410-2414. [DOI: 10.1016/j.bmcl.2017.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
|
45
|
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase. Essays Biochem 2017; 61:281-292. [PMID: 28487404 DOI: 10.1042/ebc20160072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'-deoxynucleotides using a radical mechanism. Each turnover requires radical transfer from an assembled diferric tyrosyl radical (Y•) cofactor to the enzyme active site over 35 Å away. This unprecedented reaction occurs via an amino acid radical hopping pathway spanning two protein subunits. To study the mechanism of radical transport in RNR, a suite of biochemical approaches have been developed, such as site-directed incorporation of unnatural amino acids with altered electronic properties and photochemical generation of radical intermediates. The resulting variant RNRs have been investigated using a variety of time-resolved physical techniques, including transient absorption and stopped-flow UV-Vis spectroscopy, as well as rapid freeze-quench EPR, ENDOR, and PELDOR spectroscopic methods. The data suggest that radical transport occurs via proton-coupled electron transfer (PCET) and that the protein structure has evolved to manage the proton and electron transfer co-ordinates in order to prevent 'off-pathway' reactivity and build-up of oxidised intermediates. Thus, precise design and control over the factors that govern PCET is key to enabling reversible and long-range charge transport by amino acid radicals in RNR.
Collapse
|
46
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Semisynthetic Enzymes by Protein-Peptide Site-Directed Covalent Conjugation: Methods and Applications. Methods Enzymol 2017. [PMID: 28411642 DOI: 10.1016/bs.mie.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes the rational design and synthesis of semisynthetic lipases by site-directed incorporation of tailor-made peptides on the lipase-lid site to improve its activity, specificity, and enantioselectivity in specific biotransformations. Cysteine was genetically introduced at a particular point of the oligopeptide lid of the enzyme, and cysteine-containing peptides, complementary to the amino acid sequence on the lid site of Geobacillus thermocatenulatus lipase (BTL), were covalently attached on the lid of two different cysteine-BTL variants based on a fast thiol-disulfide exchange ligation followed by desulfurization. The BTL variants were initially immobilized on solid support to introduce the advantages of solid-state chemistry, such as quantitative transformations, easy purification, and recyclability. In the two different immobilized variants BTL-A193C and BTL-L230C, the cysteine was then activated with 2-dipyridyldisulfide to help the disulfide exchange with the peptide, generating the semisynthetic enzyme in high yield. Excellent results of improvement of activity and selectivity were obtained. For example, the peptide-BTL conjugate (at position 193) was 40-fold more active than the corresponding unmodified enzyme for the hydrolysis of per-acetylated thymidine at pH 5, or fourfold in the desymmetrization of dimethyl-3-phenylglutarate at pH 7. The new enzyme also exhibited excellent enantioselectivity in the desymmetrization reaction with enantiomeric excess (ee) of >99% when compared to that of the unmodified enzyme (ee=78%).
Collapse
|
48
|
Liu J, Chen Q, Rozovsky S. Utilizing Selenocysteine for Expressed Protein Ligation and Bioconjugations. J Am Chem Soc 2017; 139:3430-3437. [PMID: 28186733 PMCID: PMC5824972 DOI: 10.1021/jacs.6b10991] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Employing selenocysteine-containing protein fragments to form the amide bond between respective protein fragments significantly extends the current capabilities of the widely used protein engineering method, expressed protein ligation. Selenocysteine-mediated ligation is noteworthy for its high yield and efficiency. However, it has so far been restricted to solid-phase synthesized seleno-peptides and thus constrained by where the selenocysteine can be positioned. Here we employ heterologously expressed seleno-fragments to overcome the placement and size restrictions in selenocysteine-mediated chemical ligation. Following ligation, the selenocysteine can be deselenized into an alanine or serine, resulting in nonselenoproteins. This greatly extends the flexibility in selecting the conjugation site in expressed protein ligations with no influence on native cysteines. Furthermore, the selenocysteine can be used to selectively introduce site-specific protein modifications. Therefore, selenocysteine-mediated expressed protein ligation simplifies incorporation of post-translational modifications into the protein scaffold.
Collapse
Affiliation(s)
| | | | - Sharon Rozovsky
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, 19716
| |
Collapse
|
49
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
50
|
Abstract
Split inteins have emerged as a powerful tool in protein engineering. We describe a reliable in silico method to predict viable split sites for the design of new split inteins. A computational circular permutation (CP) prediction method facilitates the search for internal permissive sites to create artificial circular permutants. In this procedure, the original amino- and carboxyl-termini are connected and new termini are created. The identified new terminal sites are promising candidates for the generation of new split sites with the backbone opening being tolerated by the structural scaffold. Here we show how to integrate the online usage of the CP predictor, CPred, in the search of new split intein sites.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, 30013, Hsinchu, Taiwan
| | - Wei-Cheng Lo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, 30013, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|