1
|
Yeganegi H, Ondracek JM. Local sleep in songbirds: different simultaneous sleep states across the avian pallium. J Sleep Res 2025; 34:e14344. [PMID: 39425588 PMCID: PMC12069731 DOI: 10.1111/jsr.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024]
Abstract
Wakefulness and sleep have often been treated as distinct and global brain states. However, an emerging body of evidence on the local regulation of sleep stages challenges this conventional view. Apart from unihemispheric sleep, the current data that support local variations of neural oscillations during sleep are focused on the homeostatic regulation of local sleep, i.e., the role preceding awake activity. Here, to examine local differences in brain activity during natural sleep, we recorded the electroencephalogram and the local field potential across multiple sites within the avian pallium of zebra finches without perturbing the previous awake state. We scored the sleep stages independently in each pallial site and found that the sleep stages are not pallium-wide phenomena but rather deviate widely across electrode sites. Importantly, deeper electrode sites had a dominant role in defining the temporal aspects of sleep state congruence. Altogether, these findings show that local regulation of sleep oscillations also occurs in the avian brain without prior awake recruitment of specific pallial circuits and in the absence of mammalian cortical neural architecture.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of MunichTUM School of Life Sciences, Chair of ZoologyFreising‐WeihenstephanGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians‐University MunichPlaneggGermany
| | - Janie M. Ondracek
- Technical University of MunichTUM School of Life Sciences, Chair of ZoologyFreising‐WeihenstephanGermany
| |
Collapse
|
2
|
Aquino G, Palagini L, Alfì G, Feige B, Spiegelhalder K, Piarulli A, Gemignani A. The Interplay Between the Sleep Slow Oscillation and Cerebrospinal Fluid: New Vistas for Insomnia Research. J Sleep Res 2025:e70069. [PMID: 40243037 DOI: 10.1111/jsr.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Insomnia disorder affects about 10% of the global population, representing a major health concern. Despite the availability of evidence-based treatments, the neurobiological mechanisms underpinning this disorder remain poorly understood. Recently, the investigation of the less than 1 Hz oscillations (commonly termed slow oscillations), a hallmark of slow wave sleep, has gained increased interest in research on insomnia. In this context, an intriguing perspective arises from the association between slow oscillations and metabolic waste clearance, an impaired process in individuals suffering from insomnia disorder. Indeed, the exploration of the relationships between cerebrospinal fluid dynamics and glymphatic system functions, which relate to brain metabolic clearance, and sleep slow oscillations may represent a promising avenue for future research in this field. This narrative review examines current knowledge about the intricate interplay among these mechanisms and their implications for insomnia disorder. Particular attention is given to the role of sleep slow oscillations in the clearance of metabolic waste during sleep, their coupling with cerebrospinal fluid oscillations, and the regulatory mechanisms underlying glymphatic function. The review emphasises the relevance of investigating sleep slow oscillations-related mechanisms in insomnia, intending to provide novel insights into the neurophysiological underpinnings of the disorder and contribute to more accurate diagnostic approaches. Furthermore, a deeper understanding of these mechanisms could pave the way for the development of innovative or adjunctive therapeutic strategies targeting sleep slow oscillations-related alterations in insomnia disorder.
Collapse
Affiliation(s)
- Giulia Aquino
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| | - Gaspare Alfì
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| |
Collapse
|
3
|
Cross ZR, Helfrich RF, Corcoran AW, Dede AJO, Kohler MJ, Coussens SW, Zou-Williams L, Schlesewsky M, Gaskell GM, Knight RT, Bornkessel-Schlesewsky I. Slow Oscillation-Spindle Coupling Predicts Sequence-Based Language Learning. J Neurosci 2025; 45:e2193232024. [PMID: 39572236 PMCID: PMC11735671 DOI: 10.1523/jneurosci.2193-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
Sentence comprehension involves the decoding of both semantic and grammatical information, a process fundamental to communication. As with other complex cognitive processes, language comprehension relies, in part, on long-term memory. However, the electrophysiological mechanisms underpinning the encoding and generalization of higher-order linguistic knowledge remain elusive, particularly from a sleep-based consolidation perspective. One candidate mechanism that may support the consolidation of higher-order language is the coordination of slow oscillations (SO) and sleep spindles during nonrapid eye movement sleep (NREM). To examine this hypothesis, we analyzed electroencephalographic (EEG) data recorded from 35 participants (M age = 25.4; SD = 7.10; 16 males) during an artificial language learning task, contrasting performance between individuals who were given an 8 h nocturnal sleep period or an equivalent period of wake. We found that sleep relative to wake was associated with superior performance for sequence-based word order rules. Postsleep sequence-based word order processing was further associated with less task-related theta desynchronization, an electrophysiological signature of successful memory consolidation, as well as cognitive control and working memory. Frontal NREM SO-spindle coupling was also positively associated with behavioral sensitivity to sequence-based word order rules, as well as with task-related theta power. As such, theta activity during retrieval of previously learned information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta activity as signatures of memory consolidation and retrieval in the context of higher-order language learning.
Collapse
Affiliation(s)
- Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Randolph F Helfrich
- Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Andrew W Corcoran
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, Victoria 3800, Australia
| | - Adam J O Dede
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark J Kohler
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Scott W Coussens
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Lena Zou-Williams
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| | - Gareth M Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
| | - Robert T Knight
- Department of Psychology, UC Berkeley, Berkeley, California 94720-1650
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California 94720-1650
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia 5072, Australia
| |
Collapse
|
4
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Carvalho DZ, Kremen V, Mivalt F, St. Louis EK, McCarter SJ, Bukartyk J, Przybelski SA, Kamykowski MG, Spychalla AJ, Machulda MM, Boeve BF, Petersen RC, Jack CR, Lowe VJ, Graff-Radford J, Worrell GA, Somers VK, Varga AW, Vemuri P. Non-rapid eye movement sleep slow-wave activity features are associated with amyloid accumulation in older adults with obstructive sleep apnoea. Brain Commun 2024; 6:fcae354. [PMID: 39429245 PMCID: PMC11487750 DOI: 10.1093/braincomms/fcae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, APOE ɛ4 and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, P = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, P = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, P = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.
Collapse
Affiliation(s)
- Diego Z Carvalho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Filip Mivalt
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St. Louis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stuart J McCarter
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan Bukartyk
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
6
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
7
|
Kipnis J. The anatomy of brainwashing. Science 2024; 385:368-370. [PMID: 39052816 DOI: 10.1126/science.adp1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Glymphatic-lymphatic brain cleansing may reveal new therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Jimenez MJD, Kantak P, Raskin J. Why Pimping Works: The Neurophysiology of Emotional Memories. Cureus 2024; 16:e64237. [PMID: 39130900 PMCID: PMC11313157 DOI: 10.7759/cureus.64237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
A time-honored medical ritual that combines emotion and cognition into a seamless consolidation of lucid memories is a feared teaching method in medical education. The resulting neurophysiology is explained from a neurosurgeon's perspective - equal parts guilt and dread as a prescription for an improved and sustained trainee fund of knowledge. Much of the available literature published with regard to pimping explores its pedagogy and use in medical practice. This review aims to explore the neurobehavioral and biological aspects of pimping in why it remains a popular teaching model. We describe the neuromodulatory process of integrating emotions and memory as observed during pimping. Additionally, we explore the neuronal pathways and circuits involved in memory encoding, consolidation, and retrieval. Finally, we explored the effects of this methodology as it is currently used in the United States medical education system.
Collapse
Affiliation(s)
- Med Jimson D Jimenez
- Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Pranish Kantak
- Neurological Surgery, Henry Ford Health System, Detroit, USA
| | - Jeffrey Raskin
- Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
- Pediatric Neurological Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| |
Collapse
|
9
|
Marsh B, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, Gonzalez OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. PLoS Comput Biol 2024; 20:e1012245. [PMID: 39028760 PMCID: PMC11290683 DOI: 10.1371/journal.pcbi.1012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/31/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024] Open
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SOs, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the mechanisms by which global and local SOs arise from micro-scale neuronal dynamics and network connectivity remain poorly understood. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and SWS, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. An increase in the overall synaptic strength led to synchronized global SO, while a decrease in synaptic connectivity produced only local slow-waves that would not propagate beyond local areas. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna Marsh
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - M. Gabriela Navas-Zuloaga
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Yury Sokolov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean Erik Delanois
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Oscar C. Gonzalez
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Radiology and Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Marsh BM, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, González OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562408. [PMID: 38617301 PMCID: PMC11014475 DOI: 10.1101/2023.10.15.562408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SO, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the understanding of how global and local SO emerges from micro-scale neuron dynamics and network connectivity remains unclear. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and slow-wave sleep, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. Increase of the overall synaptic strength led to synchronized global SO, while decrease of synaptic connectivity produced only local slow-waves that would not propagate beyond local area. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna M Marsh
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| | | | - Burke Q Rosen
- Neuroscience Graduate Program, University of California, San Diego
| | - Yury Sokolov
- Department of Medicine, University of California, San Diego
| | - Jean Erik Delanois
- Department of Medicine, University of California, San Diego
- Department of Computer Science and Engineering, University of California, San Diego
| | | | | | - Eric Halgren
- Neuroscience Graduate Program, University of California, San Diego
- Department of Radiology and Neuroscience, University of California, San Diego
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| |
Collapse
|
11
|
Castelnovo A, Casetta C, Cavallotti S, Marcatili M, Del Fabro L, Canevini MP, Sarasso S, D'Agostino A. Proof-of-concept evidence for high-density EEG investigation of sleep slow wave traveling in First-Episode Psychosis. Sci Rep 2024; 14:6826. [PMID: 38514761 PMCID: PMC10958040 DOI: 10.1038/s41598-024-57476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is thought to reflect aberrant connectivity within cortico-cortical and reentrant thalamo-cortical loops, which physiologically integrate and coordinate the function of multiple cortical and subcortical structures. Despite extensive research, reliable biomarkers of such "dys-connectivity" remain to be identified at the onset of psychosis, and before exposure to antipsychotic drugs. Because slow waves travel across the brain during sleep, they represent an ideal paradigm to study pathological conditions affecting brain connectivity. Here, we provide proof-of-concept evidence for a novel approach to investigate slow wave traveling properties in First-Episode Psychosis (FEP) with high-density electroencephalography (EEG). Whole-night sleep recordings of 5 drug-naïve FEP and 5 age- and gender-matched healthy control subjects were obtained with a 256-channel EEG system. One patient was re-recorded after 6 months and 3 years of continuous clozapine treatment. Slow wave detection and traveling properties were obtained with an open-source toolbox. Slow wave density and slow wave traveled distance (measured as the line of longest displacement) were significantly lower in patients (p < 0.05). In the patient who was tested longitudinally during effective clozapine treatment, slow wave density normalized, while traveling distance only partially recovered. These preliminary findings suggest that slow wave traveling could be employed in larger samples to detect cortical "dys-connectivity" at psychosis onset.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Italian Switzerland, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland.
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Cecilia Casetta
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Cavallotti
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Matteo Marcatili
- Psychiatric Department, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Paola Canevini
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Armando D'Agostino
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Dervinis M, Crunelli V. Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons. CNS Neurosci Ther 2024; 30:e14206. [PMID: 37072918 PMCID: PMC10915987 DOI: 10.1111/cns.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
AIM Many biophysical and non-biophysical models have been able to reproduce the corticothalamic activities underlying different EEG sleep rhythms but none of them included the known ability of neocortical networks and single thalamic neurons to generate some of these waves intrinsically. METHODS We built a large-scale corticothalamic model with a high fidelity in anatomical connectivity consisting of a single cortical column and first- and higher-order thalamic nuclei. The model is constrained by different neocortical excitatory and inhibitory neuronal populations eliciting slow (<1 Hz) oscillations and by thalamic neurons generating sleep waves when isolated from the neocortex. RESULTS Our model faithfully reproduces all EEG sleep waves and the transition from a desynchronized EEG to spindles, slow (<1 Hz) oscillations, and delta waves by progressively increasing neuronal membrane hyperpolarization as it occurs in the intact brain. Moreover, our model shows that slow (<1 Hz) waves most often start in a small assembly of thalamocortical neurons though they can also originate in cortical layer 5. Moreover, the input of thalamocortical neurons increases the frequency of EEG slow (<1 Hz) waves compared to those generated by isolated cortical networks. CONCLUSION Our simulations challenge current mechanistic understanding of the temporal dynamics of sleep wave generation and suggest testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
13
|
Dervinis M, Crunelli V. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model. CNS Neurosci Ther 2024; 30:e14204. [PMID: 37032628 PMCID: PMC10915988 DOI: 10.1111/cns.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Recurrent network activity in corticothalamic circuits generates physiological and pathological EEG waves. Many computer models have simulated spike-and-wave discharges (SWDs), the EEG hallmark of absence seizures (ASs). However, these models either provided detailed simulated activity only in a selected territory (i.e., cortical or thalamic) or did not test whether their corticothalamic networks could reproduce the physiological activities that are generated by these circuits. METHODS Using a biophysical large-scale corticothalamic model that reproduces the full extent of EEG sleep waves, including sleep spindles, delta, and slow (<1 Hz) waves, here we investigated how single abnormalities in voltage- or transmitter-gated channels in the neocortex or thalamus led to SWDs. RESULTS We found that a selective increase in the tonic γ-aminobutyric acid type A receptor (GABA-A) inhibition of first-order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA-A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Decreasing the leak conductance of higher-order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7-14 Hz. CONCLUSION By challenging key features of current mechanistic views, this simulated ictal corticothalamic activity provides novel understanding of ASs and makes key testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
14
|
Fahoum SRH, Blitz DM. Switching neuron contributions to second network activity. J Neurophysiol 2024; 131:417-434. [PMID: 38197163 PMCID: PMC11305648 DOI: 10.1152/jn.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.
Collapse
Affiliation(s)
- Savanna-Rae H Fahoum
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| |
Collapse
|
15
|
Bugnon T, Mayner WGP, Cirelli C, Tononi G. Sleep and wake in a model of the thalamocortical system with Martinotti cells. Eur J Neurosci 2024; 59:703-736. [PMID: 36215116 PMCID: PMC10083195 DOI: 10.1111/ejn.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to the alternation between active (UP) and silent (DOWN) states during sleep slow waves (SWs) remain poorly understood. Previous models have explained the transition to the DOWN state by a progressive failure of excitation because of the build-up of adaptation currents or synaptic depression. However, these models are at odds with recent studies suggesting a role for presynaptic inhibition by Martinotti cells (MaCs) in generating SWs. Here, we update a classical large-scale model of sleep SWs to include MaCs and propose a different mechanism for the generation of SWs. In the wake mode, the network exhibits irregular and selective activity with low firing rates (FRs). Following an increase in the strength of background inputs and a modulation of synaptic strength and potassium leak potential mimicking the reduced effect of acetylcholine during sleep, the network enters a sleep-like regime in which local increases of network activity trigger bursts of MaC activity, resulting in strong disfacilitation of the local network via presynaptic GABAB1a -type inhibition. This model replicates findings on slow wave activity (SWA) during sleep that challenge previous models, including low and skewed FRs that are comparable between the wake and sleep modes, higher synchrony of transitions to DOWN states than to UP states, the possibility of triggering SWs by optogenetic stimulation of MaCs, and the local dependence of SWA on synaptic strength. Overall, this work points to a role for presynaptic inhibition by MaCs in the generation of DOWN states during sleep.
Collapse
Affiliation(s)
- Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - William G. P. Mayner
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| |
Collapse
|
16
|
Bergamo D, Handjaras G, Petruso F, Talami F, Ricciardi E, Benuzzi F, Vaudano AE, Meletti S, Bernardi G, Betta M. Maturation-dependent changes in cortical and thalamic activity during sleep slow waves: Insights from a combined EEG-fMRI study. Sleep Med 2024; 113:357-369. [PMID: 38113618 DOI: 10.1016/j.sleep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Studies using scalp EEG have shown that slow waves (0.5-4 Hz), the most prominent hallmark of NREM sleep, undergo relevant changes from childhood to adulthood, mirroring brain structural modifications and the acquisition of cognitive skills. Here we used simultaneous EEG-fMRI to investigate the cortical and subcortical correlates of slow waves in school-age children and determine their relative developmental changes. METHODS We analyzed data from 14 school-age children with self-limited focal epilepsy of childhood who fell asleep during EEG-fMRI recordings. Brain regions associated with slow-wave occurrence were identified using a voxel-wise regression that also modelled interictal epileptic discharges and sleep spindles. At the group level, a mixed-effects linear model was used. The results were qualitatively compared with those obtained from 2 adolescents with epilepsy and 17 healthy adults. RESULTS Slow waves were associated with hemodynamic-signal decreases in bilateral somatomotor areas. Such changes extended more posteriorly relative to those in adults. Moreover, the involvement of areas belonging to the default mode network changes as a function of age. No significant hemodynamic responses were observed in subcortical structures. However, we identified a significant correlation between age and thalamic hemodynamic changes. CONCLUSIONS Present findings indicate that the somatomotor cortex may have a key role in slow-wave expression throughout the lifespan. At the same time, they are consistent with a posterior-to-anterior shift in slow-wave distribution mirroring brain maturational changes. Finally, our results suggest that slow-wave changes may not reflect only neocortical modifications but also the maturation of subcortical structures, including the thalamus.
Collapse
Affiliation(s)
- Damiana Bergamo
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Flavia Petruso
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy; Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | | | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Italy
| | - Giulio Bernardi
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Monica Betta
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
17
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
18
|
Nasretdinov A, Vinokurova D, Lemale CL, Burkhanova-Zakirova G, Chernova K, Makarova J, Herreras O, Dreier JP, Khazipov R. Diversity of cortical activity changes beyond depression during Spreading Depolarizations. Nat Commun 2023; 14:7729. [PMID: 38007508 PMCID: PMC10676372 DOI: 10.1038/s41467-023-43509-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Spreading depolarizations (SDs) are classically thought to be associated with spreading depression of cortical activity. Here, we found that SDs in patients with subarachnoid hemorrhage produce variable, ranging from depression to booming, changes in electrocorticographic activity, especially in the delta frequency band. In rats, depression of activity was characteristic of high-potassium-induced full SDs, whereas partial superficial SDs caused either little change or a boom of activity at the cortical vertex, supported by volume conduction of signals from spared delta generators in the deep cortical layers. Partial SDs also caused moderate neuronal depolarization and sustained excitation, organized in gamma oscillations in a narrow sub-SD zone. Thus, our study challenges the concept of homology between spreading depolarization and spreading depression by showing that SDs produce variable, from depression to booming, changes in activity at the cortical surface and in different cortical layers depending on the depth of SD penetration.
Collapse
Affiliation(s)
- Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
- INMED-INSERM, Aix-Marseille University, Marseille, 13273, France
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117, Berlin, Germany
| | | | - Ksenia Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | - Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, D-10117, Berlin, Germany
- Bernstein Centre for Computational Neuroscience Berlin, D-10115, Berlin, Germany
- Einstein Centre for Neurosciences Berlin, D-10117, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia.
- INMED-INSERM, Aix-Marseille University, Marseille, 13273, France.
| |
Collapse
|
19
|
Cabrera-Álvarez J, Doorn N, Maestú F, Susi G. Modeling the role of the thalamus in resting-state functional connectivity: Nature or structure. PLoS Comput Biol 2023; 19:e1011007. [PMID: 37535694 PMCID: PMC10426958 DOI: 10.1371/journal.pcbi.1011007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
The thalamus is a central brain structure that serves as a relay station for sensory inputs from the periphery to the cortex and regulates cortical arousal. Traditionally, it has been regarded as a passive relay that transmits information between brain regions. However, recent studies have suggested that the thalamus may also play a role in shaping functional connectivity (FC) in a task-based context. Based on this idea, we hypothesized that due to its centrality in the network and its involvement in cortical activation, the thalamus may also contribute to resting-state FC, a key neurological biomarker widely used to characterize brain function in health and disease. To investigate this hypothesis, we constructed ten in-silico brain network models based on neuroimaging data (MEG, MRI, and dwMRI), and simulated them including and excluding the thalamus, and raising the noise into thalamus to represent the afferences related to the reticular activating system (RAS) and the relay of peripheral sensory inputs. We simulated brain activity and compared the resulting FC to their empirical MEG counterparts to evaluate model's performance. Results showed that a parceled version of the thalamus with higher noise, able to drive damped cortical oscillators, enhanced the match to empirical FC. However, with an already active self-oscillatory cortex, no impact on the dynamics was observed when introducing the thalamus. We also demonstrated that the enhanced performance was not related to the structural connectivity of the thalamus, but to its higher noisy inputs. Additionally, we highlighted the relevance of a balanced signal-to-noise ratio in thalamus to allow it to propagate its own dynamics. In conclusion, our study sheds light on the role of the thalamus in shaping brain dynamics and FC in resting-state and allowed us to discuss the general role of criticality in the brain at the mesoscale level.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Brady ES, Griffiths J, Andrianova L, Bielska M, Saito T, Saido TC, Randall AD, Tamagnini F, Witton J, Craig MT. Alterations to parvalbumin-expressing interneuron function and associated network oscillations in the hippocampal - medial prefrontal cortex circuit during natural sleep in App NL-G-F/NL-G-F mice. Neurobiol Dis 2023; 182:106151. [PMID: 37172910 DOI: 10.1016/j.nbd.2023.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-β (Aβ) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aβ-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.
Collapse
Affiliation(s)
- Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; Gladstone Institute for Neurological Disease, 1650 Owens Street, San Francisco, CA 91458, United States of America
| | - Jessica Griffiths
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Monika Bielska
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Andrew D Randall
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Francesco Tamagnini
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Jonathan Witton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK.
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
22
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Jeakle EN, Abbott JR, Usoro JO, Wu Y, Haghighi P, Radhakrishna R, Sturgill BS, Nakajima S, Thai TTD, Pancrazio JJ, Cogan SF, Hernandez-Reynoso AG. Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. MICROMACHINES 2023; 14:680. [PMID: 36985087 PMCID: PMC10054633 DOI: 10.3390/mi14030680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation. The spectral density and bandpower between 1 and 500 Hz of recordings were compared over the implantation period for both device types. Initially, the bandpower of the a-SiC devices and standard MEAs was comparable. However, the standard MEAs showed a consistent decline in both bandpower and power spectral density throughout the 16 weeks post-implantation, whereas the a-SiC MEAs showed substantially more stable performance. These differences in bandpower and spectral density between standard and a-SiC MEAs were statistically significant from week 6 post-implantation until the end of the study at 16 weeks. These results support the use of ultra-thin a-SiC MEAs to develop chronic, reliable brain-machine interfaces.
Collapse
Affiliation(s)
- Eleanor N. Jeakle
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Justin R. Abbott
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Teresa T. D. Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
24
|
Cavelli ML, Mao R, Findlay G, Driessen K, Bugnon T, Tononi G, Cirelli C. Sleep/wake changes in perturbational complexity in rats and mice. iScience 2023; 26:106186. [PMID: 36895652 PMCID: PMC9988678 DOI: 10.1016/j.isci.2023.106186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In humans, the level of consciousness is assessed by quantifying the spatiotemporal complexity of cortical responses using Perturbational Complexity Index (PCI) and related PCIst (st, state transitions). Here we validate PCIst in freely moving rats and mice by showing that it is lower in NREM sleep and slow wave anesthesia than in wake or REM sleep, as in humans. We then show that (1) low PCIst is associated with the occurrence of an OFF period of neuronal silence; (2) stimulation of deep, but not superficial, cortical layers leads to reliable PCIst changes across sleep/wake and anesthesia; (3) consistent PCIst changes are independent of which single area is being stimulated or recorded, except for recordings in mouse prefrontal cortex. These experiments show that PCIst can reliably measure vigilance states in unresponsive animals and support the hypothesis that it is low when an OFF period disrupts causal interactions in cortical networks.
Collapse
Affiliation(s)
- Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
25
|
Fukai T. Computational models of Idling brain activity for memory processing. Neurosci Res 2022; 189:75-82. [PMID: 36592825 DOI: 10.1016/j.neures.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Studying the underlying neural mechanisms of cognitive functions of the brain is one of the central questions in modern biology. Moreover, it has significantly impacted the development of novel technologies in artificial intelligence. Spontaneous activity is a unique feature of the brain and is currently lacking in many artificially constructed intelligent machines. Spontaneous activity may represent the brain's idling states, which are internally driven by neuronal networks and possibly participate in offline processing during awake, sleep, and resting states. Evidence is accumulating that the brain's spontaneous activity is not mere noise but part of the mechanisms to process information about previous experiences. A bunch of literature has shown how previous sensory and behavioral experiences influence the subsequent patterns of brain activity with various methods in various animals. It seems, however, that the patterns of neural activity and their computational roles differ significantly from area to area and from function to function. In this article, I review the various forms of the brain's spontaneous activity, especially those observed during memory processing, and some attempts to model the generation mechanisms and computational roles of such activities.
Collapse
Affiliation(s)
- Tomoki Fukai
- Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
26
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
27
|
Ala-Kokko T, Erikson K, Koskenkari J, Laurila J, Kortelainen J. Monitoring of nighttime EEG slow-wave activity during dexmedetomidine infusion in patients with hyperactive ICU delirium: An observational pilot study. Acta Anaesthesiol Scand 2022; 66:1211-1218. [PMID: 36053891 DOI: 10.1111/aas.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The disturbance of sleep has been associated with intensive care unit (ICU) delirium. Monitoring of EEG slow-wave activity (SWA) has potential in measuring sleep quality and quantity. We investigated the quantitative monitoring of nighttime SWA and its association with the clinical evaluation of sleep in patients with hyperactive ICU delirium treated with dexmedetomidine. METHODS We performed overnight EEG recordings in 15 patients diagnosed with hyperactive delirium during moderate dexmedetomidine sedation. SWA was evaluated by offline calculation of the C-Trend Index, describing SWA in one parameter ranging 0 to 100 in values. Average and percentage of SWA values <50 were categorized as poor. The sleep quality and depth was clinically evaluated by the bedside nurse using the Richards-Campbell Sleep Questionnaire (RCSQ) with scores <70 categorized as poor. RESULTS Nighttime SWA revealed individual sleep structures and fundamental variation between patients. SWA was poor in 67%, sleep quality (RCSQ) in 67%, and sleep depth (RCSQ) in 60% of the patients. The category of SWA aligned with that of RCSQ-based sleep quality in 87% and RCSQ-based sleep depth in 67% of the patients. CONCLUSION Both, SWA and clinical evaluation suggested that the quality and depth of nighttime sleep were poor in most patients with hyperactive delirium despite dexmedetomidine infusion. Furthermore, the SWA and clinical evaluation classifications were not uniformly in agreement. An objective mode such as practical EEG-based solution for sleep evaluation and individual drug dosing in the ICU setting could offer potential in improving sleep for patients with delirium.
Collapse
Affiliation(s)
- Tero Ala-Kokko
- Division of Intensive Care Medicine, Research Group of Surgery, Anesthesiology, and Intensive Care Medicine, Oulu University Hospital and Medical Research Center, Oulu, Finland
| | - Kristo Erikson
- Division of Intensive Care Medicine, Research Group of Surgery, Anesthesiology, and Intensive Care Medicine, Oulu University Hospital and Medical Research Center, Oulu, Finland
| | - Juha Koskenkari
- Division of Intensive Care Medicine, Research Group of Surgery, Anesthesiology, and Intensive Care Medicine, Oulu University Hospital and Medical Research Center, Oulu, Finland
| | - Jouko Laurila
- Division of Intensive Care Medicine, Research Group of Surgery, Anesthesiology, and Intensive Care Medicine, Oulu University Hospital and Medical Research Center, Oulu, Finland
| | - Jukka Kortelainen
- Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, University of Oulu and Medical Research Center, Oulu, Finland.,Cerenion Oy, Oulu, Finland
| |
Collapse
|
28
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
30
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
31
|
Roebber JK, Lewis PA, Crunelli V, Navarrete M, Hamandi K. Effects of Anti-Seizure Medication on Sleep Spindles and Slow Waves in Drug-Resistant Epilepsy. Brain Sci 2022; 12:1288. [PMID: 36291222 PMCID: PMC9599317 DOI: 10.3390/brainsci12101288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 09/23/2023] Open
Abstract
There is a close bidirectional relationship between sleep and epilepsy. Anti-seizure medications (ASM) act to reduce seizure frequency but can also impact sleep; this remains a relatively unexplored field given the importance of sleep on seizure occurrence, memory consolidation, and quality of life. We compared the effect of poly-ASM treatment on a night of sleep compared to an unmedicated night in patients with drug-resistant epilepsy, where ASMs were withdrawn and later restored as part of their pre-surgical evaluation. Within-subject analysis between medicated and unmedicated nights showed ASMs increased spindle (11-16 Hz) power and decreased slow wave (0.1-2 Hz) amplitude. Spindles became less strongly coupled to slow waves in the ASM night compared to no-ASM night, with effects to both the phase and strength of coupling and correlated with slow wave reduction. These effects were not seen in age-matched controls from the same unit where ASMs were not changed between two nights. Overall, we found that ASM polytherapy not only changed specific sleep waveforms, but also the fine interplay of spindle/slow wave coupling. Since these sleep oscillations impact both seizure occurrence and memory consolidation, our findings provide evidence towards a decoupling impact of ASMs on sleep that should be considered in future studies of sleep and memory disruption in people with epilepsy.
Collapse
Affiliation(s)
- Jennifer K. Roebber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Penelope A. Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
32
|
The human thalamus orchestrates neocortical oscillations during NREM sleep. Nat Commun 2022; 13:5231. [PMID: 36064855 PMCID: PMC9445182 DOI: 10.1038/s41467-022-32840-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023] Open
Abstract
A hallmark of non-rapid eye movement sleep is the coordinated interplay of slow oscillations (SOs) and sleep spindles. Traditionally, a cortico-thalamo-cortical loop is suggested to coordinate these rhythms: neocortically-generated SOs trigger spindles in the thalamus that are projected back to neocortex. Here, we used intrathalamic recordings from human epilepsy patients to test this canonical interplay. We show that SOs in the anterior thalamus precede neocortical SOs (peak −50 ms), whereas concurrently-recorded SOs in the mediodorsal thalamus are led by neocortical SOs (peak +50 ms). Sleep spindles, detected in both thalamic nuclei, preceded their neocortical counterparts (peak −100 ms) and were initiated during early phases of thalamic SOs. Our findings indicate an active role of the anterior thalamus in organizing sleep rhythms in the neocortex and highlight the functional diversity of thalamic nuclei in humans. The thalamic coordination of sleep oscillations could have broad implications for the mechanisms underlying memory consolidation. Slow oscillations, which are instrumental to memory consolidation, have been assumed to be solely generated in neocortex. Here, the authors show that the anterior thalamus might play a fundamental role in organizing slow oscillations in human sleep.
Collapse
|
33
|
Menicucci D, Lunghi C, Zaccaro A, Morrone MC, Gemignani A. Mutual interaction between visual homeostatic plasticity and sleep in adult humans. eLife 2022; 11:70633. [PMID: 35972073 PMCID: PMC9417418 DOI: 10.7554/elife.70633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep and plasticity are highly interrelated, as sleep slow oscillations and sleep spindles are associated with consolidation of Hebbian-based processes. However, in adult humans, visual cortical plasticity is mainly sustained by homeostatic mechanisms, for which the role of sleep is still largely unknown. Here, we demonstrate that non-REM sleep stabilizes homeostatic plasticity of ocular dominance induced in adult humans by short-term monocular deprivation: the counterintuitive and otherwise transient boost of the deprived eye was preserved at the morning awakening (>6 hr after deprivation). Subjects exhibiting a stronger boost of the deprived eye after sleep had increased sleep spindle density in frontopolar electrodes, suggesting the involvement of distributed processes. Crucially, the individual susceptibility to visual homeostatic plasticity soon after deprivation correlated with the changes in sleep slow oscillations and spindle power in occipital sites, consistent with a modulation in early occipital visual cortex.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Claudia Lunghi
- Département d'études Cognitives, École Normale Supérieure, UMR 8248 CNRS, Paris, France
| | - Andrea Zaccaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Khalilzad Sharghi V, Maltbie EA, Pan WJ, Keilholz SD, Gopinath KS. Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals. Front Neurosci 2022; 16:909999. [PMID: 36003960 PMCID: PMC9393715 DOI: 10.3389/fnins.2022.909999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.
Collapse
Affiliation(s)
- Vahid Khalilzad Sharghi
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Eric A. Maltbie
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Kaundinya S. Gopinath
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Kaundinya S. Gopinath,
| |
Collapse
|
35
|
Brain-wide neural co-activations in resting human. Neuroimage 2022; 260:119461. [PMID: 35820583 PMCID: PMC9472753 DOI: 10.1016/j.neuroimage.2022.119461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of < 0.1 Hz. However, understanding of fast brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spectral, and transitional characteristics remain limited due to the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing principles of brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical neural tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of resting human brains into recurring and transitional functional states, which are featured with the prominent spatial phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6 Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional states. We further identified a superstructure that regulated between-state immediate and long-range transitions involving the entire set of identified cCAPs and governed a significant aspect of brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal rich dynamic structures of brain-wide human neural activations.
Collapse
|
36
|
Cho FS, Vainchtein ID, Voskobiynyk Y, Morningstar AR, Aparicio F, Higashikubo B, Ciesielska A, Broekaart DWM, Anink JJ, van Vliet EA, Yu X, Khakh BS, Aronica E, Molofsky AV, Paz JT. Enhancing GAT-3 in thalamic astrocytes promotes resilience to brain injury in rodents. Sci Transl Med 2022; 14:eabj4310. [PMID: 35857628 DOI: 10.1126/scitranslmed.abj4310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.
Collapse
Affiliation(s)
- Frances S Cho
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Francisco Aparicio
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bryan Higashikubo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Jasper J Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, Netherlands
| | - Anna V Molofsky
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
37
|
Ujma PP, Szalárdy O, Fabó D, Erőss L, Bódizs R. Thalamic activity during scalp slow waves in humans. Neuroimage 2022; 257:119325. [PMID: 35605767 DOI: 10.1016/j.neuroimage.2022.119325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Slow waves are major pacemakers of NREM sleep oscillations. While slow waves themselves are mainly generated by cortical neurons, it is not clear what role thalamic activity plays in the generation of some oscillations grouped by slow waves, and to what extent thalamic activity during slow waves is itself driven by corticothalamic inputs. To address this question, we simultaneously recorded both scalp EEG and local field potentials from six thalamic nuclei (bilateral anterior, mediodorsal and ventral anterior) in fifteen epileptic patients (age-range: 17-64 years, 7 females) undergoing Deep Brain Stimulation Protocol and assessed the temporal evolution of thalamic activity relative to scalp slow waves using time-frequency analysis. We found that thalamic activity in all six nuclei during scalp slow waves is highly similar to what is observed on the scalp itself. Slow wave downstates are characterized by delta, theta and alpha activity and followed by beta, high sigma and low sigma activity during subsequent upstates. Gamma activity in the thalamus is not significantly grouped by slow waves. Theta and alpha activity appeared first on the scalp, but sigma activity appeared first in the thalamus. These effects were largely independent from the scalp region in which SWs were detected and the precise identity of thalamic nuclei. Our results suggest that while small thalamocortical neuron assemblies may initiate cortical oscillations, especially in the sleep spindle range, the large-scale neuronal activity in the thalamus which is detected by field potentials is principally driven by global cortical activity, and thus it is highly similar to what is observed on the scalp.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary; National Institute of Clinical Neuroscience, Budapest, Hungary.
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary; National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
38
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
39
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
40
|
Pazienti A, Galluzzi A, Dasilva M, Sanchez-Vives MV, Mattia M. Slow waves form expanding, memory-rich mesostates steered by local excitability in fading anesthesia. iScience 2022; 25:103918. [PMID: 35265807 PMCID: PMC8899414 DOI: 10.1016/j.isci.2022.103918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
In the arousal process, the brain restores its integrative activity from the synchronized state of slow wave activity (SWA). The mechanisms underpinning this state transition remain, however, to be elucidated. Here we simultaneously probed neuronal assemblies throughout the whole cortex with micro-electrocorticographic recordings in mice. We investigated the progressive shaping of propagating SWA at different levels of isoflurane. We found a form of memory of the wavefront shapes at deep anesthesia, tightly alternating posterior-anterior-posterior patterns. At low isoflurane, metastable patterns propagated in more directions, reflecting an increased complexity. The wandering across these mesostates progressively increased its randomness, as predicted by simulations of a network of spiking neurons, and confirmed in our experimental data. The complexity increase is explained by the elevated excitability of local assemblies with no modifications of the network connectivity. These results shed new light on the functional reorganization of the cortical network as anesthesia fades out. Complexity of isoflurane-induced slow waves reliably determines anesthesia level In deep anesthesia, the propagation strictly alternates between front-back-front patterns In light anesthesia, there is a continuum of directions and faster propagation Local excitability underpins the cortical reorganization in fading anesthesia
Collapse
|
41
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
42
|
Detecting cell assemblies by NMF-based clustering from calcium imaging data. Neural Netw 2022; 149:29-39. [DOI: 10.1016/j.neunet.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/20/2022]
|
43
|
Adlan LG, Csordás-Nagy M, Bodosi B, Kalmár G, Nyúl LG, Nagy A, Kekesi G, Büki A, Horvath G. Sleep-Wake Rhythm and Oscillatory Pattern Analysis in a Multiple Hit Schizophrenia Rat Model (Wisket). Front Behav Neurosci 2022; 15:799271. [PMID: 35153694 PMCID: PMC8831724 DOI: 10.3389/fnbeh.2021.799271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography studies in schizophrenia reported impairments in circadian rhythm and oscillatory activity, which may reflect the deficits in cognitive and sensory processing. The current study evaluated the circadian rhythm and the state-dependent oscillatory pattern in control Wistar and a multiple hit schizophrenia rat model (Wisket) using custom-made software for identification of the artifacts and the classification of sleep-wake stages and the active and quiet awake substages. The Wisket animals have a clear light-dark cycle similar to controls, and their sleep-wake rhythm showed only a tendency to spend more time in non-rapid eye movement (NREM) and less in rapid eye movement (REM) stages. In spite of the weak diurnal variation in oscillation in both groups, the Wisket rats had higher power in the low-frequency delta, alpha, and beta bands and lower power in the high-frequency theta and gamma bands in most stages. Furthermore, the significant differences between the two groups were pronounced in the active waking substage. These data suggest that the special changes in the oscillatory pattern of this schizophrenia rat model may have a significant role in the impaired cognitive functions observed in previous studies.
Collapse
Affiliation(s)
- Leatitia Gabriella Adlan
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mátyás Csordás-Nagy
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Bodosi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - György Kalmár
- Department of Technical Informatics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nyúl
- Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, Institute of Informatics, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- *Correspondence: Gyongyi Horvath,
| |
Collapse
|
44
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
45
|
Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021; 15:768762. [PMID: 34803618 PMCID: PMC8602873 DOI: 10.3389/fnsys.2021.768762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising, and this typically evokes prediction error signatures in mammalian brains. In humans such mismatched expectations are often associated with an emotional response as well, and emotional dysregulation can lead to cognitive disorders such as depression or schizophrenia. Emotional responses are understood to be important for memory consolidation, suggesting that positive or negative 'valence' cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely (as could happen by generalization or habituation) is probably maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain function as an ongoing balance between prediction and surprise suggests a compelling approach to study and understand the evolution of consciousness in animals. In particular, this view may provide insight into the function and evolution of 'active' sleep. Here, we propose that active sleep - when animals are behaviorally asleep but their brain seems awake - is widespread beyond mammals and birds, and may have evolved as a mechanism for optimizing predictive processing in motile creatures confronted with constantly changing environments. To explore our hypothesis, we progress from humans to invertebrates, investigating how a potential role for rapid eye movement (REM) sleep in emotional regulation in humans could be re-examined as a conserved sleep function that co-evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness in animals.
Collapse
Affiliation(s)
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
46
|
Babaeeghazvini P, Rueda-Delgado LM, Gooijers J, Swinnen SP, Daffertshofer A. Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Front Hum Neurosci 2021; 15:721206. [PMID: 34690718 PMCID: PMC8529047 DOI: 10.3389/fnhum.2021.721206] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Implications of structural connections within and between brain regions for their functional counterpart are timely points of discussion. White matter microstructural organization and functional activity can be assessed in unison. At first glance, however, the corresponding findings appear variable, both in the healthy brain and in numerous neuro-pathologies. To identify consistent associations between structural and functional connectivity and possible impacts for the clinic, we reviewed the literature of combined recordings of electro-encephalography (EEG) and diffusion-based magnetic resonance imaging (MRI). It appears that the strength of event-related EEG activity increases with increased integrity of structural connectivity, while latency drops. This agrees with a simple mechanistic perspective: the nature of microstructural white matter influences the transfer of activity. The EEG, however, is often assessed for its spectral content. Spectral power shows associations with structural connectivity that can be negative or positive often dependent on the frequencies under study. Functional connectivity shows even more variations, which are difficult to rank. This might be caused by the diversity of paradigms being investigated, from sleep and resting state to cognitive and motor tasks, from healthy participants to patients. More challenging, though, is the potential dependency of findings on the kind of analysis applied. While this does not diminish the principal capacity of EEG and diffusion-based MRI co-registration, it highlights the urgency to standardize especially EEG analysis.
Collapse
Affiliation(s)
- Parinaz Babaeeghazvini
- Department of Human Movements Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura M. Rueda-Delgado
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jolien Gooijers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Andreas Daffertshofer
- Department of Human Movements Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
Jaramillo V, Jendoubi J, Maric A, Mensen A, Heyse NC, Eberhard-Moscicka AK, Wiest R, Bassetti CLA, Huber R. Thalamic Influence on Slow Wave Slope Renormalization During Sleep. Ann Neurol 2021; 90:821-833. [PMID: 34516002 PMCID: PMC9291607 DOI: 10.1002/ana.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023]
Abstract
Objective Slow waves are thought to mediate an overall reduction in synaptic strength during sleep. The specific contribution of the thalamus to this so‐called synaptic renormalization is unknown. Thalamic stroke is associated with daytime sleepiness, along with changes to sleep electroencephalography and cognition, making it a unique “experiment of nature” to assess the relationship between sleep rhythms, synaptic renormalization, and daytime functions. Methods Sleep was studied by polysomnography and high‐density electroencephalography over 17 nights in patients with thalamic (n = 12) and 15 nights in patients with extrathalamic (n = 11) stroke. Sleep electroencephalographic overnight slow wave slope changes and their relationship with subjective daytime sleepiness, cognition, and other functional tests were assessed. Results Thalamic and extrathalamic patients did not differ in terms of age, sleep duration, or apnea–hypopnea index. Conversely, overnight slope changes were reduced in a large cluster of electrodes in thalamic compared to extrathalamic stroke patients. This reduction was related to increased daytime sleepiness. No significant differences were found in other functional tests between the 2 groups. Interpretation In patients with thalamic stroke, a reduction in overnight slow wave slope change and increased daytime sleepiness was found. Sleep‐ and wake‐centered mechanisms for this relationship are discussed. Overall, this study suggests a central role of the thalamus in synaptic renormalization. ANN NEUROL 2021;90:821–833
Collapse
Affiliation(s)
- Valeria Jaramillo
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Jasmine Jendoubi
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Armand Mensen
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Natalie C Heyse
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich
| | - Aleksandra K Eberhard-Moscicka
- Perception and Eye Movement Laboratory, Departments of Neurology and Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio L A Bassetti
- Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland.,Center for Experimental Neurology, Department of Neurology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Reto Huber
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich
| |
Collapse
|
48
|
Varani S, Vecchia D, Zucca S, Forli A, Fellin T. Stimulus Feature-Specific Control of Layer 2/3 Subthreshold Whisker Responses by Layer 4 in the Mouse Primary Somatosensory Cortex. Cereb Cortex 2021; 32:1419-1436. [PMID: 34448808 PMCID: PMC8971086 DOI: 10.1093/cercor/bhab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/01/2023] Open
Abstract
In the barrel field of the rodent primary somatosensory cortex (S1bf), excitatory cells in layer 2/3 (L2/3) display sparse firing but reliable subthreshold response during whisker stimulation. Subthreshold responses encode specific features of the sensory stimulus, for example, the direction of whisker deflection. According to the canonical model for the flow of sensory information across cortical layers, activity in L2/3 is driven by layer 4 (L4). However, L2/3 cells receive excitatory inputs from other regions, raising the possibility that L4 partially drives L2/3 during whisker stimulation. To test this hypothesis, we combined patch-clamp recordings from L2/3 pyramidal neurons in S1bf with selective optogenetic inhibition of L4 during passive whisker stimulation in both anesthetized and awake head-restrained mice. We found that L4 optogenetic inhibition did not abolish the subthreshold whisker-evoked response nor it affected spontaneous membrane potential fluctuations of L2/3 neurons. However, L4 optogenetic inhibition decreased L2/3 subthreshold responses to whisker deflections in the preferred direction, and it increased L2/3 responses to stimuli in the nonpreferred direction, leading to a change in the direction tuning. Our results contribute to reveal the circuit mechanisms underlying the processing of sensory information in the rodent S1bf.
Collapse
Affiliation(s)
- Stefano Varani
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
49
|
Sousouri G, Krugliakova E, Skorucak J, Leach S, Snipes S, Ferster ML, Da Poian G, Karlen W, Huber R. Neuromodulation by means of phase-locked auditory stimulation affects key marker of excitability and connectivity during sleep. Sleep 2021; 45:6347149. [PMID: 34373925 DOI: 10.1093/sleep/zsab204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
The propagating pattern of sleep slow waves (high-amplitude oscillations < 4.5 Hz) serves as a blueprint of cortical excitability and brain connectivity. Phase-locked auditory stimulation is a promising tool for the modulation of ongoing brain activity during sleep; however, its underlying mechanisms remain unknown. Here, eighteen healthy young adults were measured with high-density electroencephalography (hd-EEG) in three experimental conditions; one with no stimulation, one with up- and one with down-phase stimulation; ten participants were included in the analysis. We show that up-phase auditory stimulation on a right prefrontal area locally enhances cortical involvement and promotes traveling by increasing the propagating distance and duration of targeted small-amplitude waves. On the contrary, down-phase stimulation proves more efficient at perturbing large-amplitude waves and interferes with ongoing traveling by disengaging cortical regions and interrupting high synchronicity in the target area as indicated by increased traveling speed. These results point out to different underlying mechanisms mediating the effects of up- and down-phase stimulation and highlight the strength of traveling analysis as a sensitive and informative method for the study of connectivity and cortical excitability alterations.
Collapse
Affiliation(s)
- Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Giulia Da Poian
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|
50
|
Sheybani L, Mégevand P, Spinelli L, Bénar CG, Momjian S, Seeck M, Quairiaux C, Kleinschmidt A, Vulliémoz S. Slow oscillations open susceptible time windows for epileptic discharges. Epilepsia 2021; 62:2357-2371. [PMID: 34338315 PMCID: PMC9290693 DOI: 10.1111/epi.17020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Objective In patients with epilepsy, interictal epileptic discharges are a diagnostic hallmark of epilepsy and represent abnormal, so‐called “irritative” activity that disrupts normal cognitive functions. Despite their clinical relevance, their mechanisms of generation remain poorly understood. It is assumed that brain activity switches abruptly, unpredictably, and supposedly randomly to these epileptic transients. We aim to study the period preceding these epileptic discharges, to extract potential proepileptogenic mechanisms supporting their expression. Methods We used multisite intracortical recordings from patients who underwent intracranial monitoring for refractory epilepsy, the majority of whom had a mesial temporal lobe seizure onset zone. Our objective was to evaluate the existence of proepileptogenic windows before interictal epileptic discharges. We tested whether the amplitude and phase synchronization of slow oscillations (.5–4 Hz and 4–7 Hz) increase before epileptic discharges and whether the latter are phase‐locked to slow oscillations. Then, we tested whether the phase‐locking of neuronal activity (assessed by high‐gamma activity, 60–160 Hz) to slow oscillations increases before epileptic discharges to provide a potential mechanism linking slow oscillations to interictal activities. Results Changes in widespread slow oscillations anticipate upcoming epileptic discharges. The network extends beyond the irritative zone, but the increase in amplitude and phase synchronization is rather specific to the irritative zone. In contrast, epileptic discharges are phase‐locked to widespread slow oscillations and the degree of phase‐locking tends to be higher outside the irritative zone. Then, within the irritative zone only, we observe an increased coupling between slow oscillations and neuronal discharges before epileptic discharges. Significance Our results show that epileptic discharges occur during vulnerable time windows set up by a specific phase of slow oscillations. The specificity of these permissive windows is further reinforced by the increased coupling of neuronal activity to slow oscillations. These findings contribute to our understanding of epilepsy as a distributed oscillopathy and open avenues for future neuromodulation strategies aiming at disrupting proepileptic mechanisms.
Collapse
Affiliation(s)
- Laurent Sheybani
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Pierre Mégevand
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland.,Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Christian G Bénar
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Systems Neurosciences, Marseille, France
| | - Shahan Momjian
- Neurosurgery, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Kleinschmidt
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit / Neurology, Department of Clinical Neuroscience, University Hospitals and Faculty of Medicine of University of Geneva, Geneva, Switzerland
| |
Collapse
|