1
|
Hoirisch-Clapauch S. The Impact of Emotional Responses on Female Reproduction: Fibrinolysis in the Spotlight. Semin Thromb Hemost 2025; 51:401-411. [PMID: 39029520 DOI: 10.1055/s-0044-1788324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Fibrinolytic enzymes modify various substrates required for tissue remodeling, playing a crucial role in mechanisms underlying resilience, reward processing, ovulation, embryo implantation, and placentation. Individuals with low resilience and reduced reward responsiveness, when exposed to chronic stress, are at increased risk of experiencing a range of negative emotions. Chronic anxiety and melancholia are examples of negative emotions associated with hypercortisolism, while fear and atypical depression are characterized by systemic inflammation. Both cortisol and inflammatory cytokines stimulate the production of plasminogen activator inhibitor-1 (PAI-1), a potent fibrinolysis inhibitor. Chronic anxiety, fear, and depression are among the many hypofibrinolytic conditions increasing the risk of oligo-anovulation, miscarriage, fetal growth restriction, and preeclampsia. Although significant, the impact of negative emotions on implantation is not as obvious as on ovulation or placentation. Other hypofibrinolytic conditions that may affect female reproduction through mechanisms dependent or independent of PAI-1 include metabolic disturbances (e.g., due to consumption of highly palatable foods, often used to alleviate negative affect), inflammation, hyperhomocysteinemia, hypothyroidism, hypercortisolism, antiphospholipid antibodies, and the 4G allele of the PAI-1 gene. Benzodiazepines and antidepressants should be used with caution in the first trimester as this combination may cause malformations. Also, selective serotonin reuptake inhibitors have fibrinolytic properties that increase the risk of bleeding after surgical procedures. Psychological interventions, especially group therapy, are effective in the prevention of reproductive disorders. Controlled trials are needed to test the hypothesis that female reproductive health depends on psychological well-being, a balanced diet and physical activity, suppression of inflammation and autoantibodies, and homocysteine and hormonal homeostasis.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- Hematology Department, Vascular Medicine, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Ding Q, Li D, Zhang X, Xue X, Zhang R, Su D, James TD, Li P, Wang X, Tang B. Restoring the Redox and Norepinephrine Homeostasis in Mouse Brains Promotes an Antidepressant Response. J Am Chem Soc 2025; 147:11239-11249. [PMID: 40036489 PMCID: PMC11969533 DOI: 10.1021/jacs.4c18046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Effective diagnosis and treatment of major depressive disorder remains a major challenge because diagnostic criteria overlap with other conditions and 50% of patients are resistant to conventional treatments. Emerging evidence has indicated that oxidative stress and reduced norepinephrine are key pathological features of depression. Herein, we constructed a smart organic small-molecule fluorescence-based therapeutic system (Cou-NE-H2O2) for the diagnosis and treatment of depression targeted at restoring redox homeostasis and efficiently upregulating norepinephrine in the brain. Utilizing Cou-NE-H2O2, we could evaluate the depressive phenotype via the fluorescence monitoring of the redox state in mouse brains. By reducing hydrogen peroxide and continuously increasing norepinephrine, Cou-NE-H2O2 elicited a synergistic antidepressant action. Furthermore, we identified that Cou-NE-H2O2 can promote the expression of genes such as Grin2a, Drd1, and Fxyd2 related to the cyclic adenosine monophosphate signaling pathway, upregulate glutathione and cysteine to alleviate oxidative stress, and boost neuronal activity by enhancing dopaminergic synapses, ultimately achieving an effective antidepressant response. Taken together, this work provides a new strategy for the evaluation of depression and appropriate treatments and identifies the mechanisms underlying antioxidant and norepinephrine disorders in the brain as potential targets for the development of novel diagnostics and treatments for depression.
Collapse
Affiliation(s)
- Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Deqiang Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Xue Xue
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ran Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Di Su
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Tony D. James
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, P. R. China
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- College
of Chemistry and Chemical Engineering, Northwest
Normal University, Lanzhou 730070, P.R. China
| | - Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan
Laboratory, 168 Wenhai
Middle Rd, Aoshanwei Jimo, Qingdao 266237, Shandong, P.R. China
| |
Collapse
|
3
|
Masoudi M, Goodarzi M, Rahmani MA, Rajabi M, Mahdizadeh M, Gharaei Torbati M, Beheshti F. Vitamin C improved anxiety and depression like behavior induced by chronic unpredictable mild stress in adolescent rats by influencing on oxidative stress balance, neurotransmitter systems, and inflammatory response. Nutr Neurosci 2025; 28:503-512. [PMID: 39466618 DOI: 10.1080/1028415x.2024.2389499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
OBJECTIVES Stress is an adaptive response to different events in daily life that could strain physically, emotionally, or psychologically. Adolescence is an important developmental period due to physical, psychological, and social maturation. The aim of our study is to state whether chronic unpredictable mild stress (CUMS) during adolescence in male rats can cause anxiety and depression in adulthood and whether vitamin C (Vit C) can prevent this problem or not. METHODS For this purpose, we performed behavioral tests, including open field test, elevated plus maze, and forced swimming test. In addition, we investigated the metabolism of serotonin, the level of inflammation, oxidative stress and brain-derived neurotrophic factor (BDNF) in the brain cortex tissue of animals. RESULTS Results indicated that CUMS exacerbates mood-related behaviors by affecting the brain oxidative stress balance, inflammatory response, and serotonin metabolism. Moreover, we found that CUMS-Vit C co-treatment could significantly reverse CUMS-induced complications by restoration of the mentioned biochemical parameters. DISCUSSION Taken together, we would like to suggest the use of Vit C supplementation as a safe, inexpensive, and effective strategy for the management of CUMS.
Collapse
Affiliation(s)
- Maha Masoudi
- Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Mohammad Amin Rahmani
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mojgan Rajabi
- Departments of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Mahdizadeh
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Moein Gharaei Torbati
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
4
|
Wu H, Zhou JJ, Chen XY, Zhu DD, Bao F, Zheng W, Ren L, Pan WG, Liu CM. BDNF Gene Polymorphism and Antidepressant Response in Han Chinese Patients with First-Episode Late-Life Depression. ALPHA PSYCHIATRY 2025; 26:39955. [PMID: 40352065 PMCID: PMC12059767 DOI: 10.31083/ap39955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 05/14/2025]
Abstract
Objective This study investigated the association between brain-derived neurotrophic factor (BDNF) gene polymorphisms and antidepressant response in patients with first-episode late-life depression (LLD). Methods A total of 72 patients with first-episode LLD were recruited and 57 completed an 8-week course of antidepressant treatment. Participants were assessed at baseline and post-treatment using the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Serum BDNF levels were measured via Enzyme-Linked Immunosorbent Assay (ELISA) and BDNF gene polymorphisms were genotyped using the Agena® MassARRAY system. Results After 8 weeks, 17 of the 57 patients with LLD showed effective treatment response (effective group), while 40 were classified as ineffective. Significant post-treatment improvements were observed across the cohort in HAMD-17 and RBANS scores, and serum BDNF levels compared with baseline (p < 0.05). However, the effective and ineffective groups did not have significantly different RBANS scores or serum BDNF levels (p > 0.05). Binary logistic regression identified male sex (OR = 10.094, p = 0.007) and BDNF gene polymorphism (OR = 6.559, p = 0.003) as predictors of treatment efficacy. Conclusion Antidepressant treatment for 8 weeks altered serum BDNF levels in patients with LLD, with male patients carrying the Val/Val genotype potentially responded better to conventional antidepressants. The small sample size may limit the generalizability of these findings. Clinical Trial Registration The study was registered at https://www.chictr.org.cn (registration number: ChiCTR1900024445).
Collapse
Affiliation(s)
- Han Wu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| | - Jiao-jiao Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| | - Xue-yan Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| | - Dan-di Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| | - Feng Bao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| | - Wei Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, Guangdong, China
| | - Li Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100088 Beijing, China
| | - Wei-gang Pan
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, 100096 Beijing, China
| | - Chao-meng Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 100088 Beijing, China
| |
Collapse
|
5
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Feng X, Zhang W, Liu X, Wang Q, Dang X, Han J, Zhang X. Ferroptosis-associated signaling pathways and therapeutic approaches in depression. Front Neurosci 2025; 19:1559597. [PMID: 40177374 PMCID: PMC11961976 DOI: 10.3389/fnins.2025.1559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Ferroptosis, a newly identified form of cell death, is characterized by excessive iron accumulation and lipid peroxidation. Studies indicate a strong association between ferroptosis and depression; however, the precise signaling pathways and underlying molecular mechanisms remain unclear. This review summarizes the role of ferroptosis in depression and its associated signaling pathways. Additionally, therapeutic approaches for depression based on ferroptosis theory are reviewed, providing novel targets for the prevention and treatment of depression and laying a foundation for future research on the relationship between ferroptosis and depression.
Collapse
Affiliation(s)
- Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Dang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Srikanth Y, Reddy DH, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G, Nalluri BN, Yadagiri G, Ramakrishna K. Unveiling the Multifaceted Pharmacological Actions of Indole-3-Carbinol and Diindolylmethane: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:827. [PMID: 40094833 PMCID: PMC11902694 DOI: 10.3390/plants14050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, as well as cancers in other tissues. In this review, we summarized the protective effects of I3C and DIM against cardiovascular, neurological, reproductive, metabolic, bone, respiratory, liver, and immune diseases, infections, and drug- and radiation-induced toxicities. Experimental evidence suggests that I3C and DIM offer protection due to their antioxidant, anti-inflammatory, antiapoptotic, immunomodulatory, and xenobiotic properties. Apart from the beneficial effects, the present review also discusses the possible toxicities of I3C and DIM that are reported in various preclinical investigations. So far, most of the reports about I3C and DIM protective effects against various diseases are only from preclinical studies; this emphasizes the dire need for large-scale clinical trials on these phytochemicals against human diseases. Further, in-depth research is required to improve the bioavailability of these two phytochemicals to achieve the desirable protective effects. Overall, our review emphasizes that I3C and DIM may become potential drug candidates for combating dreadful human diseases.
Collapse
Affiliation(s)
- Yadava Srikanth
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Dontiboina Harikrishna Reddy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Vinjavarapu Lakshmi Anusha
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Guntupalli Chakravarthi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Buchi N. Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Ganesh Yadagiri
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| |
Collapse
|
8
|
Puhlmann LM, Vrtička P, Linz R, Valk SL, Papassotiriou I, Chrousos GP, Engert V, Singer T. Serum BDNF Increase After 9-Month Contemplative Mental Training Is Associated With Decreased Cortisol Secretion and Increased Dentate Gyrus Volume: Evidence From a Randomized Clinical Trial. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100414. [PMID: 39896238 PMCID: PMC11786774 DOI: 10.1016/j.bpsgos.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background In this study, we investigated whether mindfulness- and meditation-based mental training that improves stress regulation can upregulate BDNF (brain-derived neurotrophic factor), an important promoter of hippocampal neuroplasticity, and examined cortisol reduction as a mediating pathway. Methods In a randomized clinical trial, 332 healthy adults were randomly assigned to one of the 3 training cohorts or a passive control cohort. Training participants completed up to three 3-month-long modules targeting attention-based mindfulness, socio-affective skills, or socio-cognitive skills. We examined change in serum BDNF levels after each 3-month training interval; evaluated whether training effects were linked to reduced cortisol release in the long-term, diurnally, and when acutely stress-induced; and explored associations with hippocampal volume changes. Results In the combined training cohorts, BDNF increased significantly and cumulatively after 3-, 6-, and 9-month training relative to the pretraining baseline (3 month: t 516 = 3.57 [estimated increase: 1353 pg/mL], 6 month: t 516 = 3.45 [1557 pg/mL], 9 month: t 516 = 3.45 [2276 pg/mL]; all ps < .001). After 9 months, training cohort BDNF was not higher than control cohort BDNF, which displayed unexplained variance. However, moderated mediation analysis showed that only training effects, and not control cohort BDNF change, were partially mediated by simultaneously reduced long-term cortisol release (3-month averages) measured in hair (15.1% mediation, p = .021). Individually greater BDNF increase after training correlated with more reduced long-term and stress-induced cortisol release. Moreover, greater BDNF increase after 9 months of training correlated with dentate gyrus volume increase (t 108 = 2.09, p = .039). Conclusions Longitudinal contemplative training may promote a neurobiological pathway from stress reduction to increased BDNF levels to enhanced hippocampal volume. However, single serum BDNF measurements can be unreliable for assessing long-term neurotrophic effects in healthy adults. Future studies should investigate nonspecific BDNF measurement effects before considering application in preventive health care.
Collapse
Affiliation(s)
- Lara M.C. Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Pascal Vrtička
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece
| | - George P. Chrousos
- First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Veronika Engert
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying Mental Health, Halle-Jena-Magdeburg, Jena, Germany
| | - Tania Singer
- Social Neuroscience Laboratory, Max Planck Society, Berlin, Germany
| |
Collapse
|
9
|
Shi J, Yang T, Li Y, Zhong L, Longo FM, Massa SM. A Small-Molecule TrkB/TrkC Ligand Promotes Neurogenesis and Behavioral Recovery Following Traumatic Brain Injury. Neurotrauma Rep 2025; 6:195-209. [PMID: 40129897 PMCID: PMC11931105 DOI: 10.1089/neur.2024.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Tropomyosin receptor-kinase B (TrkB) and TrkC neurotrophin receptors promote neuronal growth and differentiation during the development and maintenance of structural integrity and plasticity in adult animals. Here, we test the hypotheses that activation of TrkB and TrkC will mitigate neuronal damage and loss, and behavioral deficits induced by traumatic brain injury (TBI). LM22B-10 (C10), a blood-brain barrier permeant small-molecule TrkB/TrkC co-activator, significantly increased proliferation, survival, and enhanced differentiation of neuronal progenitor cells in vitro. Following controlled cortical impact injury in rats, LM22B-10 administration increased the proliferation of doublecortin-expressing (DCX) cells in the hippocampus and significantly reduced cell death in the injured cortex. Interestingly, in studies of behavior, LM22B-10 promoted anxiety-like behavior and diminished spatial memory performance in the Barnes maze in sham-TBI animals but improved both of these behaviors in injured rats, a bimodal response suggesting the possibility that excess neurotrophic activity may be detrimental in uninjured animals but compensatory after injury. Thus, TrkB/TrkC agents may constitute a new therapeutic avenue for TBI but will require further study to determine safe and effective applications.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Yibing Li
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Lily Zhong
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Stephen M. Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Huang LY, Liu YN, Chen J, Zhu HX, Li LL, Liang ZY, Song JX, Li YJ, Hu ZL, Demon D, Wullaert A, Wang W, Qi SH. Caspase-12 is Expressed in Purkinje Neurons and Prevents Psychiatric-Like Behavior in Mice. Mol Neurobiol 2025; 62:1705-1719. [PMID: 39023795 DOI: 10.1007/s12035-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, 221002, China
| | - Hai-Xue Zhu
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 Huaihai South Road, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Li-Li Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Jin-Xiu Song
- Department of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yu-Jie Li
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, Jiangsu, 215300, People's Republic of China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dieter Demon
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- VIB Center for Inflammation Research, Zwijnaarde, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Han JS, Park J, Kim YL, Park SY, Kim D, Zhang S, Chung YJ, Park SN. Stress-Induced Tinnitus in a Rat Model: Transcriptomics of the Prefrontal Cortex and Hippocampus. Laryngoscope 2025; 135:882-888. [PMID: 39319587 DOI: 10.1002/lary.31784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The molecular mechanisms by which stress leads to the development of tinnitus are not yet well understood. This study aimed to identify brain changes in a stress-induced tinnitus (ST) animal model through transcriptome analysis of the prefrontal lobe and hippocampus. METHODS Twenty Sprague-Dawley rats were subjected to restraint stress for 2 h. Following the gap prepulse inhibition of the acoustic startle (GPIAS) reflex test to assess tinnitus development, the prefrontal lobes and hippocampi of the brains were harvested from 15 rats: five with evident tinnitus (ST), five with noticeable non-tinnitus (stress-induced non-tinnitus; SNT), and five without stress (control group). Comparative RNA-seq analysis was conducted to examine gene expression profiles. RESULTS In comparison to the control group, the ST group exhibited 971 and 463 differentially expressed genes (DEGs) in the prefrontal lobe and hippocampus, respectively (FDR < 0.05). The SNT group showed a largely similar gene expression to the control group. Enrichment analysis of the prefrontal lobe revealed the downregulation of gene sets associated with neurotransmitter and synapse-related functions and the upregulation of cell cycle-related gene sets in the ST group. In the hippocampus, there were significantly downregulated gene sets associated with steroid production and upregulated gene sets related to the extracellular matrix in the ST group. Immune-related gene sets were upregulated in both the prefrontal lobe and hippocampus. CONCLUSION Our research presents evidence that differences in genetic expression in the prefrontal lobe and hippocampus after exposure to stress play a significant role in the development of tinnitus. LEVEL OF EVIDENCE NA Laryngoscope, 135:882-888, 2025.
Collapse
Affiliation(s)
- Jae S Han
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ye L Kim
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - So Y Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Songzi Zhang
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shi N Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
12
|
Yang M, Tian S, Han X, Xu L, You J, Wu M, Cao Y, Jiang Y, Zheng Z, Liu J, Meng F, Li C, Wang X. Interleukin-11Rα2 in the hypothalamic arcuate nucleus affects depression-related behaviors and the AKT-BDNF pathway. Gene 2025; 933:148966. [PMID: 39341516 DOI: 10.1016/j.gene.2024.148966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Depression is a widespread emotional disorder with complex pathogenesis. An essential function of the hypothalamus is to regulate emotional disorders. However, further investigation is required to identify the pathogenic genes and molecular mechanisms that contribute to the onset of depression within the hypothalamus. Through RNA-sequencing analysis, this study identified the upregulated expression of interleukin-11 receptor alpha 2 (IL-11Rα2) in the hypothalamus of mice with chronic unpredictable stress (CUS)-induced depression. This substantial increase in IL-11Rα2, not IL-11Rα1 expression levels in the hypothalamus under the influence of CUS was found to be associated with depression-related behaviors. We further showed that IL-11Rα2 is expressed in the arcuate nucleus (ARC) proopiomelanocortin (POMC) neurons of the hypothalamus. Male and female mice exhibited behaviors association with depression, when IL-11Rα2 or its ligand IL-11 was overexpressed in the ARC POMC neurons through the action of an adeno-associated virus. In addition, reductions in the expression levels of proteins involved in the protein kinase B signaling pathways and brain-derived neurotrophic factor were observed upon overexpression of IL-11Rα2 in the hypothalamic ARC. This study emphasizes the importance of IL-11Rα2 in the hypothalamus ARC in the development of depression, and presents it as a potential novel target for depression treatment.
Collapse
Affiliation(s)
- Mengyu Yang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shulei Tian
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaofeng Han
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yifan Cao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yuting Jiang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ziteng Zheng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
13
|
Rubio C, López-Landa A, Romo-Parra H, Rubio-Osornio M. Impact of the Ketogenic Diet on Neurological Diseases: A Review. Life (Basel) 2025; 15:71. [PMID: 39860011 PMCID: PMC11767209 DOI: 10.3390/life15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease. OBJECTIVE This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases. DISCUSSION KD is associated with neuroprotective and antioxidant effects that improve mitochondrial function, regulate neurotransmitter flow, and reduce neuroinflammation and oxidative stress. Glial cells play an essential role in the utilization of ketone bodies (KBs) within the central nervous system's metabolism, particularly during ketosis induced by the KD. Thus, the KD represents a broad and promising strategy that involves both neurons and glial cells, with a molecular impact on brain metabolism and neuroinflammatory homeostasis. CONCLUSION Multiple molecular mechanisms have been identified to explain the benefits of the KD in neurological diseases; however, further experimental and clinical studies are needed to address various molecular pathways in order to achieve conclusive results.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla City 72000, Mexico
| | - Hector Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (C.R.); (A.L.-L.); (H.R.-P.)
- Psychology Department, Universidad Iberoamericana, Mexico City 01376, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
14
|
Zhao YL, Yi HY, Baba SS, Guo YX, Yuan XC, Hou XM, Liang LL, Huo FQ. Activation of 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Produces Anti-Anxiodepressive Effects in a Rat Model of Neuropathic Pain. Mol Neurobiol 2025; 62:1136-1150. [PMID: 38963532 DOI: 10.1007/s12035-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Dawane J, Seok S, Dhande P, Langade D, Han H, Kim SB, Ju JY. Evaluation of the Anxiolytic and Antidepressant Effects of Standardized Ashwagandha ( Withania somnifera) Root Extract in Wistar Rats. Prev Nutr Food Sci 2024; 29:414-421. [PMID: 39759822 PMCID: PMC11699580 DOI: 10.3746/pnf.2024.29.4.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Ashwagandha (Withania somnifera) is a popular herb in Ayurveda, the traditional medicine system in India. It is known to exert stress-mitigating properties and has been extensively studied for its safety and efficacy in various disorders. This in vivo study assessed the effects of Ashwagandha root extract (ARE) on stress in rats. The anxiolytic and antidepressant effects of ARE were assessed using the elevated plus maze test, sucrose preference test, and forced swim test. The rats were divided into the following groups: control group (no disease), disease control group (no treatment), standardized ARE group (test; ARE administered in doses of 27, 54, and 108 mg/kg body weight), and fluoxetine group (active control). Biochemical parameters in the serum [monoamine oxidase (MAO)-A, MAO-B, serotonin, cortisol, adrenocorticotropic hormone (ACTH), corticotropin-releasing hormone (CRH), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and brain-derived neurotrophic factor (BDNF)] and brain tissue (serotonin) were estimated at the end of 36 days to understand the potential mechanism behind the anxiolytic and antidepressant effects of ARE. The behavior test results indicated significant improvement in anxiety and depression-like behavior with ARE treatment in a rat model exposed to a validated protocol of chronic variable stress. The results of biochemical analyses revealed a significant increase in serotonin and BDNF levels and a decrease in CRH, ACTH, and cortisol levels. The inflammatory markers IL-6 and TNF-α were also significantly reduced with ARE treatment. ARE demonstrated notable effects on anxiety and depression markers in rats, indicating its potential as a prophylactic and therapeutic agent.
Collapse
Affiliation(s)
- Jayshree Dawane
- Bharati Vidyapeeth Deemed University Medical College, Pune 411043, India
| | - Sanghee Seok
- Department of Global Planning, Kolmar BNH, Seoul 06800, Korea
| | - Priti Dhande
- Bharati Vidyapeeth Deemed University Medical College, Pune 411043, India
| | - Deepak Langade
- Dr. D. Y. Patil University School of Medicine, Navi Mumbai 400706, India
| | - Hwana Han
- Department of Global Planning, Kolmar BNH, Seoul 06800, Korea
| | - Sang-Back Kim
- Food Science R&D Center, Kolmar BNH, Seoul 06800, Korea
| | - Jae-Yeong Ju
- Food Science R&D Center, Kolmar BNH, Seoul 06800, Korea
| |
Collapse
|
16
|
Sun J, Rojo-Cortes F, Ulian-Benitez S, Forero MG, Li G, Singh DND, Wang X, Cachero S, Moreira M, Kavanagh D, Jefferis GSXE, Croset V, Hidalgo A. A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. eLife 2024; 13:RP102222. [PMID: 39704728 DOI: 10.7554/elife.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
Collapse
Affiliation(s)
- Jun Sun
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Francisca Rojo-Cortes
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Suzana Ulian-Benitez
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Manuel G Forero
- Semillero Lún, Grupo D+Tec, Universidad de Ibagué, Ibagué, Colombia
| | - Guiyi Li
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Deepanshu N D Singh
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marta Moreira
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Alicia Hidalgo
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Wang H, Zhao Q, Zhang Y, Ma J, Lei M, Zhang Z, Xue H, Liu J, Sun Z, Xu J, Zhai Y, Wang Y, Cai M, Zhu W, Liu F. Shared genetic architecture of cortical thickness alterations in major depressive disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111121. [PMID: 39154931 DOI: 10.1016/j.pnpbp.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and schizophrenia (SCZ) are heritable brain disorders characterized by alterations in cortical thickness. However, the shared genetic basis for cortical thickness changes in these disorders remains unclear. METHODS We conducted a systematic literature search on cortical thickness in MDD and SCZ through PubMed and Web of Science. A coordinate-based meta-analysis was performed to identify cortical thickness changes. Additionally, utilizing summary statistics from the largest genome-wide association studies for depression (Ncase = 268,615, Ncontrol = 667,123) and SCZ (Ncase = 53,386, Ncontrol = 77,258), we explored shared genomic loci using conjunctional false discovery rate (conjFDR) analysis. Transcriptome-neuroimaging association analysis was then employed to identify shared genes associated with cortical thickness alterations, and enrichment analysis was finally carried out to elucidate the biological significance of these genes. RESULTS Our search yielded 34 MDD (Ncase = 1621, Ncontrol = 1507) and 19 SCZ (Ncase = 1170, Ncontrol = 1043) neuroimaging studies for cortical thickness meta-analysis. Specific alterations in the left supplementary motor area were observed in MDD, while SCZ exhibited widespread reductions in various brain regions, particularly in the frontal and temporal areas. The conjFDR approach identified 357 genomic loci jointly associated with MDD and SCZ. Within these loci, 55 genes were found to be associated with cortical thickness alterations in both disorders. Enrichment analysis revealed their involvement in nervous system development, apoptosis, and cell communication. CONCLUSION This study revealed the shared genetic architecture underlying cortical thickness alterations in MDD and SCZ, providing insights into common neurobiological pathways. The identified genes and pathways may serve as potential transdiagnostic markers, informing precision medicine approaches in psychiatric care.
Collapse
Affiliation(s)
- He Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijing Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minghuan Lei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhihui Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiawei Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Zhai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450000, China.
| | - Wenshuang Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
18
|
Slosberg J, Puttapaka SN, Seika P, Hong SM, Singh A, Kulkarni S. Reduced enteric BDNF-TrkB signaling drives glucocorticoid-mediated GI dysmotility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628260. [PMID: 39829825 PMCID: PMC11741244 DOI: 10.1101/2024.12.13.628260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Stress affects gastrointestinal (GI) function causing dysmotility, especially in disorders of gut-brain interactions (DGBI) patients. GI motility is regulated by the enteric nervous system (ENS), suggesting that stress alters ENS biology to cause dysmotility. While stress increases glucocorticoid levels through the hypothalamus-pituitary-adrenal axis, how glucocorticoids affect GI motility is not known. Glucocorticoid signaling reduces expression of specific transcriptional isoforms of brain-derived neurotrophic factor (BDNF) in the central nervous system, altering signaling through its receptor Tropomyosin-related kinase B (TrkB) to cause behavioral defects. However, since the nature of ENS-specific Bdnf isoforms and their response to glucocorticoids remains unknown, we are limited in studying how stress impacts the ENS to cause dysmotility. Here, in male and female mice, we establish that stress-responsive Bdnf isoforms that are transcriptionally regulated at exons 4 and 6 represent >85% of all Bdnf isoforms in the post-natal ENS, and that Bdnf and Ntrk2 (TrkB) are expressed by enteric neurons. We further show using male mice dosed with a synthetic glucocorticoid receptor (GR) agonist dexamethasone (Dexa), that increased glucocorticoid signaling in ENS significantly reduces the expression of Bdnf transcripts and protein and that it significantly reduces GI motility. Finally, by using HIOC, a specific synthetic agonist of TrkB, we observe that HIOC treatment significantly improved GI motility of a cohort of Dexa-treated male mice, when compared to Dexa-treated and HIOC-untreated mice. Our results implicate BDNF- TrkB signaling in the etiology of stress-associated dysmotility and suggest that TrkB is a putative therapeutic target for dysmotility in DGBI patients.
Collapse
Affiliation(s)
- Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins University – School of Medicine, Baltimore, MD, USA
| | - Srinivas N. Puttapaka
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Philippa Seika
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Su Min Hong
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | | | - Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Graduate program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Khalil MH. The BDNF-Interactive Model for Sustainable Hippocampal Neurogenesis in Humans: Synergistic Effects of Environmentally-Mediated Physical Activity, Cognitive Stimulation, and Mindfulness. Int J Mol Sci 2024; 25:12924. [PMID: 39684635 DOI: 10.3390/ijms252312924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This paper bridges critical gaps through proposing a novel, environmentally mediated brain-derived neurotrophic factor (BDNF)-interactive model that promises to sustain adult hippocampal neurogenesis in humans. It explains how three environmental enrichment mechanisms (physical activity, cognitive stimulation, and mindfulness) can integratively regulate BDNF and other growth factors and neurotransmitters to support neurogenesis at various stages, and how those mechanisms can be promoted by the physical environment. The approach enables the isolation of specific environmental factors and their molecular effects to promote sustainable BDNF regulation by testing the environment's ability to increase BDNF immediately or shortly before it is consumed for muscle repair or brain update. This model offers a novel, feasible method to research environment enrichment and neurogenesis dynamics in real-world human contexts at the immediate molecular level, overcoming the confounds of complex environment settings and challenges of long-term exposure and structural plasticity changes. The model promises to advance understanding of environmental influences on the hippocampus to enhance brain health and cognition. This work bridges fundamental gaps in methodology and knowledge to facilitate more research on the enrichment-neuroplasticity interplay for humans without methodological limitations.
Collapse
|
20
|
Tomiga Y, Tanaka K, Kusuyama J, Takano A, Higaki Y, Anzai K, Takahashi H. Exercise training ameliorates carbon tetrachloride-induced liver fibrosis and anxiety-like behaviors. Am J Physiol Gastrointest Liver Physiol 2024; 327:G850-G860. [PMID: 39470596 DOI: 10.1152/ajpgi.00161.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Chronic liver diseases and cirrhosis are associated with mood disorders. Regular exercise has various beneficial effects on multiple organs, including the liver and brain. However, the therapeutic effect of exercise on liver fibrosis concomitant with anxiety has not been evaluated. In this study, the effects of exercise training on liver fibrosis-related anxiety-like behaviors were evaluated. Male C57/BL6 mice were divided into four groups: vehicle-sedentary, vehicle-exercise, carbon tetrachloride (CCl4)-sedentary, and CCl4-exercise. Liver fibrosis was induced by CCl4 administration for 8 wk, exercise was applied in the form of voluntary wheel running. After an intervention, anxiety-like behavior was assessed using the elevated plus maze. CCl4 increased liver and serum fibrotic markers, as measured by blood analysis, histochemistry, and qRT-PCR, and these changes were attenuated by exercise training. CCl4 induced anxiety-like behavior, and the anxiolytic effects of exercise occurred in both healthy and liver-fibrotic mice. In the hippocampus, CCl4-induced changes in neuronal nitric oxide synthase (nNOS) were reversed by exercise, and exercise enhanced brain-derived neurotrophic factor (BDNF) induction, even in a state of severe liver fibrosis. These results suggested that hepatic fibrosis-related anxiety-like behaviors may be induced by excess hippocampal nNOS, and the beneficial effects of exercise could be mediated by increases in BDNF and reductions in nNOS. The percentage of fibrotic area was negatively correlated with antianxiety behavior and positively associated with hippocampal nNOS protein levels. Liver fibrosis-related anxiety-like behaviors could be alleviated through the regulation of hippocampal BDNF and nNOS via exercise training. These results support the therapeutic value of exercise by targeting the mechanisms underlying liver fibrosis and associated anxiety.NEW & NOTEWORTHY This study explores how exercise affects liver fibrosis-related anxiety in mice. Researchers found that regular exercise reversed carbon tetrachloride (CCl4)-induced liver fibrosis and reduced anxiety, even in mice with liver fibrosis. Exercise increased brain-derived neurotrophic factor (BDNF) and decreased neuronal nitric oxide synthase (nNOS) in the hippocampus. These findings suggest that exercise has therapeutic potential for treating anxiety associated with chronic liver disease by modulating specific brain factors.
Collapse
Affiliation(s)
- Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiko Takano
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga, Japan
| |
Collapse
|
21
|
Fungaro Rissatti L, Wilson D, Palace-Berl F, de Mello Ponteciano B, Sardela de Miranda F, Alece Arantes Moreno I, dos Santos Vieira T, Pereira Sorroche B, Rebolho Batista Arantes LM, Madeira Alvares da Silva A, D'Almeida V, Demarzo M, Rodrigues de Oliveira D. BDNF methylation associated with stress in women: Novel insights in epigenetics and inflammation. Brain Behav Immun Health 2024; 42:100900. [PMID: 39552782 PMCID: PMC11565430 DOI: 10.1016/j.bbih.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) gene plays an important role in modulating the stress-response axis and inflammation, which can be regulated by epigenetic mechanisms. BNDF methylation has been associated with stress-related psychiatric disorders such as depression, anxiety and post-traumatic stress. Previous studies have reported that stressful events are involved with long-lasting alterations in DNA methylation (DNAm) of the BNDF exon IV promoter, suggesting that glucocorticoids and inflammatory cytokines can regulate this process. We previously found that perceived psychological stress is modulated by inflammatory cytokines, such as interleukin (IL)-6, IL-8 and IL-10, and IL-12p70, suggesting their role in mediating the stress response. However, the epigenetic mechanism mediating this response has yet to be fully understood. In this study, we propose that high perceived stress and high serum levels of inflammatory cytokines may correlate with specific methylation sites within the BNDF exon IV promoter. To address these questions, we conducted a cross-sectional study of 82 adult women teachers working in basic education in Brazil. The perceived stress scale was used to assess stress and blood samples were collected for the measurement of inflammatory markers and BNDF methylation through flow cytometry assay and DNA pyrosequencing, respectively. We detected differentially methylated CpG sites in the BNDF gene, where 5 CpG sites were directly correlated with high stress levels. However, 4 CpG sites showed inverse effects, indicating that changes in methylation levels in those sites could lead to a protective effect on perceived stress. About inflammatory markers, IL-6 and IL-8 were associated with high perceived stress. However, only IL-8 and IL-10 showed simultaneous modulation of perceived stress, while IL-10 and IL12p70 correlated with DNAm. We found that higher levels in IL-10 and IL-12p70 serum decrease methylation in CpG11. A direct relationship was also found to IL-12p70, where higher levels in serum increase methylation in CpG5 and 13, respectively. Taken as a whole, our findings reinforce the hypothesis regarding stress-sensitive regions within the BDNF gene, mainly for CpG5, 11, and 13. In addition to these results, CpG7 and 9 may be regarded as stress-protective regions. Our data suggest that BDNF DNAm in the blood may represent a novel biomarker for early detection of adverse effects of chronic exposure to stress in healthy individuals.
Collapse
Affiliation(s)
- Luciana Fungaro Rissatti
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - David Wilson
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fanny Palace-Berl
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bárbara de Mello Ponteciano
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Flávia Sardela de Miranda
- Laboratory of Imunomodulation, Department of Imunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ivana Alece Arantes Moreno
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Tamires dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Demarzo
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Daniela Rodrigues de Oliveira
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
22
|
Correia AS, Torrado M, Costa-Coelho T, Carvalho ED, Inteiro-Oliveira S, Diógenes MJ, Pêgo AP, Santos SD, Sebastião AM, Vale N. Brain-derived neurotrophic factor modulation in response to oxidative stress and corticosterone: role of scopolamine and mirtazapine. Life Sci 2024; 358:123133. [PMID: 39413901 DOI: 10.1016/j.lfs.2024.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Major Depressive Disorder (MDD) is a very complex disease, challenging to study and manage. The complexities of MDD require extensive research of its mechanisms to develop more effective therapeutic approaches. Crucial in the context of this disease is the role of brain-derived neurotrophic factor (BDNF) signaling pathway. AIM This manuscript aims to explore the complex relationship between MDD and BDNF signaling pathway, focusing on how BDNF is modulated in response to oxidative stress and corticosterone, known to be altered in MDD and contributing to the pathology of the disorder, when treated with scopolamine and mirtazapine. METHODS To assess BDNF levels after the different treatment conditions, rat hippocampal slices and mice primary hippocampus and cortical cell culture were analyzed by immunofluorescence and Western blot. KEY FINDINGS Both mirtazapine and scopolamine under stress conditions induced by hydrogen peroxide (H2O2) and corticosterone, had a significant impact on BDNF levels, and this was distinct in different neuronal models. Mirtazapine, especially when combined with H2O2, altered BDNF expression. Scopolamine when combined with both stressors also altered BDNF levels. However, its effects varied depending on the specific neuronal model and stress condition. In accordance with BDNF results, phosphorylated tropomyosin receptor kinase B (pTrkB) presented increased activation when neuronal cells subjected to stress were treated with mirtazapine or scopolamine. SIGNIFICANCE Collectively, this study highlights the complex connection between these compounds, stress conditions, and BDNF/TrkB modulation, supporting the potential therapeutic effects of scopolamine and mirtazapine in modulating BDNF levels, even in stressful conditions.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marília Torrado
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Paula Pêgo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia Duque Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
23
|
Reddy DS, Li Y, Qamari T, Ramakrishnan S. Behavioral Assays for Comprehensive Evaluation of Cognitive and Neuropsychiatric Comorbidities of Traumatic Brain Injury and Chronic Neurological Disorders. Curr Protoc 2024; 4:e70019. [PMID: 39422165 DOI: 10.1002/cpz1.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neurological deficits, psychiatric disorders, and cognitive impairments often accompany stroke, brain injury, epilepsy, and many neurological disorders, which present intricate comorbidities that challenge recognition and management. There are many tools and paradigms for evaluating learning, memory, anxiety, and depression-like behaviors in lab animal models of brain disorders. However, there is a significant gap between clinical observations and experimental models, which limit understanding of the complex interplay between chronic brain conditions and their impact on cognitive dysfunction and psychiatric impairments. This article describes an overview of experimental rationale, methods, protocols, and strategies for evaluating sensorimotor, affective and cognitive-associated comorbid behaviors in epilepsy, traumatic brain injury (TBI), stroke, spinal cord injury (SCI), and many other neurological disorders. First, we delve into clinical evidence elucidating the profound impact of comorbidities, e.g., psychiatric disorders and cognitive deficits, in individuals with epilepsy. Then, we discuss diverse approaches to assess these comorbidities in experimental models of brain diseases. Finally, we explore the methodologies for assessing motor function, sensorimotor, behavior, and psychiatric health. We cover strategies and protocols enabling these assays, including implementing behavioral paradigms to assess learning and memory, anxiety, and depression-like behaviors in rodents in health and disease conditions. It is essential to consider a comprehensive battery of tests to investigate various behavioral deficits, considering environment, age, and sex differences relevant to the disease, such as TBI, SCI, epilepsy, stroke, and other complex neurological conditions. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Yue Li
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Taha Qamari
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
24
|
Mickael ME, Kubick N, Dragan M, Atanasov AG, Ławiński M, Paszkiewicz J, Horbańczuk JO, Religa P, Thorne A, Sacharczuk M. The impact of BDNF and CD4 + T cell crosstalk on depression. Immunol Res 2024; 72:883-894. [PMID: 38980567 DOI: 10.1007/s12026-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Małgorzata Dragan
- Faculty of Psychology, University of Warsaw, Krakowskie Przedmieście26/28, 00-927, Warsaw, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michał Ławiński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500, Biała Podlaska, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77, Solna, Sweden
| | - Ana Thorne
- Medical Faculty, University of Nis, Bulevar Dr Zorana Djidjica 81, 18000, Nis, Serbia
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| |
Collapse
|
25
|
He Y, Tian Y, Xiong H, Deng Z, Zhang H, Guo F, Sun Y. Rice Protein Peptides Ameliorate DSS-Induced Cognitive Impairment and Depressive Behavior in Mice by Modulating Phenylalanine Metabolism and the BDNF/TRKB/CREB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19812-19825. [PMID: 39208363 DOI: 10.1021/acs.jafc.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rice protein peptide (RPP) has been reported to alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis, but its potential protective effect and fundamental neurobiological mechanisms against DSS-induced inflammatory bowel disease (IBD), coupled with depression and cognitive impairment, remain unclear. In this study, RPP treatment in DSS-induced mice inhibited decreases in body weight and colon length and improved intestinal barrier function and behavioral performance. RPP treatment enhanced phenylalanine and tyrosine metabolism in the brains of mice, and it upregulated metabolites such as l-dopa, phenylethylamine, and 3,4-dihydroxyphenylacetate. Additionally, RPP treatment enhanced the brain-derived neurotrophic factor (BDNF) by upregulating the BDNF/TrkB/CREB signaling pathway. Spearman's correlation analysis revealed that the phenylalanine and tyrosine contents in the brain were significantly negatively correlated with the BDNF/TrkB/CREB signaling pathway and behavioral performance. In conclusion, this study suggested that RPP may serve as a unique nutritional strategy for preventing IBD and its associated cognitive impairment and depression symptoms.
Collapse
Affiliation(s)
- Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
26
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Bulimia Nervosa (BN): A Review and Insight into Potential Mechanisms of Action. J Clin Med 2024; 13:5364. [PMID: 39336850 PMCID: PMC11432543 DOI: 10.3390/jcm13185364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Bulimia nervosa (BN) is a disorder primarily affecting adolescent females, characterized by episodes of binge eating followed by inappropriate compensatory behaviors aimed at preventing weight gain, including self-induced vomiting and the misuse of diuretics, laxatives, and insulin. The precise etiology of BN remains unknown, with factors such as genetics, biological influences, emotional disturbances, societal pressures, and other challenges contributing to its prevalence. First-line treatment typically includes pharmacotherapy, which has shown moderate effectiveness. Neuroimaging evidence suggests that altered brain activity may contribute to the development of BN, making interventions that directly target the brain extremely valuable. One such intervention is repetitive transcranial magnetic stimulation (rTMS), a non-invasive stimulation technique that has been garnering interest in the medical community for many years. METHODS This review explores the use of rTMS in the treatment of BN. Searches were conducted in the PubMed/Medline, ResearchGate, and Cochrane databases. RESULTS Twelve relevant studies were identified. Analysis of the results from these studies reveals promising findings, particularly regarding key parameters in the pathophysiology of BN. Several studies assessed the impact of rTMS on binge episodes. While some studies did not find significant reductions, most reported decreases in binge eating and purging behaviors, with some cases showing complete remission. Reductions in symptoms of depression and food cravings were also demonstrated. However, results regarding cognitive improvement were mixed. The discussion focused heavily on potential mechanisms of action, including neuromodulation of brain networks, induction of neuroplasticity, impact on serotonergic dysfunction, anti-inflammatory action, and HPA axis modulation. rTMS was found to be a safe intervention with no serious side effects. CONCLUSIONS rTMS in the treatment of BN appears to be a promising intervention that alleviates some symptoms characteristic of the pathophysiology of this disorder. An additional effect is a significant reduction in depressive symptoms. However, despite these findings, further research is required to confirm its effectiveness and elucidate the mechanisms of action. It is also recommended to further investigate the potential mechanisms of action described in this review.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| | | |
Collapse
|
27
|
He L, Mo X, He L, Ma Q, Cai L, Zheng Y, Huang L, Lin X, Wu M, Ding W, Zhou C, Zhang JC, Hashimoto K, Yao W, Chen JX. The role of BDNF transcription in the antidepressant-like effects of 18β-glycyrrhetinic acid in a chronic social defeat stress model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155332. [PMID: 38851983 DOI: 10.1016/j.phymed.2023.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain. STUDY DESIGN We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection. Furthermore, we explored the molecular mechanisms underlying the antidepressant-like effects of both XYS and 18β-GA. METHODS To investigate the antidepressant-like effects of XYS and elucidate the associated molecular mechanisms, we employed various methodologies, including cell cultures, the chronic social defeat stress (CSDS) model, behavioral tests, immunoprecipitation, quantitative PCR (qPCR) assays, Western blotting assays, luciferase assays, chromatin immunoprecipitation (ChIP) assays, immunofluorescence staining, and dendritic spine analysis. RESULTS We identified 18β-GA as the primary compound in the brain following XYS injection. In vitro, 18β-GA was found to bind with ERK (extracellular signal-regulated kinase), subsequently activating ERK kinase activity toward both c-Jun and cAMP response element binding protein (CREB). Moreover, 18β-GA activated brain-derived neurotrophic factor (BDNF) transcription by stimulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2), c-Jun, and CREB, while also inhibiting methyl CpG binding protein 2 (MeCP2) both in vitro and in vivo. Chronic intraperitoneal (i.p.) administration of 18β-GA exhibited prophylactic antidepressant-like effects in a CSDS model, primarily by activating BDNF transcription in the medial prefrontal cortex (mPFC). Interestingly, a single i.p. injection of 18β-GA produced rapid and sustained antidepressant-like effects in CSDS-susceptible mice by engaging the BDNF-tropomyosin receptor kinase B (TrkB) signaling pathway in the mPFC. CONCLUSION These findings suggest that the activation of BDNF transcription in the mPFC underlies the antidepressant-like effects of 18β-GA, a key component of XYS in the brain.
Collapse
Affiliation(s)
- Lujuan He
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lili Cai
- Department of Mental Rehabilitation, Mental Hospital of Guangzhou Civil Affairs Bureau, Guangzhou 510632, PR China
| | - Yi Zheng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xuanyu Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
28
|
Hammad AM, Alzaghari LF, Alfaraj M, Lux V, Sunoqrot S. Green Tea Polyphenol Nanoparticles Reduce Anxiety Caused by Tobacco Smoking Withdrawal in Rats by Suppressing Neuroinflammation. TOXICS 2024; 12:598. [PMID: 39195700 PMCID: PMC11360476 DOI: 10.3390/toxics12080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Repeated exposure to tobacco smoke causes neuroinflammation and neuroplasticity, which correlates with smoking withdrawal-induced anxiety. The purpose of this study was to investigate the anticipated involvement of antioxidant-rich nanoparticles (NPs) prepared by oxidation-triggered polymerization of green tea catechins in impacting these effects in a rat model of tobacco smoke exposure. Exposure to tobacco smoke was carried out for 2 h a day, 5 days a week, for a total of 36 days. Weekly behavioral tests were conducted prior to recommencing the exposure. Following a 20-day exposure period, rats were administered either distilled water or green tea (GT) NPs (20 mg/kg, orally) for an additional 16 days. Our findings revealed that tobacco smoke exposure induced anxiety-like behavior indicative of withdrawal, and this effect was alleviated by GT NPs. Tobacco smoke exposure caused a marked increase in the relative mRNA and protein expression of nuclear factor-kappa B (NF-κB) and reduced the relative mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and hypothalamus (HYP) brain subregions. The intervention of GT NPs effectively inhibited these effects. Our findings demonstrate the potent protective role of GT NPs in reducing withdrawal-induced anxiety-like behavior, neuroinflammation, and neuroplasticity triggered by tobacco smoke exposure.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Vanessa Lux
- Department of Genetic Psychology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
29
|
Yao L, Ni J, Wei M, Li T, Long Z, Shi J, Tian J. Association of Depression and Cognitive Performance in US Older Adults: A Secondary Analysis of Cross-Sectional Data Using NHANES 2013-2014. Eur Neurol 2024; 87:147-158. [PMID: 39074463 DOI: 10.1159/000540277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Depression has been associated with cognitive performance, but whether sociodemographic and clinical characteristics might influence this association is not well elaborated. This study aimed to further explore this relationship in older adults. METHODS This cross-sectional study is based on data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. A total of 1,433 individuals with complete information on depressive symptoms and cognitive function variables were included in this study. Patient Health Questionnaire 9 (PHQ-9) score ≥10 as the cutoff to identify cases of depression in our study. We defined poor cognitive performance as a composite cognitive score <47. Logistic regression models were used to examine the association of depression with cognitive performance (model 1). We progressively adjusted the covariates as confounders (model 2: model 1 + age, and gender; model 3: model 2 + race, education level, family income, drinking, and smoking; model 4: model 3 + overweight, arthritis, hyperlipidemia, diabetes, hypertension, heart failure, coronary heart disease, heart attack, stroke, and cancer). We then conducted subgroup, interaction, and restricted cubic spline (RCS) analyses to examine this association. RESULTS The prevalence of poor cognitive performance was 36.6% (53/145) in the depression group and 14.1% (182/1,288) in the non-depression group. In the fully adjusted model, depression was significantly associated with poor cognitive performance (adjusted odds ratio: 2.25; 95% confidence interval: 1.31-3.81). The results were robust to sensitivity analyses. Gender and education level may modify the association between depression and poor cognitive performance. RCS analysis revealed that the PHQ-9 score was related to poor cognitive performance in a nonlinear manner (p for nonlinearity <0.001), and exhibited a J-shaped curve. CONCLUSION Depression is associated with poor cognitive performance in US older adults. Early recognition and treatment of depression may be potential intervention strategies to protect cognitive health.
Collapse
Affiliation(s)
- Lulu Yao
- Beijing University of Chinese Medicine, Beijing, China,
| | - Jingnian Ni
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Long
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Karnik R, Vohra A, Khatri M, Dalvi N, Vyas HS, Shah H, Gohil S, Kanojiya S, Devkar R. Diet/photoperiod mediated changes in cerebellar clock genes causes locomotor shifts and imperative changes in BDNF-TrkB pathway. Neurosci Lett 2024; 835:137843. [PMID: 38821201 DOI: 10.1016/j.neulet.2024.137843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuropsychological studies report anxiety and depression like symptoms in patients suffering from lifestyle disorder but its impact on locomotor function lacks clarity. Our study investigates locomotor deficits resulting due to perturbations in cerebellum of high fat diet (HFD), chronodisruption (CD) or a combination (HCD) model of lifestyle disorder. Significant downregulation in levels of cerebellar clock genes (Bmal-1, Clock, Per 1 and Per 2) and Bdnf-Trkb pathway genes (Bdnf, TrkB and Syn1 levels) were recorded. Further, locomotor deficits were observed in all the three experimental groups as evidenced by actimeter test, pole test and wire hanging test. Nuclear pyknosis of Purkinje cells, their derangement and inflammation were the hallmark of cerebellar tissue of all the three experimental groups. Taken together, this study generates important links between cerebellar clock oscillations, locomotor function and Bdnf-TrkB signaling.
Collapse
Affiliation(s)
- Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Department of Neurology, Washington University in St. Louis, Saint Louis, MO, 63110, USA
| | - Mahamadtezib Khatri
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Nilay Dalvi
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Hitarthi S Vyas
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Helly Shah
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Sujitsinh Gohil
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Smit Kanojiya
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India; Dr. Vikram Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, India.
| |
Collapse
|
31
|
Smit AJT, Wu GWY, Rampersaud R, Reus VI, Wolkowitz OM, Mellon SH. Serum brain-derived neurotrophic factor, Val66Met polymorphism and open-label SSRI treatment response in Major Depressive Disorder. Psychoneuroendocrinology 2024; 165:107045. [PMID: 38636352 DOI: 10.1016/j.psyneuen.2024.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been implicated in the therapeutic action of antidepressants and possibly in the pathophysiology of Major Depressive Disorder (MDD). Clinical studies of peripheral blood levels of BDNF in MDD have provided conflicting results, and there are also conflicting reports regarding the predictive value of peripheral BDNF levels for antidepressant treatment response. The present study investigated the association between serum BDNF levels, the BDNF Val66Met polymorphism (rs6265), clinical characteristics and SSRI treatment response. METHODS This open-label clinical trial included 99 physically healthy, unmedicated MDD participants and 70 healthy controls. Following a baseline assessment, 53 of the MDD participants completed an eight-week, open-label course of SSRI antidepressant treatment. Serum BDNF levels and Hamilton Rating Scale for Depression (HDRS) ratings were examined at baseline and after eight weeks of treatment. Antidepressant response was defined as a decrease in HDRS ratings of > 50% from baseline to the end-of-treatment. Finally, serum BDNF levels and SSRI treatment response were compared between MDD participants who were heterozygous or homozygous for the Met allele ("Met-carriers") and individuals homozygous for the Val allele. RESULTS Serum BDNF levels at baseline were significantly higher in the unmedicated MDD participants compared to healthy controls (15.90 ng/ml vs 13.75 ng/ml, t (167) = -2.041, p = 0.043). In a post-hoc analysis, this difference was seen in the female but not male participants (16.85 ng/ml vs 14.06 ng/ml, t (91) = -2.067, p = 0.042; 14.86 ng/ml vs 13.31 ng/ml, t (74) = -0.923, p = 0.359). Baseline serum BDNF levels were not associated with treatment responder status or with absolute change in depression ratings over the course of 8-week SSRI treatment (p = 0.599). In both Responders and Non-responders, no significant changes in serum BDNF levels were found over the 8-week period of SSRI-treatment (16.32 ng/ml vs 16.23 ng/ml, t (18) = 0.060, p = 0.953; 16.04 ng/ml vs 15.61 ng/ml, t (29) = 0.438, p = 0.665, respectively). Further, no differences were found in serum BDNF levels prior to treatment between MDD Met-carriers and MDD Val/Val homozygotes (15.32 ng/ml vs 16.36 ng/ml, t (85) = 0.747, p = 0.457), and no differences were found in post-treatment serum BDNF (F1,42= 0.031, p = 0.862). However, MDD Val/Val homozygotes showed significantly greater antidepressant responses at week 8 than did MDD Met-carriers (F1,46 = 4.366, p = 0.043). CONCLUSION Our results do not support sufficient reliability of using peripheral BDNF to characterize depression or to predict antidepressant response in clinical use. The role of sex in moderating BDNF differences in depression, and the role of BDNF gene polymorphisms in predicting antidepressant response, remain to be further investigated. We conclude that, while central nervous system BDNF is likely involved in antidepressant efficacy and in aspects of MDD pathophysiology, its reflection in serum BDNF levels is of limited diagnostic or prognostic utility.
Collapse
Affiliation(s)
- Anna J T Smit
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
32
|
Merabtine T, Tarhini Z, Preux PM, Christou N, Jost J. Effects of antidepressant and antipsychotic medication on peripheral brain-derived neurotrophic factor concentration: Systematic review and meta-analysis. Psychiatry Res 2024; 337:115946. [PMID: 38703562 DOI: 10.1016/j.psychres.2024.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulatory protein in the pathophysiology of psychiatric disorders. Several studies have reported the relationship between peripheral BDNF concentrations and the use of psychoactive drugs. However, the results remain controversial. This study aimed to evaluate the effects of psychoactive drugs on BDNF concentrations and to explore the association between changes in BDNF concentrations and improvements in clinical scores. A systematic review and meta-analysis were conducted. Six electronic databases, including PubMed, Scopus, Medline, Web of Science, Google Scholar and Science Direct, were searched. Changes in BDNF concentrations were compared before and after psychoactive treatment, using the standardized mean difference (SMD) and 95 % confidence interval (95 % CI). Twenty-three studies were included. A significant increase in serum BDNF concentrations was observed after treatment with antipsychotics (SMD=0.43; 95 %CI: 0.26, 0.60) and antidepressants (SMD=0.49; 95 %CI: 0.23, 0.74). However, the plasma BDNF concentration was not affected by antidepressant and antipsychotic medication. Although an improvement in clinical scores was observed after treatment, no significant association was observed between changes in BDNF concentrations and the changes in the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depression Rating Scale (HAM-D) scores. In conclusion, antidepressants and antipsychotics increase serum BDNF concentrations.
Collapse
Affiliation(s)
- Tassadit Merabtine
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Omega Health, Limoges, France
| | - Zeinab Tarhini
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Omega Health, Limoges, France; Laboratory INSERM U1308, CAPTuR, Control of cell Activation in Tumor Progression and Therapeutic Resistance, Medical School- 2 rue du Docteur Marcland 87025 LIMOGES Cedex, France; General Cancer Registry in Haute-Vienne, University Hospital of Limoges, Avenue Martin Luther King 87000 Limoges, France.
| | - Pierre-Marie Preux
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Omega Health, Limoges, France; General Cancer Registry in Haute-Vienne, University Hospital of Limoges, Avenue Martin Luther King 87000 Limoges, France
| | - Niki Christou
- Laboratory INSERM U1308, CAPTuR, Control of cell Activation in Tumor Progression and Therapeutic Resistance, Medical School- 2 rue du Docteur Marcland 87025 LIMOGES Cedex, France; Digestive Surgery Department, University Hospital of Limoges, Avenue Martin Luther King 87000 Limoges, France
| | - Jeremy Jost
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, Omega Health, Limoges, France; Pharmacy Department, University Hospital of Limoges, Avenue Martin Luther King 87000 Limoges, France
| |
Collapse
|
33
|
Shi Y, Zhu J, Hou C, Li X, Tong Q. Mining key circadian biomarkers for major depressive disorder by integrating bioinformatics and machine learning. Aging (Albany NY) 2024; 16:10299-10320. [PMID: 38874508 PMCID: PMC11236317 DOI: 10.18632/aging.205930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study aimed to identify key clock genes closely associated with major depressive disorder (MDD) using bioinformatics and machine learning approaches. METHODS Gene expression data of 128 MDD patients and 64 healthy controls from blood samples were obtained. Differentially expressed were identified and weighted gene co-expression network analysis (WGCNA) was first performed to screen MDD-related key genes. These genes were then intersected with 1475 known circadian rhythm genes to identify circadian rhythm genes associated with MDD. Finally, multiple machine learning algorithms were applied for further selection, to determine the most critical 4 circadian rhythm biomarkers. RESULTS Four key circadian rhythm genes (ABCC2, APP, HK2 and RORA) were identified that could effectively distinguish MDD samples from controls. These genes were significantly enriched in circadian pathways and showed strong correlations with immune cell infiltration. Drug target prediction suggested that small molecules like melatonin and escitalopram may target these circadian rhythm proteins. CONCLUSION This study revealed discovered 4 key circadian rhythm genes closely associated with MDD, which may serve as diagnostic biomarkers and therapeutic targets. The findings highlight the important roles of circadian disruptions in the pathogenesis of MDD, providing new insights for precision diagnosis and targeted treatment of MDD.
Collapse
Affiliation(s)
- Yuhe Shi
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jue Zhu
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chaowen Hou
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoling Li
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qiaozhen Tong
- Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
34
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 PMCID: PMC11847495 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
35
|
Mercado L, Rose S, Escalona-Vargas D, Siegel ER, Whittington JR, Preissl H, Helmich M, Eswaran H. Correlation of fetal heart rate dynamics to inflammatory markers and brain-derived neurotrophic factor during pregnancy. J Perinat Med 2024; 52:399-405. [PMID: 38404246 PMCID: PMC11068021 DOI: 10.1515/jpm-2023-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study aims to show the relation between biomarkers in maternal and cord-blood samples and fetal heart rate variability (fHRV) metrics through a non-invasive fetal magnetocardiography (fMCG) technique. METHODS Twenty-three women were enrolled for collection of maternal serum and fMCG tracings immediately prior to their scheduled cesarean delivery. The umbilical cord blood was collected for measurement of biomarker levels. The fMCG metrics were then correlated to the biomarker levels from the maternal serum and cord blood. RESULTS Brain-derived neurotrophic factor (BDNF) had a moderate correlation with fetal parasympathetic activity (0.416) and fetal sympathovagal ratios (-0.309; -0.356). Interleukin (IL)-6 also had moderate-sized correlations but with an inverse relationship as compared to BDNF. These correlations were primarily in cord-blood samples and not in the maternal blood. CONCLUSIONS In this small sample-sized exploratory study, we observed a moderate correlation between fHRV and cord-blood BDNF and IL-6 immediately preceding scheduled cesarean delivery at term. These findings need to be validated in a larger population.
Collapse
Affiliation(s)
- Luis Mercado
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Diana Escalona-Vargas
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Julie R. Whittington
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Melissa Helmich
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hari Eswaran
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
36
|
Liu Y, Chen C, Du H, Xue M, Zhu N. Impact of Baduanjin exercise combined with rational emotive behavior therapy on sleep and mood in patients with poststroke depression: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e38180. [PMID: 38728460 PMCID: PMC11081619 DOI: 10.1097/md.0000000000038180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Poststroke depression (PSD) is one of the most common stroke complications. It not only leads to a decline in patients' quality of life but also increases the mortality of patients. In this study, the method of combining Chinese traditional exercise Baduanjin with psychotherapy was used to intervene in patients with PSD and to explore the improvement of sleep, mood, and serum levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) levels in patients with PSD by combined treatment. METHODS A total of 100 patients with PSD who met the inclusion criteria were randomly assigned to Baduanjin group (n = 50) or control group (n = 50). The control group received treatment with escitalopram oxalate and rational emotive behavior therapy, while the experimental group received Baduanjin training in addition to the treatment given to the control group. Changes in sleep efficiency, sleep total time, sleep latency, arousal index, Hamilton Anxiety Rating Scale, Hamilton Depression Scale score, serum BDNF, 5-HT, IL-6 levels, and Modified Barthel Index were measured at baseline, 4 weeks and 8 weeks after intervention, and the results were compared between the 2 groups. RESULTS Significantly improvements in the sleep efficiency, sleep total time, serum 5-HT, BDNF levels, and Modified Barthel Index score were detected at week 4 in the Baduanjin group than in the control group (P < .05). Additionally, the sleep latency, arousal index, Hamilton Anxiety Rating Scale, Hamilton Depression Scale scores and IL-6 levels in the Baduanjin group were lower than those in the control group (P < .05). After 8 weeks of treatment, the above indexes in the Baduanjin group were further improved compared with the control group (P < .05), and the above indexes of the 2 groups were significantly improved compared with the baseline (P < .001). CONCLUSION Baduanjin exercise combined with rational emotive behavior therapy effectively improves the mood and sleep status of patients with PSD; It increases the serum levels of 5-HT and BDNF while reducing the level of serum proinflammatory factor IL-6; additionally, the intervention alleviates the degree of neurological impairment, upgrades the ability of daily living, and improves the quality of life.
Collapse
Affiliation(s)
- Yihan Liu
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Chen
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hanbin Du
- Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Zhu
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Bach SV, Bauman AJ, Hosein D, Tuscher JJ, Ianov L, Greathouse KM, Henderson BW, Herskowitz JH, Martinowich K, Day JJ. Distinct roles of Bdnf I and Bdnf IV transcript variant expression in hippocampal neurons. Hippocampus 2024; 34:218-229. [PMID: 38362938 PMCID: PMC11039386 DOI: 10.1002/hipo.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.
Collapse
Affiliation(s)
- Svitlana V. Bach
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Allison J. Bauman
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Darya Hosein
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Kelsey M. Greathouse
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Benjamin W. Henderson
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Jeremy H. Herskowitz
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Keri Martinowich
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
39
|
Zou Y, Zhang Y, Tu M, Ye Y, Li M, Ran R, Zou Z. Brain-derived neurotrophic factor levels across psychiatric disorders: A systemic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110954. [PMID: 38286331 DOI: 10.1016/j.pnpbp.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
As an important neurotrophic factor in the central nervous system, Brain-derived Neurotrophic Factor (BDNF) has been implicated in the pathophysiology of psychiatric disorders in many studies. However, its value as a biomarker for the diagnosis and differential diagnosis of mental disorders is still controversial, and its change patterns among different mental disorders have not been compared. We conducted a network meta-analysis of BDNF levels in different psychiatric disorders including schizophrenia(SCZ), major depressive disorder(MDD), bipolar disorder(BD), panic disorder(PD), post-traumatic stress disorder(PTSD), obsessive-compulsive disorder(OCD), generalized anxiety disorder(GAD) and insomnia. Studies were identified by searching electronic databases through 31/05/2023. BDNF levels decreased in patients with BD, MDD, OCD, PD, SCZ compared with controls, while significantly increased in patients with PTSD. According to the network meta-analysis, BDNF levels were significantly decreased in MDD and SCZ compared with BD (-2.6, 95% CIs [-5.32 to -0.15] and - 2.68 95% CIs [-5.18 to -0.23] respectively). However, in the traditional meta-analysis, there was a trend towards lower BDNF levels in SCZ compared to BD, with no significant difference (SMD = -0.20, 95% CIs [-0.49 to 0.08]). In conclusion, abnormal BDNF levels have been found in psychiatric disorders, and the changes in peripheral BDNF levels in patients with psychiatric disorders were reconfirmed in this study, which suggests BDNF exhibits promising clinical utility and may hold diagnostic value in distinguishing between MDD and BD.
Collapse
Affiliation(s)
- Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yuan Zhang
- Department of pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Mengtian Tu
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Mingmei Li
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rongting Ran
- Southwest Medical University, Luzhou, Sichuan, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Patel MA, Fraser DD, Daley M, Cepinskas G, Veraldi N, Grazioli S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol Med 2024; 30:51. [PMID: 38632526 PMCID: PMC11022403 DOI: 10.1186/s10020-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada.
- Children's Health Research Institute, N6C 4V3, London, ON, Canada.
- Pediatrics, Western University, N6A 3K7, London, ON, Canada.
- Clinical Neurological Sciences, Western University, N6A 3K7, London, ON, Canada.
- Physiology & Pharmacology, Western University, N6A 3K7, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, N6A 5W9, London, ON, Canada.
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
- Computer Science, Western University, N6A 3K7, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada
- Medical Biophysics, Western University, N6A 3K7, London, ON, Canada
| | - Noemi Veraldi
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Grazioli
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Child, Woman, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
41
|
Abdelaty AO, Tharwat EK, Abdelrahman AI, Elgohary A, Elsaeed H, El-Feky AS, Ebrahim YM, Habib A, Abd El Latif H, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed FF, Radwan NM, Ahmed NA. Cerebrolysin potentiates the antidepressant effect of lithium in a rat model of depression. J Psychiatr Res 2024; 172:171-180. [PMID: 38394763 DOI: 10.1016/j.jpsychires.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
RATIONALE Depression is the most prevalent psychiatric disorder worldwide. Although numerous antidepressant treatments are available, there is a serious clinical concern due to their severe side effects and the fact that some depressed patients are resistant to them. Lithium is the drug of choice for bipolar depression and has been used as adjunct therapy with other groups of antidepressants. OBJECTIVES The present study aims to investigate the effect of lithium augmentation with cerebrolysin on the neurochemical, behavioral and histopathological alterations induced in the reserpine model of depression. METHODS The animals were divided into control and reserpine-induced model of depression. The model animals were further divided into rat model of depression, rat model treated with lithium, rat model treated with cerebrolysin and rat model treated with a combination of lithium and cerebrolysin. RESULTS Treatment with lithium, cerebrolysin, or their combination alleviated most of the changes in behavior, oxidative stress parameters, acetylcholinesterase and monoamines in the cortex and hippocampus of the reserpine-induced model of depression. It also improved the alterations in brain-derived neurotrophic factor (BDNF) and histopathology induced by reserpine. CONCLUSIONS The augmentation of lithium with cerebrolysin showed a clear beneficial effect in the present model of depression suggesting the use of cerebrolysin as an adjuvant in antidepressant treatment.
Collapse
Affiliation(s)
- Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Engy K Tharwat
- Bioinformatics Group Center of Informatics Science, Nile University, Giza, Egypt
| | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | | | - Amena S El-Feky
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelaziz Habib
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Faten F Mohammed
- Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt; Department of Pathology, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
43
|
Zhang Q, Xue Y, Wei K, Wang H, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu F, Ding X, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303503. [PMID: 38155473 PMCID: PMC10933643 DOI: 10.1002/advs.202303503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Locus coeruleus (LC) dysfunction is involved in the pathophysiology of depression; however, the neural circuits and specific molecular mechanisms responsible for this dysfunction remain unclear. Here, it is shown that activation of tyrosine hydroxylase (TH) neurons in the LC alleviates depression-like behaviors in susceptible mice. The dorsolateral septum (dLS) is the most physiologically relevant output from the LC under stress. Stimulation of the LCTH -dLSSST innervation with optogenetic and chemogenetic tools bidirectionally can regulate depression-like behaviors in both male and female mice. Mechanistically, it is found that brain-derived neurotrophic factor (BDNF), but not norepinephrine, is required for the circuit to produce antidepressant-like effects. Genetic overexpression of BDNF in the circuit or supplementation with BDNF protein in the dLS is sufficient to produce antidepressant-like effects. Furthermore, viral knockdown of BDNF in this circuit abolishes the antidepressant-like effect of ketamine, but not fluoxetine. Collectively, these findings underscore the notable antidepressant-like role of the LCTH -dLSSST pathway in depression via BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Qian Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - You Xue
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ke Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hao Wang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuan Ma
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yao Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yi Fan
- Department of NeurologyAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjing210024China
| | - Lei Gao
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hang Yao
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Fangfang Wu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xin Ding
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Qingyu Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Jianhua Ding
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Yi Fan
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Ming Lu
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Gang Hu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
44
|
McEwan AR, Hing B, Erickson JC, Hutchings G, Urama C, Norton-Hughes E, D'Ippolito M, Berry S, Delibegovic M, Grassmann F, MacKenzie A. An ancient polymorphic regulatory region within the BDNF gene associated with obesity modulates anxiety-like behaviour in mice and humans. Mol Psychiatry 2024; 29:660-670. [PMID: 38228888 PMCID: PMC11153140 DOI: 10.1038/s41380-023-02359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Obesity and anxiety are morbidities notable for their increased impact on society during the recent COVID-19 pandemic. Understanding the mechanisms governing susceptibility to these conditions will increase our quality of life and resilience to future pandemics. In the current study, we explored the function of a highly conserved regulatory region (BE5.1) within the BDNF gene that harbours a polymorphism strongly associated with obesity (rs10767664; p = 4.69 × 10-26). Analysis in primary cells suggested that the major T-allele of BE5.1 was an enhancer, whereas the obesity-associated A-allele was not. However, CRISPR/CAS9 deletion of BE5.1 from the mouse genome (BE5.1KO) produced no significant effect on the expression of BDNF transcripts in the hypothalamus, no change in weight gain after 28 days and only a marginally significant increase in food intake. Nevertheless, transcripts were significantly increased in the amygdala of female mice and elevated zero maze and marble-burying tests demonstrated a significant increase in anxiety-like behaviour that could be reversed by diazepam. Consistent with these observations, human GWAS cohort analysis demonstrated a significant association between rs10767664 and anxiousness in human populations. Intriguingly, interrogation of the human GTEx eQTL database demonstrated no effect on BDNF mRNA levels associated with rs10767664 but a highly significant effect on BDNF-antisense (BDNF-AS) gene expression and splicing. The subsequent observation that deletion of BE5.1 also significantly reduced BDNF-AS expression in mice suggests a novel mechanism in the regulation of BDNF expression common to mice and humans, which contributes to the modulation of mood and anxiety in both species.
Collapse
Affiliation(s)
- Andrew R McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Johanna C Erickson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Greg Hutchings
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Charity Urama
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Emily Norton-Hughes
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Mariam D'Ippolito
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Susan Berry
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Mirela Delibegovic
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK
| | - Felix Grassmann
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB24 2ZD, UK.
| |
Collapse
|
45
|
Ren L. The mechanistic basis for the rapid antidepressant-like effects of ketamine: From neural circuits to molecular pathways. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110910. [PMID: 38061484 DOI: 10.1016/j.pnpbp.2023.110910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Conventional antidepressants that target monoaminergic receptors require several weeks to be efficacious. This lag represents a significant problem in the currently available treatments for serious depression. Ketamine, acting as an N-methyl-d-aspartate receptor antagonist, was shown to have rapid antidepressant-like effects, marking a significant advancement in the study of mood disorders. However, serious side effects and adverse reactions limit its clinical use. Considering the limitations of ketamine, it is crucial to further define the network targets of ketamine. The rapid action of ketamine an as antidepressant is thought to be mediated by the glutamate system. It is believed that synaptic plasticity is essential for the rapid effects of ketamine as an antidepressant. Other mechanisms include the involvement of the γ-aminobutyric acidergic (GABAergic), 5-HTergic systems, and recent studies have linked astrocytes to ketamine's rapid antidepressant-like effects. The interactions between these systems exert a synergistic rapid antidepressant effect through neural circuits and molecular mechanisms. Here, we discuss the neural circuits and molecular mechanisms underlying the action of ketamine. This work will help explain how molecular and neural targets are responsible for the effects of rapidly acting antidepressants and will aid in the discovery of new therapeutic approaches for major depressive disorder.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu 611137, China.
| |
Collapse
|
46
|
P A, Rengarajan S, Venkatachalam S, Pattabi S, Jones S, K P, Krishna V, Prasanth K. Neuroprotection by Cerebrolysin and Citicoline Through the Upregulation of Brain-Derived Neurotrophic Factor (BDNF) Expression in the Affected Neural Cells: A Preliminary Clue Obtained Through an In Vitro Study. Cureus 2024; 16:e54665. [PMID: 38524067 PMCID: PMC10960614 DOI: 10.7759/cureus.54665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Citicoline and cerebrolysin are two unique yet contentious medications because of inconsistencies in efficacy as well as the mystery surrounding their mode of action. The current study aimed to re-validate the neuroprotective benefits of these medications and investigate the possible molecular mechanism. METHODS Neuro-2A cells were exposed to tert-butyl hydroperoxide, a consistent in vitro model of neuronal damage caused by oxidative stress. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, acridine orange/ethidium bromide (AO-EtBr) staining, and phase-view examinations were utilized to evaluate cell survival and cytotoxicity. Real-time reverse transcription-polymerase chain reaction (RT-PCR)-based gene expression studies were conducted. KEY FINDING Observations revealed that these two medications had modest but considerable neuroprotective effects. While the majority of the genes' expressions remained unchanged, cerebrolysin upregulated Neuregulin 1, and both upregulated brain-derived neurotrophic factor (BDNF) expression. CONCLUSION The findings of the current study may be the first to suggest that citicoline and cerebrolysin may increase host cells' defense mechanisms (secretion neurotrophic factors) rather than carrying nutrients for cell survival. Because of its simplicity, the current study can readily be repeated to learn more about these two disputed medications for treating ischemic stroke.
Collapse
Affiliation(s)
- Anandan P
- Department of General Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Santhanam Rengarajan
- Department of Neurosurgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sankar Venkatachalam
- Department of Anatomy, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Chennai, IND
| | - Sasikumar Pattabi
- Department of Surgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Prabhu K
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Vani Krishna
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
47
|
Schaeff VLK, Sperber PS, Piper SK, Giesers NK, Gertz K, Heuschmann PU, Endres M, Liman TG. Associations of C-reactive protein with depressive symptoms over time after mild to moderate ischemic stroke in the PROSCIS-B cohort. J Neurol 2024; 271:909-917. [PMID: 37848651 PMCID: PMC10828033 DOI: 10.1007/s00415-023-12038-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND PURPOSE C-reactive protein serves as a marker of inflammation and is linked to depression in the general population. We aimed to assess whether elevated baseline levels of high-sensitivity C-reactive protein (hs-CRP) are associated with depressive symptoms over time in a prospective cohort of mild-to-moderate first-ever ischemic stroke patients. METHODS Data were obtained from the Prospective Cohort with Incident Stroke Berlin (NCT01363856). Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D) at three annual follow-up points. We assessed the association of elevated levels of hs-CRP with CES-D scores over time via linear mixed models. In a subgroup analysis, we explored an interaction effect with sex. RESULTS We included 585 ischemic stroke patients with baseline data on CRP levels. The mean age was 67 (13 SD), 39% (n = 226) were female, and the median National Institutes of Health Stroke Scale (NIHSS) was 3 (IQR 1-4). Twenty percent of survivors showed evidence for depressive symptoms one year after stroke with CES-D ≥ 16, 21% at year two, and 17% at year three. Higher log-transformed baseline hs-CRP levels were associated with higher CES-D Scores over time in the adjusted linear mixed model (β = 1.28; (95% CI 0.22-2.34)). The subgroup analysis revealed an interaction effect of hs-CRP on depressive symptoms in women (β = 2.33; (95% CI 0.71-3.95)). CONCLUSION In our cohort with mild-to-moderate first-ever ischemic stroke patients, hs-CRP levels were associated with more depressive symptoms over time, with an interaction effect for the female sex. STUDY REGISTRATION https://clinicaltrials.gov ; Unique identifier: NCT01363856.
Collapse
Affiliation(s)
- Viktoria L K Schaeff
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Pia S Sperber
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Centre for Cardiovascular Research DZHK, Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Department of Neurology With Experimental Neurology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center, Berlin, Germany
| | - Sophie K Piper
- Charité-Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Naomi K Giesers
- Department of Neurology, Carl Von Ossietzky University, Oldenburg, Germany
| | - Karen Gertz
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Centre for Cardiovascular Research DZHK, Berlin, Berlin, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Clinical Trial Center Würzburg, University Hospital Würzburg, Würzburg, Germany
- Institute for Medical Data Science, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Endres
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Centre for Cardiovascular Research DZHK, Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Disease DZNE, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Neurocure Cluster of Excellence, Berlin, Germany
| | - Thomas G Liman
- Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Centre for Cardiovascular Research DZHK, Berlin, Berlin, Germany
- Department of Neurology, Carl Von Ossietzky University, Oldenburg, Germany
- German Center for Neurodegenerative Disease DZNE, Berlin, Germany
| |
Collapse
|
48
|
Du Q, Gao C, Tsoi B, Wu M, Shen J. Niuhuang Qingxin Wan ameliorates depressive-like behaviors and improves hippocampal neurogenesis through modulating TrkB/ERK/CREB signaling pathway in chronic restraint stress or corticosterone challenge mice. Front Pharmacol 2024; 14:1274343. [PMID: 38273824 PMCID: PMC10808638 DOI: 10.3389/fphar.2023.1274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Chronic stress-associated hormonal imbalance impairs hippocampal neurogenesis, contributing to depressive and anxiety behaviors. Targeting neurogenesis is thus a promising antidepressant therapeutic strategy. Niuhuang Qingxin Wan (NHQXW) is an herbal formula for mental disorders in Traditional Chinese Medicine (TCM) practice, but its anti-depressant efficacies and mechanisms remain unverified. Methods: In the present study, we tested the hypothesis that NHQXW could ameliorate depressive-like behaviors and improve hippocampal neurogenesis by modulating the TrkB/ERK/CREB signaling pathway by utilizing two depression mouse models including a chronic restraint stress (CRS) mouse model and a chronic corticosterone (CORT) stress (CCS) induced mouse model. The depression-like mouse models were orally treated with NHQXW whereas fluoxetine was used as the positive control group. We evaluated the effects of NHQXW on depressive- and anxiety-like behaviors and determined the effects of NHQXW on inducing hippocampal neurogenesis. Results: NHQXW treatment significantly ameliorated depressive-like behaviors in those chronic stress mouse models. NHQXW significantly improved hippocampal neurogenesis in the CRS mice and CCS mice. The potential neurogenic mechanism of NHQXW was identified by regulating the expression levels of BDNF, TrkB, p-ERK (T202/T204), p-MEK1/2 (S217/221), and p-CREB (S133) in the hippocampus area of the CCS mice. NHQXW revealed its antidepressant and neurogenic effects that were similar to fluoxetine. Moreover, NHQXW treatment revealed long-term effects on preventing withdrawal-associated rebound symptoms in the CCS mice. Furthermore, in a bioactivity-guided quality control study, liquiritin was identified as one of the bioactive compounds of NHQXW with the bioactivities of neurogenesis-promoting effects. Discussion: Taken together, NHQXW could be a promising TCM formula to attenuate depressive- and anxiety-like behaviors against chronic stress and depression. The underlying anti-depressant mechanisms could be correlated with its neurogenic activities by stimulating the TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
49
|
Zhu YJ, Huang J, Chen R, Zhang Y, He X, Duan WX, Zou YL, Sun MM, Sun HL, Cheng SM, Wang HC, Zhang H, Wu WN. Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behaviors in mice. J Neuroinflammation 2024; 21:6. [PMID: 38178196 PMCID: PMC10765763 DOI: 10.1186/s12974-023-02995-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common but severe psychiatric illness characterized by depressive mood and diminished interest. Both nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 1 (NLRP1) inflammasome and autophagy have been reported to implicate in the pathological processes of depression. However, the mechanistic interplay between NLRP1 inflammasome, autophagy, and depression is still poorly known. METHODS Animal model of depression was established by chronic social defeat stress (CSDS). Depressive-like behaviors were determined by social interaction test (SIT), sucrose preference test (SPT), open field test (OFT), forced swim test (FST), and tail-suspension test (TST). The protein expression levels of NLRP1 inflammasome complexes, pro-inflammatory cytokines, phosphorylated-phosphatidylinositol 3-kinase (p-PI3K)/PI3K, phosphorylated-AKT (p-AKT)/AKT, phosphorylated-mechanistic target of rapamycin (p-mTOR)/mTOR, brain-derived neurotrophic factor (BDNF), phosphorylated-tyrosine kinase receptor B (p-TrkB)/TrkB, Bcl-2-associated X protein (Bax)/B-cell lymphoma-2 (Bcl2) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were examined by western blotting. The mRNA expression levels of pro-inflammatory cytokines were tested by quantitative real-time PCR. The interaction between proteins was detected by immunofluorescence and coimmunoprecipitation. Neuronal injury was assessed by Nissl staining. The autophagosomes were visualized by transmission electron microscopy. Nlrp1a knockdown was performed using an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. RESULTS CSDS exposure caused a bidirectional change in hippocampal autophagy function, which was activated in the initial period but impaired at the later stage. In addition, CSDS exposure increased the expression levels of hippocampal NLRP1 inflammasome complexes, pro-inflammatory cytokines, p-PI3K, p-AKT and p-mTOR in a time-dependent manner. Interestingly, NLRP1 is immunoprecipitated with mTOR but not PI3K/AKT and CSDS exposure facilitated the immunoprecipitation between them. Hippocampal Nlrp1a knockdown inhibited the activity of PI3K/AKT/mTOR signaling, rescued the impaired autophagy and ameliorated depressive-like behavior induced by CSDS. In addition, rapamycin, an autophagy inducer, abolished NLRP1 inflammasome-driven inflammatory reactions, alleviated depressive-like behavior and exerted a neuroprotective effect. CONCLUSIONS Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behavior in mice and the regulation of autophagy could be a valuable therapeutic strategy for the management of depression.
Collapse
Affiliation(s)
- Ya-Jing Zhu
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jing Huang
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ru Chen
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xin He
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Xin Duan
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yuan-Lei Zou
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Meng-Mei Sun
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hui-Li Sun
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Si-Min Cheng
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hao-Chuan Wang
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology & Research Centre for Neurological Disorders, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
50
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|