1
|
North RJ, Cooper G, Mears L, Bothner B, Dlakić M, Merzdorf CS. Persistent Transcriptome Alterations in Zebrafish Embryos After Discontinued Opioid Exposure. Int J Mol Sci 2025; 26:4840. [PMID: 40429979 DOI: 10.3390/ijms26104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Much attention has been paid to the public health crisis that has resulted from the opioid epidemic. Given the high number of opioid users that are of childbearing age, the impact of utero exposure is a serious concern. Unfortunately, there is little knowledge regarding the consequences of opioid exposure during early development. While neurobehavioral effects of opioid exposure are well-documented, effects of exposure on embryogenesis remain largely unexplored. To address this gap in knowledge, we investigated the effects of oxycodone and fentanyl exposure on gene expression in zebrafish (Danio rerio) embryos using whole embryo RNA sequencing. Embryos were exposed to environmentally relevant (oxycodone HCl 10.6 ng/L and fentanyl citrate 0.629 ng/L) and therapeutically relevant doses (oxycodone HCl 35.14 μg/L and fentanyl citrate 3.14 μg/L) from 2 to 24 h post-fertilization (hpf), followed by another 24 h of opioid-free development. mRNA profiling at 48 hpf revealed dose- and drug-specific gene expression changes. Lower doses of oxycodone and fentanyl both induced more differentially expressed transcripts (DETs) than higher doses, potentially indicative of opioid receptor desensitization occurring at higher concentrations. In total, 892 DETs (corresponding to 866 genes) were identified across all conditions suggesting continued differential gene expression well after cessation of opioid exposure. Gene ontology analysis revealed changes in gene expression relating to extracellular matrix (ECM) organization, cell adhesion, and visual and nervous system formation. Key pathways include those involved in axon guidance, synapse formation, and ECM biosynthesis/remodeling, all of which have potential implications on neural connectivity and sensory development. These findings demonstrate that very early developmental exposure to opioids induces persistent transcriptomic changes which may have lasting implications for vertebrate cellular functions. Overall, these data provide insights into the molecular mechanisms of opioid-induced alterations during development.
Collapse
Affiliation(s)
- Ryan J North
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gwendolyn Cooper
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Lucas Mears
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Christa S Merzdorf
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
2
|
Sun N, Chen Q, Chen H, Sun P, Liu Y, Song D, Yu D, Wang P, Song Y, Qin J, Tian K, Zhong J, Ma W, Xuan H, Qian D, Yuan Y, Chen T, Wang X, Jiang C, Cai J, Meng X. A novel nuclear RNA HSD52 scaffolding NONO/SFPQ complex modulates DNA damage repair to facilitate temozolomide resistance. Neuro Oncol 2025; 27:963-978. [PMID: 39673809 PMCID: PMC12083239 DOI: 10.1093/neuonc/noae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is used in the treatment of glioblastoma (GBM). However, the primary obstacle remains the emergence of TMZ chemotherapy resistance. Non-POU domain-containing octamer-binding protein (NONO) and splicing factor proline/glutamine rich (SFPQ) are multifunctional nuclear proteins involved in genome stability and gene regulation. However, the specific role of NONO and SFPQ in TMZ resistance of GBM remains to be explored. METHODS RNA-binding protein immunoprecipitation-microarray and RNA microarray of TMZ-resistant and parental cells were performed for the gain of HSD52. The effects of HSD52 on TMZ resistance were investigated through in vitro assays, intracranial xenograft, and GBM organoid models. The underlying mechanisms were explored by DNA methylation chip, RNA immunoprecipitation, RNA pull-down assays, among others. GBM clinical samples were rolled in to investigate the clinical significance of HSD52. RESULTS We identified a novel noncoding RNA, HSD52, that was highly expressed in TMZ-resistant GBM and facilitated the interaction between NONO and SFPQ. H3 ubiquitination attenuation and reduced DNA methyltransferase 1 (DNMT1) recruitment increased HSD52 transcription via DNA hypo-methylation. HSD52 formed an RNA duplex with UFM1 specific ligase 1 (UFL1) mRNA, thereby promoting NONO/SFPQ complex binding to UFL1 mRNA and enhancing its stability, and then contributed to TMZ resistance through activating the ataxia telangiectasia mutated signaling pathway. In vivo xenograft and GBM organoid models showed significant repression in tumor growth after HSD52 knockout with TMZ treatment. In GBM clinical samples, HSD52 was responsible for the malignant progression and TMZ resistance. CONCLUSIONS Our results revealed that HSD52 could serve as a promising therapeutic target to overcome TMZ resistance, improving the clinical efficacy of TMZ chemotherapy in GBM.
Collapse
Affiliation(s)
- Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qun Chen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Penggang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Song
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pandeng Wang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Qin
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwen Xuan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
| | - Ye Yuan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Wu Lien-Teh Biomedical Innovation Institute, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Yuan C, Patel K, Shi H, Wang HLV, Wang F, Li R, Li Y, Corces VG, Shi H, Das S, Yu J, Jin P, Yao B, Hu J. mcDETECT: Decoding 3D Spatial Synaptic Transcriptomes with Subcellular-Resolution Spatial Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645744. [PMID: 40236251 PMCID: PMC11996425 DOI: 10.1101/2025.03.27.645744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spatial transcriptomics (ST) has shown great potential for unraveling the molecular mechanisms of neurodegenerative diseases. However, most existing analyses of ST data focus on bulk or single-cell resolution, overlooking subcellular compartments such as synapses, which are fundamental structures of the brain's neural network. Here we present mcDETECT, a novel framework that integrates machine learning algorithms and in situ ST (iST) with targeted gene panels to study synapses. mcDETECT identifies individual synapses based on the aggregation of synaptic mRNAs in three-dimensional (3D) space, allowing for the construction of single-synapse spatial transcriptome profiles. By benchmarking the synapse density measured by volume electron microscopy and genetic labeling, we demonstrate that mcDETECT can faithfully and accurately recover the spatial location of single synapses using iST data from multiple platforms, including Xenium, Xenium 5K, MERSCOPE, and CosMx. Based on the subsequent transcriptome profiling, we further stratify total synapses into various subtypes and explore their pathogenic dysregulation associated with Alzheimer's disease (AD) progression, which provides potential targets for synapse-specific therapies in AD progression.
Collapse
|
4
|
Takayama KI, Sato T, Honma T, Yoshida M, Inoue S. Inhibition of PSF Activity Overcomes Resistance to Treatment in Cancers Harboring Mutant p53. Mol Cancer Ther 2025; 24:370-383. [PMID: 39625450 DOI: 10.1158/1535-7163.mct-24-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
Mutations in the TP53 tumor suppressor genes are prevalent in aggressive cancers. Pharmacologic reactivation of dysfunctional p53 due to mutations is a promising strategy for treating such cancers. Recently, a multifunctional proline- and glutamine-rich protein, polypyrimidine tract-binding protein-associated splicing factor (PSF), was identified as a key driver of aggressive cancers. PSF promotes the expression of numerous oncogenes by modulating epigenetic and splicing mechanisms. We previously screened a small-molecule library and discovered compound No. 10-3 as a potent PSF inhibitor. Here, we report the discovery of a No. 10-3 analog, 7,8-dimethoxy-4-(4-methoxy-phenyl)-chromen-2-one (C-30), as a potent PSF inhibitor. Compared with No. 10-3, C-30 treatment specifically suppressed the growth and induced apoptosis of mutant p53-bearing and therapy-resistant cancer cells. Interestingly, C-30 activated a set of p53-regulated genes in therapy-resistant cancer cells. A comprehensive analysis of PSF and p53-binding regions demonstrated a higher level of PSF-binding potential in mutant p53-expressing cancer cells around genomic regions identified as p53-binding peaks in p53 wild-type cancer cells. Treatment of mutant p53-expressing cancer cells with C-30 decreases PSF binding around these sites, leading to activated histone acetylation. We further demonstrated that C-30 impaired tumor growth and increased the expression of p53 target genes in vivo. These results suggested that C-30 produces tumor-suppressive effects similar to the functional reactivation of p53, providing a rationale for the inhibition of PSF activity as a promising therapy against treatment-resistant cancer.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomohiro Sato
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| |
Collapse
|
5
|
Silagi ES, Nduka E, Pazyra-Murphy MF, Paiz JZ, Bhuiyan SA, Segal RA. Profiling local translatomes and RNA binding proteins of somatosensory neurons reveals specializations of individual axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640799. [PMID: 40364912 PMCID: PMC12073832 DOI: 10.1101/2025.02.28.640799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Individual neurons have one or more axons that often extend long distances and traverse multiple microenvironments. However, it is not known how the composition of individual axons is established or locally modulated to enable neuronal function and plasticity. Here, we use spatial translatomics to identify local axonal translatomes in anatomically and functionally specialized neurons in the dorsal root ganglia (DRG). DRG neurons extend long central and peripheral axons in opposite directions and distinct microenvironments to enable somatosensation. Using Translating Ribosome Affinity Purification and RNA sequencing, we generated a comprehensive resource of mRNAs preferentially translated within each axon. Locally translated proteins include pain receptors, ion channels, and translational machinery, which establish distinct electrophysiologic properties and regenerative capacities for each axon. We identify RNA-binding proteins associated with sorting and transporting functionally related mRNAs. These findings provide resources for addressing how axonal translation shapes the spatial organization of neurons and enables subcellular neuroplasticity. HIGHLIGHTS Distinct mRNAs are localized to and translated in individual axons.Axonal translatomes govern regenerative capacity, translational machinery, and electrophysiology.The RBP, SFPQ, coordinates mRNA sorting towards peripheral somatosensory axons.Axonal translatome data can be explored at painseq.shinyapps.io/CompartmentTRAP/.
Collapse
|
6
|
Shen Y, Lin J, Jiang T, Shen X, Li Y, Fu Y, Xu P, Fang L, Chen Z, Huang H, Xia Y, Xu Z, Wang L. GC-derived exosomal circMAN1A2 promotes cancer progression and suppresses T-cell antitumour immunity by inhibiting FBXW11-mediated SFPQ degradation. J Exp Clin Cancer Res 2025; 44:24. [PMID: 39856764 PMCID: PMC11762487 DOI: 10.1186/s13046-025-03288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified. METHODS The exosomal circRNAs enriched in GC were identified using exosomal circRNA sequencing. The biological function of circMAN1A2 in GC was investigated using a series of in vitro and in vivo experiments. PKH-67 staining was used to label the exosomes. The molecular mechanism of exosomal circMAN1A2 was investigated via mass spectrometry, immunoprecipitation, Western blot, and single-cell RNA-sequencing data analyses. RESULTS In our study, we determined that circMAN1A2 (hsa_circ_0000118) was enriched in GC-derived exosomes. Higher circMAN1A2 expression was related to poor survival in GC patients (HR = 2.917, p = 0.0120). Exosomal circMAN1A2 promoted GC progression in vitro and in vivo and suppressed the antitumour activity of T cells. Moreover, circMAN1A2 bound to SFPQ in GC cells and T cells, promoting the G1/S phase transition of the cell cycle in GC cells while inhibiting the activation of the T cell receptor signalling pathway in T cells to decrease antitumour activity. Mechanistically, circMAN1A2 competed with FBXW11 for binding to SFPQ, preventing FBXW11-mediated k48-linked ubiquitination and SFPQ protein degradation, thereby stabilizing SFPQ expression. CONCLUSIONS Our work confirms the critical role of exosomal circMAN1A2 in the progression and immunosuppression of GC. This novel axis of circMAN1A2-SFPQ provides new insights into exosomal circRNA-based GC diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yikai Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xusheng Shen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwang Fu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongxin Huang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Guerra San Juan I, Brunner JW, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. Neurobiol Dis 2025; 204:106759. [PMID: 39644980 DOI: 10.1016/j.nbd.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro. KIF5A deficiency caused reduced neurite complexity in young neurons (DIV14) and defects in axonal regeneration. KIF5A deficiency did not affect neurofilament transport but impaired mitochondrial motility and anterograde speed at DIV42. Notably, KIF5A deficiency strongly reduced anterograde transport of splicing factor proline/glutamine-rich (SFPQ)-associated RNA granules in DIV42 axons. Hence, KIF5A plays a critical role in promoting axonal regrowth after injury and in driving the anterograde transport of mitochondria and especially SFPQ-associated RNA granules in mature neurons.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Huang Z, Zhang H, Huang C, Yi R, Zhang X, Ma K, Huang W, Wu Q, Zhuang Y, Liu J, Liu W, Guo Y, Kang X, Hu X, Bai X, Chen Z. Cytoplasmic Aggregates of Splicing Factor Proline-Glutamine Rich Disrupt Nucleocytoplasmic Transport and Induce Persistent Stress Granules. J Cell Mol Med 2024; 28:e70261. [PMID: 39636149 PMCID: PMC11619156 DOI: 10.1111/jcmm.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Splicing factor proline-glutamine rich (SFPQ), a multifunctional RNA-binding protein (RBP), shows cytoplasmic colocalisation with stress granule (SG) markers; however, the causative relationship and mechanism underlying this coalescence of SFPQ aggregates and SGs remain unclear. In this study, we demonstrate that SFPQ lacking its nuclear localisation sequence spontaneously forms cytoplasmic aggregates that abnormally incorporate immature RNA and induce persistent SGs. mRNA profiling showed that SFPQ mislocalisation induced extensive changes in RNA processing, with a subset of alternatively spliced transcripts associated with nucleocytoplasmic transport. Notably, these altered transporters were sequestered into SFPQ aggregates, constituting aberrant protein-RNA complexes. Importantly, suppression of SG nucleation could not block cytoplasmic SFPQ aggregation with immature RNA and nucleocytoplasmic transporters, both of which, however, were moderately ameliorated by the inhibition of alternative splicing or nuclear export. Our results unveil the physiopathological role and mechanism for mislocalised SFPQ in the RNA metabolism, nucleocytoplasmic transport and pathological SGs.
Collapse
Affiliation(s)
- Zicong Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chuyu Huang
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Runduan Yi
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaoyuan Zhang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ke Ma
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wei Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qingqing Wu
- Department of key Laboratory of Oral Medicine, Guangzhou Institute of Oral DiseaseStomatological Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuge Zhuang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinsheng Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenyuan Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunhui Guo
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiao Hu
- Department of Plastic and Burn SurgeryGuangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University)GuangzhouGuangdongChina
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Department of AnesthesiologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Holt CE. Biological Roles of Local Protein Synthesis in Axons: A Journey of Discovery. Annu Rev Genet 2024; 58:1-18. [PMID: 39121543 DOI: 10.1146/annurev-genet-072220-030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance. The journey has been an exhilarating one, taking me into a new field of RNA biology, with many unexpected twists and turns. In retelling it here, I have tried to recall the major influences on my thinking at the time rather than give a comprehensive review, and I apologize for any omissions due to my own ignorance during that era.
Collapse
Affiliation(s)
- Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
10
|
Zaninello M, Baptista P, Duarte FV. Mitochondrial Dynamics and mRNA Translation: A Local Synaptic Tale. BIOLOGY 2024; 13:746. [PMID: 39336173 PMCID: PMC11428642 DOI: 10.3390/biology13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Mitochondria are dynamic organelles that can adjust and respond to different stimuli within a cell. This plastic ability allows them to effectively coordinate several cellular functions in cells and becomes particularly relevant in highly complex cells such as neurons. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular function and ultimately to a range of diseases, including neurodegenerative disorders. Regulation of mRNA transport and local translation inside neurons is crucial for maintaining the proteome of distal mitochondria, which is vital for energy production and synaptic function. A significant portion of the axonal transcriptome is dedicated to mRNAs for mitochondrial proteins, emphasizing the importance of local translation in sustaining mitochondrial function in areas far from the cell body. In neurons, local translation and the regulation of mRNAs encoding mitochondrial-shaping proteins could be essential for synaptic plasticity and neuronal health. The dynamics of these mRNAs, including their transport and local translation, may influence the morphology and function of mitochondria, thereby affecting the overall energy status and responsiveness of synapses. Comprehending the mitochondria-related mRNA regulation and local translation, as well as its influence on mitochondrial morphology near the synapses will help to better understand neuronal physiology and neurological diseases where mitochondrial dysfunction and impaired synaptic plasticity play a central role.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Pedro Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Guerra San Juan I, Brunner J, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611684. [PMID: 39314491 PMCID: PMC11418931 DOI: 10.1101/2024.09.06.611684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by KIF5A mutations. We generated KIF5A null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints in vitro. The absence of KIF5A resulted in reduced neurite complexity in young motor neurons (DIV14) and significant defects in axonal regeneration capacity at all developmental stages. KIF5A loss did not affect neurofilament transport but resulted in decreased mitochondria motility and anterograde speed at DIV42. More prominently, KIF5A depletion strongly reduced anterograde transport of SFPQ-associated RNA granules in DIV42 motor neuron axons. We conclude that KIF5A most prominently functions in human motor neurons to promote axonal regrowth after injury as well as to anterogradely transport mitochondria and, to a larger extent, SFPQ-associated RNA granules in a time-dependent manner.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jessie Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
De Pace R, Ghosh S, Ryan VH, Sohn M, Jarnik M, Rezvan Sangsari P, Morgan NY, Dale RK, Ward ME, Bonifacino JS. Messenger RNA transport on lysosomal vesicles maintains axonal mitochondrial homeostasis and prevents axonal degeneration. Nat Neurosci 2024; 27:1087-1102. [PMID: 38600167 PMCID: PMC11156585 DOI: 10.1038/s41593-024-01619-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
In neurons, RNA granules are transported along the axon for local translation away from the soma. Recent studies indicate that some of this transport involves hitchhiking of RNA granules on lysosome-related vesicles. In the present study, we leveraged the ability to prevent transport of these vesicles into the axon by knockout of the lysosome-kinesin adaptor BLOC-one-related complex (BORC) to identify a subset of axonal mRNAs that depend on lysosome-related vesicles for transport. We found that BORC knockout causes depletion of a large group of axonal mRNAs mainly encoding ribosomal and mitochondrial/oxidative phosphorylation proteins. This depletion results in mitochondrial defects and eventually leads to axonal degeneration in human induced pluripotent stem cell (iPSC)-derived and mouse neurons. Pathway analyses of the depleted mRNAs revealed a mechanistic connection of BORC deficiency with common neurodegenerative disorders. These results demonstrate that mRNA transport on lysosome-related vesicles is critical for the maintenance of axonal homeostasis and that its failure causes axonal degeneration.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Veronica H Ryan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Zaninello M, Schlegel T, Nolte H, Pirzada M, Savino E, Barth E, Klein I, Wüstenberg H, Uddin T, Wolff L, Wirth B, Lehmann HC, Cioni JM, Langer T, Rugarli EI. CLUH maintains functional mitochondria and translation in motoneuronal axons and prevents peripheral neuropathy. SCIENCE ADVANCES 2024; 10:eadn2050. [PMID: 38809982 PMCID: PMC11135423 DOI: 10.1126/sciadv.adn2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Transporting and translating mRNAs in axons is crucial for neuronal viability. Local synthesis of nuclear-encoded mitochondrial proteins protects long-lived axonal mitochondria from damage; however, the regulatory factors involved are largely unknown. We show that CLUH, which binds mRNAs encoding mitochondrial proteins, prevents peripheral neuropathy and motor deficits in the mouse. CLUH is enriched in the growth cone of developing spinal motoneurons and is required for their growth. The lack of CLUH affects the abundance of target mRNAs and the corresponding mitochondrial proteins more prominently in axons, leading to ATP deficits in the growth cone. CLUH interacts with ribosomal subunits, translation initiation, and ribosome recycling components and preserves axonal translation. Overexpression of the ribosome recycling factor ABCE1 rescues the mRNA and translation defects, as well as the growth cone size, in CLUH-deficient motoneurons. Thus, we demonstrate a role for CLUH in mitochondrial quality control and translational regulation in axons, which is essential for their development and long-term integrity and function.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Tim Schlegel
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Mujeeb Pirzada
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Elisa Savino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Ines Klein
- Department of Neurology, University of Cologne, Cologne 50931, Germany
| | - Hauke Wüstenberg
- Department of Neurology, University of Cologne, Cologne 50931, Germany
| | - Tesmin Uddin
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Lisa Wolff
- Institute of Human Genetics, University of Cologne, Cologne 50931, Germany
| | - Brunhilde Wirth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute of Human Genetics, University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
- Center for Rare Diseases Cologne (CESEK), University Hospital of Cologne, Cologne 50937, Germany
| | - Helmar C. Lehmann
- Department of Neurology, University of Cologne, Cologne 50931, Germany
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Elena I. Rugarli
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
14
|
Cardanho-Ramos C, Simões RA, Wang YZ, Faria-Pereira A, Bomba-Warczak E, Craessaerts K, Spinazzi M, Savas JN, Morais VA. Local mitochondrial replication in the periphery of neurons requires the eEF1A1 protein and thetranslation of nuclear-encoded proteins. iScience 2024; 27:109136. [PMID: 38510136 PMCID: PMC10951640 DOI: 10.1016/j.isci.2024.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 03/22/2024] Open
Abstract
In neurons, it is commonly assumed that mitochondrial replication only occurs in the cell body, after which the mitochondria must travel to the neuron's periphery. However, while mitochondrial DNA replication has been observed to occur away from the cell body, the specific mechanisms involved remain elusive. Using EdU-labelling in mouse primary neurons, we developed a tool to determine the mitochondrial replication rate. Taking of advantage of microfluidic devices, we confirmed that mitochondrial replication also occurs locally in the periphery of neurons. To achieve this, mitochondria require de novo nuclear-encoded, but not mitochondrial-encoded protein translation. Following a proteomic screen comparing synaptic with non-synaptic mitochondria, we identified two elongation factors - eEF1A1 and TUFM - that were upregulated in synaptic mitochondria. We found that mitochondrial replication is impaired upon the downregulation of eEF1A1, and this is particularly relevant in the periphery of neurons.
Collapse
Affiliation(s)
- Carlos Cardanho-Ramos
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben Alves Simões
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katleen Craessaerts
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
- Dementia Research Institute, University College London, London, UK
| | - Marco Spinazzi
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
- Dementia Research Institute, University College London, London, UK
- Neuromuscular Reference Center, Department of Neurology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vanessa A. Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Yu D, Huang CJ, Tucker HO. Established and Evolving Roles of the Multifunctional Non-POU Domain-Containing Octamer-Binding Protein (NonO) and Splicing Factor Proline- and Glutamine-Rich (SFPQ). J Dev Biol 2024; 12:3. [PMID: 38248868 PMCID: PMC10801543 DOI: 10.3390/jdb12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
It has been more than three decades since the discovery of multifunctional factors, the Non-POU-Domain-Containing Octamer-Binding Protein, NonO, and the Splicing Factor Proline- and Glutamine-Rich, SFPQ. Some of their functions, including their participation in transcriptional and posttranscriptional regulation as well as their contribution to paraspeckle subnuclear body organization, have been well documented. In this review, we focus on several other established roles of NonO and SFPQ, including their participation in the cell cycle, nonhomologous end-joining (NHEJ), homologous recombination (HR), telomere stability, childhood birth defects and cancer. In each of these contexts, the absence or malfunction of either or both NonO and SFPQ leads to either genome instability, tumor development or mental impairment.
Collapse
Affiliation(s)
- Danyang Yu
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Ching-Jung Huang
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Haley O. Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| |
Collapse
|
16
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
17
|
Pisciottani A, Croci L, Lauria F, Marullo C, Savino E, Ambrosi A, Podini P, Marchioretto M, Casoni F, Cremona O, Taverna S, Quattrini A, Cioni JM, Viero G, Codazzi F, Consalez GG. Neuronal models of TDP-43 proteinopathy display reduced axonal translation, increased oxidative stress, and defective exocytosis. Front Cell Neurosci 2023; 17:1253543. [PMID: 38026702 PMCID: PMC10679756 DOI: 10.3389/fncel.2023.1253543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease mostly affecting people around 50-60 years of age. TDP-43, an RNA-binding protein involved in pre-mRNA splicing and controlling mRNA stability and translation, forms neuronal cytoplasmic inclusions in an overwhelming majority of ALS patients, a phenomenon referred to as TDP-43 proteinopathy. These cytoplasmic aggregates disrupt mRNA transport and localization. The axon, like dendrites, is a site of mRNA translation, permitting the local synthesis of selected proteins. This is especially relevant in upper and lower motor neurons, whose axon spans long distances, likely accentuating their susceptibility to ALS-related noxae. In this work we have generated and characterized two cellular models, consisting of virtually pure populations of primary mouse cortical neurons expressing a human TDP-43 fusion protein, wt or carrying an ALS mutation. Both forms facilitate cytoplasmic aggregate formation, unlike the corresponding native proteins, giving rise to bona fide primary culture models of TDP-43 proteinopathy. Neurons expressing TDP-43 fusion proteins exhibit a global impairment in axonal protein synthesis, an increase in oxidative stress, and defects in presynaptic function and electrical activity. These changes correlate with deregulation of axonal levels of polysome-engaged mRNAs playing relevant roles in the same processes. Our data support the emerging notion that deregulation of mRNA metabolism and of axonal mRNA transport may trigger the dying-back neuropathy that initiates motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Alessandra Pisciottani
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Povo, Italy
| | - Chiara Marullo
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Savino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Filippo Casoni
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ottavio Cremona
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Franca Codazzi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G. Giacomo Consalez
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Pan Y, Cheng Y. Splicing factor proline- and glutamine-rich regulates cytotoxic T lymphocytes-mediated cytotoxicity on non-small cell lung cancer by directly binding to PD-L1 3'UTR. Medicine (Baltimore) 2023; 102:e35837. [PMID: 37960731 PMCID: PMC10637510 DOI: 10.1097/md.0000000000035837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) can interact with RNAs to regulate gene expression. The function of SFPQ in the immunotherapy of non-small cell lung cancer (NSCLC) is investigated in this study. H1299 and A549 cells were transfected with shSFPQ plasmid. Cell counting kit-8 (CCK-8) and cell clone formation were utilized to detect survival and proliferation. Programmed death-ligand 1 (PD-L1) and SFPQ were detected in NSCLC patients treated with anti-PD-L1 antibody. Dual-luciferase assays, RNA immunoblotting, RNA pull-down, and mRNA stability assay were applied to verify the regulation of PD-L1 with SFPQ. Human peripheral blood mononuclear cells (PBMC)-derived dendritic cells were loaded with irradiated A549 and H1299 cells, which were cultured with autologous CD8+T cells and tumor cells to perform in vitro tumor-specific cytotoxic T lymphocytes (CTL) cytotoxicity analysis. SFPQ silencing inhibited the survival and proliferation of H1299 and A549 cells with down-regulated PD-L1 expression. PD-L1 and SFPQ expression were markedly higher in anti-PD-L1 antibody treatment responders compared to non-responders, which showed a positive Pearson correlation (R = 0.76, P < .001). SFPQ up-regulated the relative mRNA and protein expression of PD-L1 by binding to the PD-L1 3'UTR to slow the decay of PD-L1 mRNA. SFPQ silencing promoted the killing effect of CTL on A549 and H1299 cells. SFPQ up-regulates PD-L1 expression by binding with PD-L1 3'UTR to slow the decay of PD-L1 mRNA, and SFPQ silencing promotes CTL-mediated cytotoxicity on NSCLC cells.
Collapse
Affiliation(s)
- Yanming Pan
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yongxia Cheng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
19
|
Castillo PE, Jung H, Klann E, Riccio A. Presynaptic Protein Synthesis in Brain Function and Disease. J Neurosci 2023; 43:7483-7488. [PMID: 37940588 PMCID: PMC10634577 DOI: 10.1523/jneurosci.1454-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
21
|
Theme 05 - Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:140-160. [PMID: 37966320 DOI: 10.1080/21678421.2023.2260195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
22
|
Luisier R, Andreassi C, Fournier L, Riccio A. The predicted RNA-binding protein regulome of axonal mRNAs. Genome Res 2023; 33:1497-1512. [PMID: 37582635 PMCID: PMC10620043 DOI: 10.1101/gr.277804.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their cytoarchitecture. The targeting of RNA transcripts to axons is one of the mechanisms that allows rapid local translation of proteins in response to extracellular signals. 3' Untranslated regions (UTRs) of mRNA are noncoding sequences that play a critical role in determining transcript localization and translation by interacting with specific RNA-binding proteins (RBPs). However, how 3' UTRs contribute to mRNA metabolism and the nature of RBP complexes responsible for these functions remains elusive. We performed 3' end sequencing of RNA isolated from cell bodies and axons of sympathetic neurons exposed to either nerve growth factor (NGF) or neurotrophin 3 (NTF3, also known as NT-3). NGF and NTF3 are growth factors essential for sympathetic neuron development through distinct signaling mechanisms. Whereas NTF3 acts mostly locally, NGF signal is retrogradely transported from axons to cell bodies. We discovered that both NGF and NTF3 affect transcription and alternative polyadenylation in the nucleus and induce the localization of specific 3' UTR isoforms to axons, including short 3' UTR isoforms found exclusively in axons. The integration of our data with CLIP sequencing data supports a model whereby long 3' UTR isoforms associate with RBP complexes in the nucleus and, upon reaching the axons, are remodeled locally into shorter isoforms. Our findings shed new light into the complex relationship between nuclear polyadenylation, mRNA localization, and local 3' UTR remodeling in developing neurons.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Idiap Research Institute, Martigny 1920, Switzerland;
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Lisa Fournier
- Idiap Research Institute, Martigny 1920, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Siddiq MM, Toro CA, Johnson NP, Hansen J, Xiong Y, Mellado W, Tolentino RE, Johnson K, Jayaraman G, Suhail Z, Harlow L, Dai J, Beaumont KG, Sebra R, Willis DE, Cardozo CP, Iyengar R. Spinal cord injury regulates circular RNA expression in axons. Front Mol Neurosci 2023; 16:1183315. [PMID: 37692100 PMCID: PMC10483835 DOI: 10.3389/fnmol.2023.1183315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.
Collapse
Affiliation(s)
- Mustafa M. Siddiq
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicholas P. Johnson
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jens Hansen
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuguang Xiong
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Rosa E. Tolentino
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Gomathi Jayaraman
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zaara Suhail
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauren Harlow
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jinye Dai
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Sebra
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ravi Iyengar
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Rühmkorf A, Harbauer AB. Role of Mitochondria-ER Contact Sites in Mitophagy. Biomolecules 2023; 13:1198. [PMID: 37627263 PMCID: PMC10452924 DOI: 10.3390/biom13081198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
Collapse
Affiliation(s)
- Alina Rühmkorf
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
25
|
Alber S, Di Matteo P, Zdradzinski MD, Dalla Costa I, Medzihradszky KF, Kawaguchi R, Di Pizio A, Freund P, Panayotis N, Marvaldi L, Doron-Mandel E, Okladnikov N, Rishal I, Nevo R, Coppola G, Lee SJ, Sahoo PK, Burlingame AL, Twiss JL, Fainzilber M. PTBP1 regulates injury responses and sensory pathways in adult peripheral neurons. SCIENCE ADVANCES 2023; 9:eadi0286. [PMID: 37506203 PMCID: PMC10381954 DOI: 10.1126/sciadv.adi0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin β1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.
Collapse
Affiliation(s)
- Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew D. Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katalin F. Medzihradszky
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Philip Freund
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nicolas Panayotis
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Letizia Marvaldi
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano 10043, Italy
| | - Ella Doron-Mandel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K. Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffery L. Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Liu H, Tian X, Jiang L, Han D, Hu S, Cui Y, Jiang F, Liu Y, Xu Y, Li H. Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131395. [PMID: 37058935 DOI: 10.1016/j.jhazmat.2023.131395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The Potentially toxic elements (PTEs) cadmium (Cd) is one of the most serious stressors polluting the marine environment. Marine bivalves have specific high enrichment capacity for Cd. Previous studies have investigated the tissue distribution changes and toxic effects of Cd in bivalves, but the sources of Cd enrichment, migration regulation during growth, and toxicity mechanisms in bivalves have not been fully explained. Here, we used stable-isotope labeling to investigate the contributions of Cd from different sources to scallop tissues. We sampled the entire growth cycle of Chlamys farreri, which is widely cultured in northern China, from juveniles to adult scallops. We found tissue variability in the bioconcentration-metabolism pattern of Cd in different bound states, with Cd in the aqueous accounting for a significant contribution. The accumulation pattern of Cd in all tissues during growth was more significant in the viscera and gills. Additionally, we combined a multi-omics approach to reveal a network of oxidative stress-induced toxicity mechanisms of Cd in scallops, identifying differentially expressed genes and proteins involved in metal ion binding, oxidative stress, energy metabolism, and apoptosis. Our findings have important implications for both ecotoxicology and aquaculture. They also provide new insights into marine environmental assessment and mariculture development.
Collapse
Affiliation(s)
- Huan Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiuhui Tian
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lisheng Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Dianfeng Han
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Shunxin Hu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Fang Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yongchun Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| | - Huanjun Li
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| |
Collapse
|
27
|
Borg R, Herrera P, Purkiss A, Cacciottolo R, Cauchi RJ. Reduced levels of ALS gene DCTN1 induce motor defects in Drosophila. Front Neurosci 2023; 17:1164251. [PMID: 37360176 PMCID: PMC10289029 DOI: 10.3389/fnins.2023.1164251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neuromuscular disease that has a strong genetic component. Deleterious variants in the DCTN1 gene are known to be a cause of ALS in diverse populations. DCTN1 encodes the p150 subunit of the molecular motor dynactin which is a key player in the bidirectional transport of cargos within cells. Whether DCTN1 mutations lead to the disease through either a gain or loss of function mechanism remains unresolved. Moreover, the contribution of non-neuronal cell types, especially muscle tissue, to ALS phenotypes in DCTN1 carriers is unknown. Here we show that gene silencing of Dctn1, the Drosophila main orthologue of DCTN1, either in neurons or muscles is sufficient to cause climbing and flight defects in adult flies. We also identify Dred, a protein with high homology to Drosophila Dctn1 and human DCTN1, that on loss of function also leads to motoric impairments. A global reduction of Dctn1 induced a significant reduction in the mobility of larvae and neuromuscular junction (NMJ) deficits prior to death at the pupal stage. RNA-seq and transcriptome profiling revealed splicing alterations in genes required for synapse organisation and function, which may explain the observed motor dysfunction and synaptic defects downstream of Dctn1 ablation. Our findings support the possibility that loss of DCTN1 function can lead to ALS and underscore an important requirement for DCTN1 in muscle in addition to neurons.
Collapse
Affiliation(s)
- Rebecca Borg
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Paul Herrera
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Angie Purkiss
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Rebecca Cacciottolo
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Ruben J. Cauchi
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
28
|
Takayama KI, Matsuoka S, Adachi S, Honma T, Yoshida M, Doi T, Shin-ya K, Yoshida M, Osada H, Inoue S. Identification of small-molecule inhibitors against the interaction of RNA-binding protein PSF and its target RNA for cancer treatment. PNAS NEXUS 2023; 2:pgad203. [PMID: 37388923 PMCID: PMC10304769 DOI: 10.1093/pnasnexus/pgad203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Diverse cellular activities are modulated through a variety of RNAs, including long noncoding RNAs (lncRNAs), by binding to certain proteins. The inhibition of oncogenic proteins or RNAs is expected to suppress cancer cell proliferation. We have previously demonstrated that PSF interaction with its target RNAs, such as androgen-induced lncRNA CTBP1-AS, is critical for hormone therapy resistance in prostate and breast cancers. However, the action of protein-RNA interactions remains almost undruggable to date. High-throughput screening (HTS) has facilitated the discovery of drugs for protein-protein interactions. In the present study, we developed an in vitro alpha assay using Flag peptide-conjugated lncRNA, CTBP1-AS, and PSF. We then constructed an effective HTS screening system to explore small compounds that inhibit PSF-RNA interactions. Thirty-six compounds were identified and dose-dependently inhibited PSF-RNA interaction in vitro. Moreover, chemical optimization of these lead compounds and evaluation of cancer cell proliferation revealed two promising compounds, N-3 and C-65. These compounds induced apoptosis and inhibited cell growth in prostate and breast cancer cells. By inhibiting PSF-RNA interaction, N-3 and C-65 up-regulated signals that are repressed by PSF, such as the cell cycle signals by p53 and p27. Furthermore, using a mouse xenograft model for hormone therapy-resistant prostate cancer, we revealed that N-3 and C-65 can significantly suppress tumor growth and downstream target gene expression, such as the androgen receptor (AR). Thus, our findings highlight a therapeutic strategy through the development of inhibitors for RNA-binding events in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, itabashi-ku, Tokyo 173-0015, Japan
| | - Seiji Matsuoka
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shungo Adachi
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Teruki Honma
- Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Masahito Yoshida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Drug Discovery Chemical Bank Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
29
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
30
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
31
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
32
|
Kleene R, Loers G, Schachner M. The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions. Int J Mol Sci 2023; 24:932. [PMID: 36674445 PMCID: PMC9866381 DOI: 10.3390/ijms24020932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
34
|
Nikolaou N, Gordon PM, Hamid F, Taylor R, Lloyd-Jones J, Makeyev EV, Houart C. Cytoplasmic pool of U1 spliceosome protein SNRNP70 shapes the axonal transcriptome and regulates motor connectivity. Curr Biol 2022; 32:5099-5115.e8. [PMID: 36384140 DOI: 10.1016/j.cub.2022.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Regulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons. We identify the extra-nuclear SNRNP70 as an important regulator of motor axonal growth, nerve-dependent acetylcholine receptor (AChR) clustering, and neuromuscular synaptogenesis. This cytoplasmic pool has a protective role for a limited number of transcripts regulating their abundance and trafficking inside axons. Moreover, non-nuclear SNRNP70 regulates splice variants of transcripts such as agrin, thereby controlling synapse formation. Our results point to an unexpected, yet essential, function of non-nuclear SNRNP70 in axonal development, indicating a role of spliceosome proteins in cytoplasmic RNA metabolism during neuronal connectivity.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK; Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| | - Patricia M Gordon
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Richard Taylor
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Eugene V Makeyev
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology MRC CNDD, IoPPN, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
35
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
36
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
37
|
Taylor R, Hamid F, Fielding T, Gordon PM, Maloney M, Makeyev EV, Houart C. Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS. Nat Commun 2022; 13:6994. [PMID: 36414621 PMCID: PMC9681851 DOI: 10.1038/s41467-022-34331-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.
Collapse
Affiliation(s)
- Richard Taylor
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - Fursham Hamid
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Megan Maloney
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
38
|
Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules 2022; 12:1595. [PMID: 36358945 PMCID: PMC9687362 DOI: 10.3390/biom12111595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Neurons critically depend on mitochondria for ATP production and Ca2+ buffering. They are highly compartmentalized cells and therefore a finely tuned mitochondrial network constantly adapting to the local requirements is necessary. For neuronal maintenance, old or damaged mitochondria need to be degraded, while the functional mitochondrial pool needs to be replenished with freshly synthesized components. Mitochondrial biogenesis is known to be primarily regulated via the PGC-1α-NRF1/2-TFAM pathway at the transcriptional level. However, while transcriptional regulation of mitochondrial genes can change the global mitochondrial content in neurons, it does not explain how a morphologically complex cell such as a neuron adapts to local differences in mitochondrial demand. In this review, we discuss regulatory mechanisms controlling mitochondrial biogenesis thereby making a case for differential regulation at the transcriptional and translational level. In neurons, additional regulation can occur due to the axonal localization of mRNAs encoding mitochondrial proteins. Hitchhiking of mRNAs on organelles including mitochondria as well as contact site formation between mitochondria and endolysosomes are required for local mitochondrial biogenesis in axons linking defects in any of these organelles to the mitochondrial dysfunction seen in various neurological disorders.
Collapse
Affiliation(s)
- Jara Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, in Foundation, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
39
|
Yu X, Kang W, Zhang J, Chen C, Liu Y. Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res 2022; 14:6574-6585. [PMID: 36247240 PMCID: PMC9556470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The shortening of the 3' untranslated regions (3'UTRs) due to alternative polyadenylation (APA) has become an important characteristic of cancer. However, the function of APA-induced 3'UTR shortening in gastric cancer (GC) remains unclear. KHDRBS1 (sam68), as an RNA-binding protein (RBP), is significantly upregulated in GC. In this study, we found that the 3'UTR of KHDRBS1 is generally shortened in GC tissues compared to paracancer tissues. Moreover, KHDRBS1 mRNA with a shortened 3'UTR can escape the inhibitory effect of miRNAs, resulting in its increased expression in GC. Overexpression of KHDRBS1, especially KHDRBS1 with a shortened 3'UTR, promotes the growth and metastasis of GC in vivo and in vitro. In conclusion, the experimental results show that shortening of the KHDRBS1 mRNA 3'UTR can mediate the overexpression of KHDRBS1 in GC cells and promote the progression of GC.
Collapse
Affiliation(s)
- Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Weibiao Kang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Jiajia Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Yi Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| |
Collapse
|
40
|
Widagdo J, Udagedara S, Bhembre N, Tan JZA, Neureiter L, Huang J, Anggono V, Lee M. Familial ALS-associated SFPQ variants promote the formation of SFPQ cytoplasmic aggregates in primary neurons. Open Biol 2022; 12:220187. [PMID: 36168806 PMCID: PMC9516340 DOI: 10.1098/rsob.220187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Saumya Udagedara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nishita Bhembre
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lara Neureiter
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jie Huang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
41
|
Killackey SA, Bi Y, Soares F, Hammi I, Winsor NJ, Abdul-Sater AA, Philpott DJ, Arnoult D, Girardin SE. Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Mol Cell 2022; 82:2815-2831.e5. [PMID: 35752171 DOI: 10.1016/j.molcel.2022.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 12/26/2022]
Abstract
Protein import into mitochondria is a highly regulated process, yet how cells clear mitochondria undergoing dysfunctional protein import remains poorly characterized. Here we showed that mitochondrial protein import stress (MPIS) triggers localized LC3 lipidation. This arm of the mitophagy pathway occurs through the Nod-like receptor (NLR) protein NLRX1 while, surprisingly, without the engagement of the canonical mitophagy protein PINK1. Mitochondrial depolarization, which itself induces MPIS, also required NLRX1 for LC3 lipidation. While normally targeted to the mitochondrial matrix, cytosol-retained NLRX1 recruited RRBP1, a ribosome-binding transmembrane protein of the endoplasmic reticulum, which relocated to the mitochondrial vicinity during MPIS, and the NLRX1/RRBP1 complex in turn controlled the recruitment and lipidation of LC3. Furthermore, NLRX1 controlled skeletal muscle mitophagy in vivo and regulated endurance capacity during exercise. Thus, localization and lipidation of LC3 at the site of mitophagosome formation is a regulated step of mitophagy controlled by NLRX1/RRBP1 in response to MPIS.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuntian Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fraser Soares
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Ikram Hammi
- INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807 Villejuif Cedex, France
| | - Nathaniel J Winsor
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON M3J 1P3, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Damien Arnoult
- INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807 Villejuif Cedex, France
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
42
|
Patel P, Buchanan CN, Zdradzinski MD, Sahoo PK, Kar A, Lee S, Vaughn L, Urisman A, Oses-Prieto J, Dell’Orco M, Cassidy D, Costa I, Miller S, Thames E, Smith T, Burlingame A, Perrone-Bizzozero N, Twiss J. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res 2022; 50:5772-5792. [PMID: 35556128 PMCID: PMC9177972 DOI: 10.1093/nar/gkac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.
Collapse
Affiliation(s)
- Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Devon E Cassidy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
43
|
NOL12 as an Oncogenic Biomarker Promotes Hepatocellular Carcinoma Growth and Metastasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891155. [PMID: 35693698 PMCID: PMC9184182 DOI: 10.1155/2022/6891155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis worldwide. However, the pathogenesis of HCC remains poorly understood. In this study, we found that NOL12 was significantly overexpressed in independent HCC datasets from TCGA database. We confirmed that the expression level of NOL12 was upregulated in human HCC tissues and cell lines by RT-qPCR. High expression of NOL12 is associated with worse reduced overall survival (OS), high pathological grade, node metastasis, and advanced clinical stage in patients with HCC. Moreover, knockdown of NOL12 dramatically inhibits the proliferation and metastasis of HCC cells in vitro and in vivo. CIBERSORTx analysis revealed that twelve types of tumor-infiltrating immune cells (TICs) are correlated with NOL12 expression. The risk signature based on 8 NOL12-related genes is an independent prognostic factor for patients with HCC. The OS rate of patients in the low-risk score group was better than that in the high-risk score group. In addition, the total tumor mutation burden (TMB) in the high-risk score group increased significantly, and the risk scores could be used as an alternative indicator of immune checkpoint inhibitor (ICI) response. In conclusion, our findings indicated that NOL12 might be involved in the progression of HCC and can be used as a potential therapeutic target. Moreover, the NOL12-related risk signature may have predictive relevance with regard to ICI therapy.
Collapse
|
44
|
Harbauer AB, Hees JT, Wanderoy S, Segura I, Gibbs W, Cheng Y, Ordonez M, Cai Z, Cartoni R, Ashrafi G, Wang C, Perocchi F, He Z, Schwarz TL. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron 2022; 110:1516-1531.e9. [PMID: 35216662 PMCID: PMC9081165 DOI: 10.1016/j.neuron.2022.01.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/25/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.
Collapse
Affiliation(s)
- Angelika B Harbauer
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - J Tabitha Hees
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Simone Wanderoy
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Inmaculada Segura
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Ludwig-Maximilians-Universität München, Department of Cellular Physiology Biomedical Center Munich - BMC, Großhaderner Str. 9, 82152 Martinsried, Germany
| | - Whitney Gibbs
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yiming Cheng
- Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Martha Ordonez
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zerong Cai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Romain Cartoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ghazaleh Ashrafi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Cheng Z, Lu C, Wang H, Wang N, Cui S, Yu C, Wang C, Zuo Q, Wang S, Lv Y, Yao M, Jiang L, Qin W. Long noncoding RNA LHFPL3-AS2 suppresses metastasis of non-small cell lung cancer by interacting with SFPQ to regulate TXNIP expression. Cancer Lett 2022; 531:1-13. [DOI: 10.1016/j.canlet.2022.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
47
|
Mitochondrial Biogenesis in Neurons: How and Where. Int J Mol Sci 2021; 22:ijms222313059. [PMID: 34884861 PMCID: PMC8657637 DOI: 10.3390/ijms222313059] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Neurons rely mostly on mitochondria for the production of ATP and Ca2+ homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each compartment that are maintained by a constant mitochondrial turnover. It is assumed that most mitochondria are generated in the cell body and then travel to the synapse to exert their functions. Once damaged, mitochondria have to travel back to the cell body for degradation. However, in long cells, like motor neurons, this constant travel back and forth is not an energetically favourable process, thus mitochondrial biogenesis must also occur at the periphery. Ca2+ and ATP levels are the main triggers for mitochondrial biogenesis in the cell body, in a mechanism dependent on the Peroxisome-proliferator-activated γ co-activator-1α-nuclear respiration factors 1 and 2-mitochondrial transcription factor A (PGC-1α-NRF-1/2-TFAM) pathway. However, even though of extreme importance, very little is known about the mechanisms promoting mitochondrial biogenesis away from the cell body. In this review, we bring forward the evoked mechanisms that are at play for mitochondrial biogenesis in the cell body and periphery. Moreover, we postulate that mitochondrial biogenesis may vary locally within the same neuron, and we build upon the hypotheses that, in the periphery, local protein synthesis is responsible for giving all the machinery required for mitochondria to replicate themselves.
Collapse
|
48
|
Müntjes K, Devan SK, Reichert AS, Feldbrügge M. Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Rep 2021; 22:e52445. [PMID: 34402186 PMCID: PMC8490996 DOI: 10.15252/embr.202152445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long-distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome-associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane-assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome-coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.
Collapse
Affiliation(s)
- Kira Müntjes
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Senthil Kumar Devan
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology IMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Michael Feldbrügge
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
49
|
Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211088. [PMID: 34659781 PMCID: PMC8511748 DOI: 10.1098/rsos.211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The human brain carries out complex tasks and higher functions and is crucial for organismal survival, as it senses both intrinsic and extrinsic environments. Proper brain development relies on the orchestrated development of different precursor cells, which will give rise to the plethora of mature brain cell-types. Within this process, neuronal cells develop closely to and in coordination with vascular cells (endothelial cells (ECs), pericytes) in a bilateral communication process that relies on neuronal activity, attractive or repulsive guidance cues for both cell types and on tight-regulation of gene expression. Translational control is a master regulator of the gene-expression pathway and in particular for neuronal and ECs, it can be localized in developmentally relevant (axon growth cone, endothelial tip cell) and mature compartments (synapses, axons). Herein, we will review mechanisms of translational control relevant to brain development in neurons and ECs in health and disease.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Elpida Statoulla
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Maria Markou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Sofia Bellou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Eleni Bagli
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Theodore Fotsis
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Carol Murphy
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Christos G. Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
50
|
SFPQ rescues F508del-CFTR expression and function in cystic fibrosis bronchial epithelial cells. Sci Rep 2021; 11:16645. [PMID: 34404863 PMCID: PMC8371023 DOI: 10.1038/s41598-021-96141-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.
Collapse
|