1
|
Luo H. How Big Is Big? The Effective Population Size of Marine Bacteria. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:537-560. [PMID: 39288792 DOI: 10.1146/annurev-marine-050823-104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
Collapse
Affiliation(s)
- Haiwei Luo
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
| |
Collapse
|
2
|
Zhong C, Yamanouchi S, Li Y, Chen J, Wei T, Wang R, Zhou K, Cheng A, Hao W, Liu H, Konhauser KO, Iwasaki W, Qian PY. Marine biofilms: cyanobacteria factories for the global oceans. mSystems 2024; 9:e0031724. [PMID: 39404262 PMCID: PMC11575276 DOI: 10.1128/msystems.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/06/2024] [Indexed: 11/20/2024] Open
Abstract
Marine biofilms were newly revealed as a giant microbial diversity pool for global oceans. However, the cyanobacterial diversity in marine biofilms within the upper seawater column and its ecological and evolutionary implications remains undetermined. Here, we reconstructed a full picture of modern marine cyanobacteria habitats by re-analyzing 9.3 terabyte metagenomic data sets and 2,648 metagenome-assembled genomes (MAGs). The abundances of cyanobacteria lineages exclusively detected in marine biofilms were up to ninefold higher than those in seawater at similar sample size. Analyses revealed that cyanobacteria in marine biofilms are specialists with strong geographical and environmental constraints on their genome and functional adaption, which is in stark contrast to the generalistic features of seawater-derived cyanobacteria. Molecular dating suggests that the important diversifications in biofilm-forming cyanobacteria appear to coincide with the Great Oxidation Event (GOE), "boring billion" middle Proterozoic, and the Neoproterozoic Oxidation Event (NOE). These new insights suggest that marine biofilms are large and important cyanobacterial factories for the global oceans. IMPORTANCE Cyanobacteria, highly diverse microbial organisms, play a crucial role in Earth's oxygenation and biogeochemical cycling. However, their connection to these processes remains unclear, partly due to incomplete surveys of oceanic niches. Our study uncovered significant cyanobacterial diversity in marine biofilms, showing distinct niche differentiation compared to seawater counterparts. These patterns reflect three key stages of marine cyanobacterial diversification, coinciding with major geological events in the Earth's history.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Tong Wei
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ruojun Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weiduo Hao
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Daakour S, Nelson DR, Fu W, Jaiswal A, Dohai B, Alzahmi AS, Koussa J, Huang X, Shen Y, Twizere JC, Salehi-Ashtiani K. Adaptive Evolution Signatures in Prochlorococcus: Open Reading Frame (ORF)eome Resources and Insights from Comparative Genomics. Microorganisms 2024; 12:1720. [PMID: 39203562 PMCID: PMC11357015 DOI: 10.3390/microorganisms12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology.
Collapse
Affiliation(s)
- Sarah Daakour
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - David R. Nelson
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Weiqi Fu
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ashish Jaiswal
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Bushra Dohai
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Helmholtz Center Munich, Institute of Network Biology (INET), German Research Center for Environmental Health, 85764 Munich, Germany
| | - Amnah Salem Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Joseph Koussa
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Biology, New York University, New York, NY 10012, USA
- Department of Chemical and Biological Sciences, Montgomery College, Germantown, MD 20850, USA
| | - Xiaoluo Huang
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing 100045, China
| | - Yue Shen
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
| | - Jean-Claude Twizere
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
4
|
Zhang H, Hellweger FL, Luo H. Genome reduction occurred in early Prochlorococcus with an unusually low effective population size. THE ISME JOURNAL 2024; 18:wrad035. [PMID: 38365237 PMCID: PMC10837832 DOI: 10.1093/ismejo/wrad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.
Collapse
Affiliation(s)
- Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, 10623, Germany
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
| |
Collapse
|
5
|
Wang X, Feng X. Challenges in estimating effective population sizes from metagenome-assembled genomes. Front Microbiol 2024; 14:1331583. [PMID: 38249456 PMCID: PMC10797056 DOI: 10.3389/fmicb.2023.1331583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Effective population size (Ne) plays a critical role in shaping the relative efficiency between natural selection and genetic drift, thereby serving as a cornerstone for understanding microbial ecological dynamics. Direct Ne estimation relies on neutral genetic diversity within closely related genomes, which is, however, often constrained by the culturing difficulties for the vast majority of prokaryotic lineages. Metagenome-assembled genomes (MAGs) offer a high-throughput alternative for genomic data acquisition, yet their accuracy in Ne estimation has not been fully verified. This study examines the Thermococcus genus, comprising 66 isolated strains and 29 MAGs, to evaluate the reliability of MAGs in Ne estimation. Despite the even distribution across the Thermococcus phylogeny and the comparable internal average nucleotide identity (ANI) between isolate populations and MAG populations, our results reveal consistently lower Ne estimates from MAG populations. This trend of underestimation is also observed in various MAG populations across three other bacterial genera. The underrepresentation of genetic variation in MAGs, including loss of allele frequency data and variable genomic segments, likely contributes to the underestimation of Ne. Our findings underscore the necessity for caution when employing MAGs for evolutionary studies, which often depend on high-quality genome assemblies and nucleotide-level diversity.
Collapse
Affiliation(s)
- Xiaojun Wang
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Li N, Peng C, Yuan Y, Hao Y, Ma W, Xiao P. A new cluster of chikungunya virus West Africa genotype isolated from Aedes albopictus in China. J Infect 2023; 87:e48-e50. [PMID: 37331428 DOI: 10.1016/j.jinf.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Affiliation(s)
- Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Yuge Yuan
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Yujia Hao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Wenzhou Ma
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
von Meijenfeldt FAB, Hogeweg P, Dutilh BE. A social niche breadth score reveals niche range strategies of generalists and specialists. Nat Ecol Evol 2023; 7:768-781. [PMID: 37012375 PMCID: PMC10172124 DOI: 10.1038/s41559-023-02027-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023]
Abstract
Generalists can survive in many environments, whereas specialists are restricted to a single environment. Although a classical concept in ecology, niche breadth has remained challenging to quantify for microorganisms because it depends on an objective definition of the environment. Here, by defining the environment of a microorganism as the community it resides in, we integrated information from over 22,000 environmental sequencing samples to derive a quantitative measure of the niche, which we call social niche breadth. At the level of genera, we explored niche range strategies throughout the prokaryotic tree of life. We found that social generalists include opportunists that stochastically dominate local communities, whereas social specialists are stable but low in abundance. Social generalists have a more diverse and open pan-genome than social specialists, but we found no global correlation between social niche breadth and genome size. Instead, we observed two distinct evolutionary strategies, whereby specialists have relatively small genomes in habitats with low local diversity, but relatively large genomes in habitats with high local diversity. Together, our analysis shines data-driven light on microbial niche range strategies.
Collapse
Affiliation(s)
- F A Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
8
|
Ngugi DK, Acinas SG, Sánchez P, Gasol JM, Agusti S, Karl DM, Duarte CM. Abiotic selection of microbial genome size in the global ocean. Nat Commun 2023; 14:1384. [PMID: 36914646 PMCID: PMC10011403 DOI: 10.1038/s41467-023-36988-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome.
Collapse
Affiliation(s)
- David K Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Susana Agusti
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaií at Mãnoa, Honolulu, USA
| | - Carlos M Duarte
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Mahajan S, Agashe D. Evolutionary jumps in bacterial GC content. G3 (BETHESDA, MD.) 2022; 12:jkac108. [PMID: 35579351 PMCID: PMC9339322 DOI: 10.1093/g3journal/jkac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Genomic GC (Guanine-Cytosine) content is a fundamental molecular trait linked with many key genomic features such as codon and amino acid use. Across bacteria, GC content is surprisingly diverse and has been studied for many decades; yet its evolution remains incompletely understood. Since it is difficult to observe GC content evolve on laboratory time scales, phylogenetic comparative approaches are instrumental; but this dimension is rarely studied systematically in the case of bacterial GC content. We applied phylogenetic comparative models to analyze GC content evolution in multiple bacterial groups across 2 major bacterial phyla. We find that GC content diversifies via a combination of gradual evolution and evolutionary "jumps." Surprisingly, unlike prior reports that solely focused on reductions in GC, we found a comparable number of jumps with both increased and decreased GC content. Overall, many of the identified jumps occur in lineages beyond the well-studied peculiar examples of endosymbiotic and AT-rich marine bacteria and do not support the predicted role of oxygen dependence. Our analysis of rapid and large shifts in GC content thus identifies new clades and novel contexts to further understand the ecological and evolutionary drivers of this important genomic trait.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Atria University, Bengaluru 560024, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
10
|
Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet 2022; 18:e1010220. [PMID: 35605022 PMCID: PMC9166353 DOI: 10.1371/journal.pgen.1010220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/03/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The evolutionary forces that determine genome size in bacteria and archaea have been the subject of intense debate over the last few decades. Although the preferential loss of genes observed in prokaryotes is explained through the deletional bias, factors promoting and preventing the fixation of such gene losses often remain unclear. Importantly, statistical analyses on this topic typically do not consider the potential bias introduced by the shared ancestry of many lineages, which is critical when using species as data points because of the potential dependence on residuals. In this study, we investigated the genome size distributions across a broad diversity of bacteria and archaea to evaluate if this trait is phylogenetically conserved at broad phylogenetic scales. After model fit, Pagel's lambda indicated a strong phylogenetic signal in genome size data, suggesting that the diversification of this trait is influenced by shared evolutionary histories. We used a phylogenetic generalized least-squares analysis (PGLS) to test whether phylogeny influences the predictability of genome size from dN/dS ratios and 16S copy number, two variables that have been previously linked to genome size. These results confirm that failure to account for evolutionary history can lead to biased interpretations of genome size predictors. Overall, our results indicate that although bacteria and archaea can rapidly gain and lose genetic material through gene transfers and deletions, respectively, phylogenetic signal for genome size distributions can still be recovered at broad phylogenetic scales that should be taken into account when inferring the drivers of genome size evolution.
Collapse
Affiliation(s)
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Perez M, Breusing C, Angers B, Beinart RA, Won YJ, Young CR. Divergent paths in the evolutionary history of maternally transmitted clam symbionts. Proc Biol Sci 2022; 289:20212137. [PMID: 35259985 PMCID: PMC8905170 DOI: 10.1098/rspb.2021.2137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.
Collapse
Affiliation(s)
- Maëva Perez
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Canada
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
12
|
Chen Z, Wang X, Song Y, Zeng Q, Zhang Y, Luo H. Prochlorococcus have low global mutation rate and small effective population size. Nat Ecol Evol 2022; 6:183-194. [PMID: 34949817 DOI: 10.1038/s41559-021-01591-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
Prochlorococcus are the most abundant free-living photosynthetic carbon-fixing organisms in the ocean. Prochlorococcus show small genome sizes, low genomic G+C content, reduced DNA repair gene pool and fast evolutionary rates, which are typical features of endosymbiotic bacteria. Nevertheless, their evolutionary mechanisms are believed to be different. Evolution of endosymbiotic bacteria is dominated by genetic drift owing to repeated population bottlenecks, whereas Prochlorococcus are postulated to have extremely large effective population sizes (Ne) and thus drift has rarely been considered. However, accurately extrapolating Ne requires measuring an unbiased global mutation rate through mutation accumulation, which is challenging for Prochlorococcus. Here, we managed this experiment over 1,065 days using Prochlorococcus marinus AS9601, sequenced genomes of 141 mutant lines and determined its mutation rate to be 3.50 × 10-10 per site per generation. Extrapolating Ne additionally requires identifying population boundaries, which we defined using PopCOGenT and over 400 genomes related to AS9601. Accordingly, we calculated its Ne to be 1.68 × 107, which is only reasonably greater than that of endosymbiotic bacteria but surprisingly smaller than that of many free-living bacteria extrapolated using the same approach. Our results therefore suggest that genetic drift is a key driver of Prochlorococcus evolution.
Collapse
Affiliation(s)
- Zhuoyu Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaojun Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. .,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR.
| |
Collapse
|
13
|
Feng X, Zhang H, Tang J, Luo H. Assessing a Role of Genetic Drift for Deep-Time Evolutionary Events. Methods Mol Biol 2022; 2569:343-359. [PMID: 36083457 DOI: 10.1007/978-1-0716-2691-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Effective population size (Ne) determines the amount of genetic diversity and the fate of genetic variants in a species and thus is an essential parameter in evolutionary genetics. There are standard approaches to determine the Ne of evolving species. For example, the long-term Ne of an extant species is calculated based on its unbiased global mutation rate and the neutral genetic diversity of the species. However, approaches for inferring Ne of ancestral lineages are less known. Here, we introduce an evolutionary genetic statistic and an analytical procedure to assess the efficiency of natural selection for deep nodes by calculating rates of nonsynonymous nucleotide substitutions leading to radical (dR) and conservative (dC) amino acid replacements, respectively. Given that radical variants are more likely to be deleterious than conservative ones, an elevated dR/dC ratio in gene families across the genome means an accelerated genome-wide accumulation of the more deleterious type of mutations (i.e., radical variants), which indicates that natural selection is less efficient and genetic drift becomes more powerful. Earlier approaches that calculate dR/dC do not consider the impact of nucleotide composition (G+C content) on the dR/dC result, which is partially accounted for in more recent methods. Here, we use these methods to demonstrate that genetic drift may have driven the early evolution of Prochlorococcus, the most abundant carbon-fixing photosynthetic bacteria in the ocean.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Haiwei Luo
- School of Life Sciences, Earth and Environmental Sciences Programme, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Zhang H, Sun Y, Zeng Q, Crowe SA, Luo H. Snowball Earth, population bottleneck and Prochlorococcus evolution. Proc Biol Sci 2021; 288:20211956. [PMID: 34784770 PMCID: PMC8596011 DOI: 10.1098/rspb.2021.1956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus, shaping their ecologically vital role as the most abundant primary producers in the modern oceans.
Collapse
Affiliation(s)
- Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR
| | - Sean A. Crowe
- Department of Earth Sciences, School of Biological Sciences, and Swire Institute for Marine Science (SWIMS), University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Haiwei Luo
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
15
|
Huo D, Li H, Cai F, Guo X, Qiao Z, Wang W, Yu G, Li R. Genome Evolution of Filamentous Cyanobacterium Nostoc Species: From Facultative Symbiosis to Free Living. Microorganisms 2021; 9:microorganisms9102015. [PMID: 34683336 PMCID: PMC8539589 DOI: 10.3390/microorganisms9102015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
In contrast to obligate bacteria, facultative symbiotic bacteria are mainly characterized by genome enlargement. However, the underlying relationship of this feature with adaptations to various habitats remains unclear. In this study, we used the global genome data of Nostoc strains, including 10 novel genomes sequenced in this study and 26 genomes available from public databases, and analyzed their evolutionary history. The evolutionary boundary of the real clade of Nostoc species was identified and was found to be consistent with the results of polyphasic taxonomy. The initial ancestral species of Nostoc was demonstrated to be consistent with a facultative symbiotic population. Further analyses revealed that Nostoc strains tended to shift from facultative symbiosis to a free-living one, along with an increase in genome sizes during the dispersal of each exterior branch. Intracellular symbiosis was proved to be essentially related to Nostoc evolution, and the adaptation of its members to free-living environments was coupled with a large preference for gene acquisition involved in gene repair and recombination. These findings provided unique evidence of genomic mechanisms by which homologous microbes adapt to distinct life manners and external environments.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
| | - Hua Li
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Fangfang Cai
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Guo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Qiao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China;
| | - Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (D.H.); (H.L.); (F.C.); (X.G.)
- Correspondence: (G.Y.); (R.L.); Tel.: +86-027-68780067 (G.Y.); +86-027-68780080 (R.L.); Fax: +86-027-68780123 (G.Y.)
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, China
- Correspondence: (G.Y.); (R.L.); Tel.: +86-027-68780067 (G.Y.); +86-027-68780080 (R.L.); Fax: +86-027-68780123 (G.Y.)
| |
Collapse
|
16
|
Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, Barnes S, Zhao Y, Thrash JC, Luo H. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME JOURNAL 2021; 15:3576-3586. [PMID: 34145391 DOI: 10.1038/s41396-021-01036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Members of the marine Roseobacter group are key players in the global carbon and sulfur cycles. While over 300 species have been described, only 2% possess reduced genomes (mostly 3-3.5 Mbp) compared to an average roseobacter (>4 Mbp). These taxonomic minorities are phylogenetically diverse but form a Pelagic Roseobacter Cluster (PRC) at the genome content level. Here, we cultivated eight isolates constituting a novel Roseobacter lineage which we named 'CHUG'. Metagenomic and metatranscriptomic read recruitment analyses showed that CHUG members are globally distributed and active in marine pelagic environments. CHUG members possess some of the smallest genomes (~2.6 Mb) among all known roseobacters, but they do not exhibit canonical features of typical bacterioplankton lineages theorized to have undergone genome streamlining processes, like higher coding density, fewer paralogues and rarer pseudogenes. While CHUG members form a genome content cluster with traditional PRC members, they show important differences. Unlike other PRC members, neither the relative abundances of CHUG members nor their relative gene expression levels are correlated with chlorophyll a concentration across the global samples. CHUG members cannot utilize most phytoplankton-derived metabolites or synthesize vitamin B12, a key metabolite mediating the roseobacter-phytoplankton interactions. This combination of features is evidence for the hypothesis that CHUG members may have evolved a free-living lifestyle decoupled from phytoplankton. This ecological transition was accompanied by the loss of signature genes involved in roseobacter-phytoplankton symbiosis, suggesting that relaxation of purifying selection owing to lifestyle shift is likely an important driver of genome reduction in CHUG.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Yang Qian
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Michael W Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shelby Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
17
|
Unexpectedly high mutation rate of a deep-sea hyperthermophilic anaerobic archaeon. THE ISME JOURNAL 2021; 15:1862-1869. [PMID: 33452477 PMCID: PMC8163891 DOI: 10.1038/s41396-020-00888-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Deep-sea hydrothermal vents resemble the early Earth, and thus the dominant Thermococcaceae inhabitants, which occupy an evolutionarily basal position of the archaeal tree and take an obligate anaerobic hyperthermophilic free-living lifestyle, are likely excellent models to study the evolution of early life. Here, we determined that unbiased mutation rate of a representative species, Thermococcus eurythermalis, exceeded that of all known free-living prokaryotes by 1-2 orders of magnitude, and thus rejected the long-standing hypothesis that low mutation rates were selectively favored in hyperthermophiles. We further sequenced multiple and diverse isolates of this species and calculated that T. eurythermalis has a lower effective population size than other free-living prokaryotes by 1-2 orders of magnitude. These data collectively indicate that the high mutation rate of this species is not selectively favored but instead driven by random genetic drift. The availability of these unusual data also helps explore mechanisms underlying microbial genome size evolution. We showed that genome size is negatively correlated with mutation rate and positively correlated with effective population size across 30 bacterial and archaeal lineages, suggesting that increased mutation rate and random genetic drift are likely two important mechanisms driving microbial genome reduction. Future determinations of the unbiased mutation rate of more representative lineages with highly reduced genomes such as Prochlorococcus and Pelagibacterales that dominate marine microbial communities are essential to test these hypotheses.
Collapse
|
18
|
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environ Microbiol 2020; 22:3234-3247. [PMID: 32390223 DOI: 10.1111/1462-2920.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He-Yu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
19
|
Chen Q, Lan A, Shen X, Wu CI. Molecular Evolution in Small Steps under Prevailing Negative Selection: A Nearly Universal Rule of Codon Substitution. Genome Biol Evol 2020; 11:2702-2712. [PMID: 31504473 PMCID: PMC6777424 DOI: 10.1093/gbe/evz192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
The widely accepted view that evolution proceeds in small steps is based on two premises: 1) negative selection acts strongly against large differences and 2) positive selection favors small-step changes. The two premises are not biologically connected and should be evaluated separately. We now extend a previous approach to studying codon evolution in the entire genome. Codon substitution rate is a function of the physicochemical distance between amino acids (AAs), equated with the step size of evolution. Between nine pairs of closely related species of plants, invertebrates, and vertebrates, the evolutionary rate is strongly and negatively correlated with a set of AA distances (ΔU, scaled to [0, 1]). ΔU, a composite measure of evolutionary rates across diverse taxa, is influenced by almost all of the 48 physicochemical properties used here. The new analyses reveal a crucial trend hidden from previous studies: ΔU is strongly correlated with the evolutionary rate (R2 > 0.8) only when the genes are predominantly under negative selection. Because most genes in most taxa are strongly constrained by negative selection, ΔU has indeed appeared to be a nearly universal measure of codon evolution. In conclusion, molecular evolution at the codon level generally takes small steps due to the prevailing negative selection. Whether positive selection may, or may not, follow the small-step rule is addressed in a companion study.
Collapse
Affiliation(s)
- Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
20
|
Martinez-Gutierrez CA, Aylward FO. Strong Purifying Selection Is Associated with Genome Streamlining in Epipelagic Marinimicrobia. Genome Biol Evol 2020; 11:2887-2894. [PMID: 31539038 PMCID: PMC6798728 DOI: 10.1093/gbe/evz201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/21/2022] Open
Abstract
Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G + C content, short intergenic regions, and low nitrogen content in encoded amino acid residue side chains (N-ARSC), but the evolutionary drivers of these characteristics are unclear. Here, we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of nonsynonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis reveals that epipelagic Marinimicrobia that exhibit features consistent with genome streamlining have significantly lower dN/dS values when compared with their mesopelagic counterparts. We also found a significant positive correlation between median dN/dS values and % G + C content, N-ARSC, and intergenic region length. We did not identify a significant correlation between dN/dS ratios and estimated genome size, suggesting the strength of selection is not a primary factor shaping genome size in this group. Our findings are generally consistent with genome streamlining theory, which postulates that many genomic features of abundant epipelagic bacteria are the result of adaptation to oligotrophic nutrient conditions. Our results are also in agreement with previous findings that genome streamlining is common in epipelagic waters, suggesting that microbes inhabiting this region of the ocean have been shaped by strong selection together with prevalent nutritional constraints characteristic of this environment.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
21
|
Chen Q, He Z, Lan A, Shen X, Wen H, Wu CI. Molecular Evolution in Large Steps-Codon Substitutions under Positive Selection. Mol Biol Evol 2020; 36:1862-1873. [PMID: 31077325 DOI: 10.1093/molbev/msz108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Molecular evolution is believed to proceed in small steps. The step size can be defined by a distance reflecting physico-chemical disparities between amino acid (AA) pairs that can be exchanged by single 1-bp mutations. We show that AA substitution rates are strongly and negatively correlated with this distance but only when positive selection is relatively weak. We use the McDonald and Kreitman test to separate the influences of positive and negative selection. While negative selection is indeed stronger on AA substitutions generating larger changes in chemical properties of AAs, positive selection operates by different rules. For 65 of the 75 possible pairs, positive selection is comparable in strength regardless of AA distance. However, the ten pairs under the strongest positive selection all exhibit large leaps in chemical properties. Five of the ten pairs are shared between Drosophila and Hominoids, thus hinting at a common but modest biochemical basis of adaptation across taxa. The hypothesis that adaptive changes often take large functional steps will need to be extensively tested. If validated, molecular models will need to better integrate positive and negative selection in the search for adaptive signal.
Collapse
Affiliation(s)
- Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ao Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xu Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Andrei AŞ, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. THE ISME JOURNAL 2019; 13:1056-1071. [PMID: 30610231 PMCID: PMC6461901 DOI: 10.1038/s41396-018-0332-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022]
Abstract
Freshwater environments teem with microbes that do not have counterparts in culture collections or genetic data available in genomic repositories. Currently, our apprehension of evolutionary ecology of freshwater bacteria is hampered by the difficulty to establish organism models for the most representative clades. To circumvent the bottlenecks inherent to the cultivation-based techniques, we applied ecogenomics approaches in order to unravel the evolutionary history and the processes that drive genome architecture in hallmark freshwater lineages from the phylum Planctomycetes. The evolutionary history inferences showed that sediment/soil Planctomycetes transitioned to aquatic environments, where they gave rise to new freshwater-specific clades. The most abundant lineage was found to have the most specialised lifestyle (increased regulatory genetic circuits, metabolism tuned for mineralization of proteinaceous sinking aggregates, psychrotrophic behaviour) within the analysed clades and to harbour the smallest freshwater Planctomycetes genomes, highlighting a genomic architecture shaped by niche-directed evolution (through loss of functions and pathways not needed in the newly acquired freshwater niche).
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic.
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Petr Znachor
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
23
|
Abstract
The streamlining hypothesis is usually used to explain the genomic reduction events in free-living bacteria like SAR11. However, we find that the genomic reduction phenomenon in the bacterial genus Idiomarina is different from that in SAR11. Therefore, we propose a new hypothesis to explain genomic reduction in this genus based on trophic specialization that could result in genomic reduction, which would be not uncommon in nature. Not only can the trophic specialization hypothesis explain the genomic reduction in the genus Idiomarina, but it also sheds new light on our understanding of the genomic reduction processes in other free-living bacterial lineages. The streamlining hypothesis is generally used to explain the genomic reduction events related to the small genome size of free-living bacteria like marine bacteria SAR11. However, our current understanding of the correlation between bacterial genome size and environmental adaptation relies on too few species. It is still unclear whether there are other paths leading to genomic reduction in free-living bacteria. The genome size of marine free-living bacteria of the genus Idiomarina belonging to the order Alteromonadales (Gammaproteobacteria) is much smaller than the size of related genomes from bacteria in the same order. Comparative genomic and physiological analyses showed that the genomic reduction pattern in this genus is different from that of the classical SAR11 lineage. Genomic reduction reconstruction and substrate utilization profile showed that Idiomarina spp. lost a large number of genes related to carbohydrate utilization, and instead they specialized on using proteinaceous resources. Here we propose a new hypothesis to explain genomic reduction in this genus; we propose that trophic specialization increasing the metabolic efficiency for using one kind of substrate but reducing the substrate utilization spectrum could result in bacterial genomic reduction, which would be not uncommon in nature. This hypothesis was further tested in another free-living genus, Kangiella, which also shows dramatic genomic reduction. These findings highlight that trophic specialization is potentially an important path leading to genomic reduction in some marine free-living bacteria, which is distinct from the classical lineages like SAR11.
Collapse
|
24
|
Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum. mBio 2018; 9:mBio.01089-18. [PMID: 30228235 PMCID: PMC6143742 DOI: 10.1128/mbio.01089-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding long-term patterns of microbial evolution is critical to advancing our knowledge of past and present role microbial life in driving global biogeochemical cycles. Historically, it has been challenging to study the evolution of environmental microbes due to difficulties in obtaining genome sequences from lineages that could not be cultivated, but recent advances in metagenomics and single-cell genomics have begun to obviate many of these hurdles. Here we present an evolutionary genomic analysis of the Marinimicrobia, a diverse bacterial group that is abundant in the global ocean. We demonstrate that distantly related Marinimicrobia species that reside in similar habitats have converged to assume similar genome architectures and cellular bioenergetics, suggesting that common factors shape the evolution of a broad array of marine lineages. These findings broaden our understanding of the evolutionary forces that have given rise to microbial life in the contemporary ocean. Diverse bacterial and archaeal lineages drive biogeochemical cycles in the global ocean, but the evolutionary processes that have shaped their genomic properties and physiological capabilities remain obscure. Here we track the genome evolution of the globally abundant marine bacterial phylum Marinimicrobia across its diversification into modern marine environments and demonstrate that extant lineages are partitioned between epipelagic and mesopelagic habitats. Moreover, we show that these habitat preferences are associated with fundamental differences in genomic organization, cellular bioenergetics, and metabolic modalities. Multiple lineages present in epipelagic niches independently acquired genes necessary for phototrophy and environmental stress mitigation, and their genomes convergently evolved key features associated with genome streamlining. In contrast, lineages residing in mesopelagic waters independently acquired nitrate respiratory machinery and a variety of cytochromes, consistent with the use of alternative terminal electron acceptors in oxygen minimum zones (OMZs). Further, while epipelagic clades have retained an ancestral Na+-pumping respiratory complex, mesopelagic lineages have largely replaced this complex with canonical H+-pumping respiratory complex I, potentially due to the increased efficiency of the latter together with the presence of the more energy-limiting environments deep in the ocean’s interior. These parallel evolutionary trends indicate that key features of genomic streamlining and cellular bioenergetics have occurred repeatedly and congruently in disparate clades and underscore the importance of environmental conditions and nutrient dynamics in driving the evolution of diverse bacterioplankton lineages in similar ways throughout the global ocean.
Collapse
|
25
|
Genome Rearrangement Shapes Prochlorococcus Ecological Adaptation. Appl Environ Microbiol 2018; 84:AEM.01178-18. [PMID: 29915114 PMCID: PMC6102989 DOI: 10.1128/aem.01178-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/10/2018] [Indexed: 12/13/2022] Open
Abstract
Prochlorococcus, the most abundant and smallest known free-living photosynthetic microorganism, plays a key role in marine ecosystems and biogeochemical cycles. Prochlorococcus genome evolution is a fundamental issue related to how Prochlorococcus clades adapted to different ecological niches. Recent studies revealed that the gene gain and loss is crucial to the clade differentiation. The significance of our research is that we interpreted the Prochlorococcus genome evolution from the perspective of genome structure and associated the genome rearrangement with the Prochlorococcus clade differentiation and subsequent ecological adaptation. Prochlorococcus is the most abundant and smallest known free-living photosynthetic microorganism and is a key player in marine ecosystems and biogeochemical cycles. Prochlorococcus can be broadly divided into high-light-adapted (HL) and low-light-adapted (LL) clades. In this study, we isolated two low-light-adapted clade I (LLI) strains from the western Pacific Ocean and obtained their genomic data. We reconstructed Prochlorococcus evolution based on genome rearrangement. Our results showed that genome rearrangement might have played an important role in Prochlorococcus evolution. We also found that the Prochlorococcus clades with streamlined genomes maintained relatively high synteny throughout most of their genomes, and several regions served as rearrangement hotspots. Backbone analysis showed that different clades shared a conserved backbone but also had clade-specific regions, and the genes in these regions were associated with ecological adaptations. IMPORTANCEProchlorococcus, the most abundant and smallest known free-living photosynthetic microorganism, plays a key role in marine ecosystems and biogeochemical cycles. Prochlorococcus genome evolution is a fundamental issue related to how Prochlorococcus clades adapted to different ecological niches. Recent studies revealed that the gene gain and loss is crucial to the clade differentiation. The significance of our research is that we interpreted the Prochlorococcus genome evolution from the perspective of genome structure and associated the genome rearrangement with the Prochlorococcus clade differentiation and subsequent ecological adaptation.
Collapse
|
26
|
Moldovan MA, Gelfand MS. Pangenomic Definition of Prokaryotic Species and the Phylogenetic Structure of Prochlorococcus spp. Front Microbiol 2018; 9:428. [PMID: 29593678 PMCID: PMC5857598 DOI: 10.3389/fmicb.2018.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
The pangenome is the collection of all groups of orthologous genes (OGGs) from a set of genomes. We apply the pangenome analysis to propose a definition of prokaryotic species based on identification of lineage-specific gene sets. While being similar to the classical biological definition based on allele flow, it does not rely on DNA similarity levels and does not require analysis of homologous recombination. Hence this definition is relatively objective and independent of arbitrary thresholds. A systematic analysis of 110 accepted species with the largest numbers of sequenced strains yields results largely consistent with the existing nomenclature. However, it has revealed that abundant marine cyanobacteria Prochlorococcus marinus should be divided into two species. As a control we have confirmed the paraphyletic origin of Yersinia pseudotuberculosis (with embedded, monophyletic Y. pestis) and Burkholderia pseudomallei (with B. mallei). We also demonstrate that by our definition and in accordance with recent studies Escherichia coli and Shigella spp. are one species.
Collapse
Affiliation(s)
- Mikhail A. Moldovan
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail S. Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
27
|
Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. ISME JOURNAL 2018; 12:1180-1187. [PMID: 29330536 DOI: 10.1038/s41396-017-0023-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023]
Abstract
An important unanswered question in evolutionary genomics is the source of considerable variation of genomic base composition (GC content) even among organisms that share one habitat. Evolution toward GC-poor genomes has been considered a major adaptive pathway in the oligotrophic ocean, but GC-rich bacteria are also prevalent and highly successful in this environment. We quantify the contribution of multiple factors to the change of genomic GC content of Ruegeria pomeroyi DSS-3, a representative and GC-rich member in the globally abundant Roseobacter clade, using an agent-based model. The model simulates 2 × 108 cells, which allows random genetic drift to act in a realistic manner. Each cell has a whole genome subject to base-substitution mutation and recombination, which affect the carbon and nitrogen requirements of DNA and protein pools. Nonsynonymous changes can be functionally deleterious. Together, these factors affect the growth and fitness. Simulations show that experimentally determined mutation bias toward GC is not sufficient to build the GC-rich genome of DSS-3. While nitrogen availability has been repeatedly hypothesized to drive the evolution of GC content in marine bacterioplankton, our model instead predicts that DSS-3 and its ancestors have been evolving in environments primarily limited by carbon.
Collapse
|