1
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
2
|
Verweij PE, Song Y, Buil JB, Zhang J, Melchers WJG. Antifungal Resistance in Pulmonary Aspergillosis. Semin Respir Crit Care Med 2024; 45:32-40. [PMID: 38196063 DOI: 10.1055/s-0043-1776997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Aspergilli may cause various pulmonary diseases in humans, including allergic bronchopulmonary aspergillosis (ABPA), chronic pulmonary aspergillosis (CPA), and acute invasive pulmonary aspergillosis (IPA). In addition, chronic colonization may occur in cystic fibrosis (CF). Aspergillus fumigatus represents the main pathogen, which may employ different morphotypes, for example, conidia, hyphal growth, and asexual sporulation, in the various Aspergillus diseases. These morphotypes determine the ease by which A. fumigatus can adapt to stress by antifungal drug exposure, usually resulting in one or more resistance mutations. Key factors that enable the emergence of resistance include genetic variation and selection. The ability to create genetic variation depends on the reproduction mode, including, sexual, parasexual, and asexual, and the population size. These reproduction cycles may take place in the host and/or in the environment, usually when specific conditions are present. Environmental resistance is commonly characterized by tandem repeat (TR)-mediated mutations, while in-host resistance selection results in single-resistance mutations. Reported cases from the literature indicate that environmental resistance mutations are almost exclusively present in patients with IA indicating that the risk for in-host resistance selection is very low. In aspergilloma, single-point mutations are the dominant resistance genotype, while in other chronic Aspergillus diseases, for example, ABPA, CPA, and CF, both TR-mediated and single-resistance mutations are reported. Insights into the pathogenesis of resistance selection in various Aspergillus diseases may help to improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yinggai Song
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Dermatology and Venerology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, China
- National Clinical Research Center For Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jianhua Zhang
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
4
|
Beg AZ, Rashid F, Talat A, Haseen MA, Raza N, Akhtar K, Dueholm MKD, Khan AU. Functional Amyloids in Pseudomonas aeruginosa Are Essential for the Proteome Modulation That Leads to Pathoadaptation in Pulmonary Niches. Microbiol Spectr 2023; 11:e0307122. [PMID: 36475836 PMCID: PMC9927170 DOI: 10.1128/spectrum.03071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Persistence and survival of Pseudomonas aeruginosa in chronic lung infections is closely linked to the biofilm lifestyle. One biofilm component, functional amyloid of P. aeruginosa (Fap), imparts structural adaptations for biofilms; however, the role of Fap in pathogenesis is still unclear. Conservation of the fap operon encoding Fap and P. aeruginosa being an opportunistic pathogen of lung infections prompted us to explore its role in lung infection. We found that Fap is essential for establishment of lung infection in rats, as its genetic exclusion led to mild focal infection with quick resolution. Moreover, without an underlying cystic fibrosis (CF) genetic disorder, overexpression of Fap reproduced the CF pathotype. The molecular basis of Fap-mediated pulmonary adaptation was explored through surface-associated proteomics in vitro. Differential proteomics positively associated Fap expression with activation of known proteins related to pulmonary pathoadaptation, attachment, and biofilm fitness. The aggregative bacterial phenotype in the pulmonary niche correlated with Fap-influenced activation of biofilm sustainability regulators and stress response regulators that favored persistence-mediated establishment of pulmonary infection. Fap overexpression upregulated proteins that are abundant in the proteome of P. aeruginosa in colonizing CF lungs. Planktonic lifestyle, defects in anaerobic pathway, and neutrophilic evasion were key factors in the absence of Fap that impaired establishment of infection. We concluded that Fap is essential for cellular equilibration to establish pulmonary infection. Amyloid-induced bacterial aggregation subverted the immune response, leading to chronic infection by collaterally damaging tissue and reinforcing bacterial persistence. IMPORTANCE Pseudomonas aeruginosa is inextricably linked with chronic lung infections. In this study, the well-conserved Fap operon was found to be essential for pathoadaptation in pulmonary infection in a rat lung model. Moreover, the presence of Fap increased pathogenesis and biofilm sustainability by modulating bacterial physiology. Hence, a pathoadaptive role of Fap in pulmonary infections can be exploited for clinical application by targeting amyloids. Furthermore, genetic conservation and extracellular exposure of Fap make it a commendable target for such interventions.
Collapse
Affiliation(s)
- Ayesha Z. Beg
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Absar Talat
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Azam Haseen
- Department of Cardiothoracic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nadeem Raza
- Department of Anaesthesiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kafil Akhtar
- Pathology Department, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Asad U. Khan
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
5
|
The Paradoxical Effects of Serum Amyloid-P Component on Disseminated Candidiasis. Pathogens 2022; 11:pathogens11111304. [PMID: 36365055 PMCID: PMC9697064 DOI: 10.3390/pathogens11111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Serum amyloid P component (SAP) may play an important role in human fungal diseases. SAP binds to functional amyloid on the fungal surface and masks fungi from host immune processes, skewing the macrophage population from the pro-inflammatory M1 to the quiescent M2 type. We assessed the role of SAP in a murine model of disseminated candidiasis. Mice were injected with human SAP subcutaneously (SQ) followed by intravenous injection of Candida albicans. Male, BALBcJ mice were administered 2 mg human SAP or the homologous human pro-inflammatory pentraxin CRP, SQ on day −1 followed by 1 mg on days 0 thru 4; yeast cells were administered intravenously on day 0. Mice not receiving a pentraxin were morbid on day 1, surviving 4−7 days. Mice administered SAP survived longer than mice receiving yeast cells alone (p < 0.022), although all mice died. Mice given CRP died faster than mice receiving yeast cells alone (p < 0.017). Miridesap is a molecule that avidly binds SAP, following which the complex is broken down by the liver. Miridesap administered in the drinking water removed SAP from the serum and yeast cells and significantly prolonged the life of mice (p < 0.020). Some were “cured” of candidiasis. SAP administered early in the septic process provided short-lived benefit to mice, probably by blunting cytokine secretion associated with disseminated candidiasis. The most important finding was that removal of SAP with miridesap led to prolonged survival by removing SAP and preventing its dampening effects on the host immune response.
Collapse
|
6
|
Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans. Pathogens 2022; 11:pathogens11091000. [PMID: 36145432 PMCID: PMC9505788 DOI: 10.3390/pathogens11091000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Candida-macrophage interactions are important immune defense responses associated with disseminated and deep-seated candidiasis in humans. Cells of Candida spp. express functional amyloids on their surfaces during the pathogenesis of disseminated candidiasis. These amyloids become decorated with serum amyloid P-component (SAP) that binds to Candida cells and macrophages and downregulates the cellular and cytokine response to the fungi. In this report, further characterization of the interactions of SAP and fungal functional amyloid are demonstrated. Blocking the binding of SAP to macrophage FcγR1 receptors increases phagocytosis of yeast cells; seeding a pro-amyloid-forming peptide on the yeast cell surface also increases phagocytosis of yeasts by macrophages; and, lastly, miridesap, a small palindromic molecule, prevents binding of SAP to yeasts and removes SAP that is bound to C. albicans thus, potentially increasing phagocytosis of yeasts by macrophages. Some, or all, of these interventions may be useful in boosting the host immune response to disseminated candidiasis.
Collapse
|
7
|
Golan N, Schwartz-Perov S, Landau M, Lipke PN. Structure and Conservation of Amyloid Spines From the Candida albicans Als5 Adhesin. Front Mol Biosci 2022; 9:926959. [PMID: 35874616 PMCID: PMC9306254 DOI: 10.3389/fmolb.2022.926959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Candida Als family adhesins mediate adhesion to biological and abiotic substrates, as well as fungal cell aggregation, fungal-bacterial co-aggregation and biofilm formation. The activity of at least two family members, Als5 and Als1, is dependent on amyloid-like protein aggregation that is initiated by shear force. Each Als adhesin has a ∼300-residue N-terminal Ig-like/invasin region. The following 108-residue, low complexity, threonine-rich (T) domain unfolds under shear force to expose a critical amyloid-forming segment 322SNGIVIVATTRTV334 at the interface between the Ig-like/invasin domain 2 and the T domain of Candida albicans Als5. Amyloid prediction programs identified six potential amyloidogenic sequences in the Ig-like/invasin region and three others in the T domain of C. albicans Als5. Peptides derived from four of these sequences formed fibrils that bound thioflavin T, the amyloid indicator dye, and three of these revealed atomic-resolution structures of cross-β spines. These are the first atomic-level structures for fungal adhesins. One of these segments, from the T domain, revealed kinked β-sheets, similarly to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. Based on the cross-β structures in Als proteins, we use evolutionary arguments to identify functional amyloidogenic sequences in other fungal adhesins, including adhesins from Candida auris. Thus, cross-β structures are often involved in fungal pathogenesis and potentially in antifungal therapy.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- European Molecular Biology Laboratory (EMBL) and Centre for Structural Systems Biology, Hamburg, Germany
| | - Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|
8
|
Kaur M, Kumari A, Singh R. The Indigenous Volatile Inhibitor 2-Methyl-2-butene Impacts Biofilm Formation and Interspecies Interaction of the Pathogenic Mucorale Rhizopus arrhizus. MICROBIAL ECOLOGY 2022; 83:506-512. [PMID: 34023922 DOI: 10.1007/s00248-021-01765-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
2-Methyl-2-butene has recently been reported to be a quorum-based volatile self-inhibitor of spore germination and growth in pathogenic Mucorale Rhizopus arrhizus. The present study aimed to elucidate if this compound can influence R. arrhizus biofilm formation and interspecies interaction. The compound was found to significantly decrease R. arrhizus biofilm formation (p < 0.001), with nearly 25% and 50% lesser biomass in the biofilms cultured with exposure to 4 and 32 µg/ml of 2-methyl-2-butene, respectively. The growth of pre-formed biofilms was also impacted, albeit to a lesser extent. Additionally, 2-methyl-2-butene was found to self-limit R. arrhizus growth during interspecies interaction with Staphylococcus aureus and was detected at a substantially greater concentration in the headspace of co-cultures (2338.75 µg/ml) compared with monocultures (69.52 µg/ml). Some of the C5 derivatives of this compound (3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-1-butyne) were also observed to partially mimic its action, such as inhibition of spore germination, but did not impact R. arrhizus biofilm formation. Finally, the treated R. arrhizus displayed changes in fungal morphology suggestive of cytoskeletal alterations, such as filopodia formation, blebs, increased longitudinal folds and/or corrugations, and finger-like and sheet-like surface protrusions, depending upon the concentration of the compound(s) and the planktonic or biofilm growth mode.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Parente R, Possetti V, Erreni M, D'Autilia F, Bottazzi B, Garlanda C, Mantovani A, Inforzato A, Doni A. Complementary Roles of Short and Long Pentraxins in the Complement-Mediated Immune Response to Aspergillus fumigatus Infections. Front Immunol 2021; 12:785883. [PMID: 34868070 PMCID: PMC8637271 DOI: 10.3389/fimmu.2021.785883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
The ubiquitous mold Aspergillus fumigatus is the major etiologic agent of invasive aspergillosis, a life-threatening infection amongst immune compromised individuals. An increasing body of evidence indicates that effective disposal of A. fumigatus requires the coordinate action of both cellular and humoral components of the innate immune system. Early recognition of the fungal pathogen, in particular, is mediated by a set of diverse soluble pattern recognition molecules (PRMs) that act as "ancestral antibodies" inasmuch as they are endowed with opsonic, pro-phagocytic and killing properties. Pivotal is, in this respect, the contribution of the complement system, which functionally cooperates with cell-borne pattern recognition receptors (PRRs) and other soluble PRMs, including pentraxins. Indeed, complement and pentraxins form an integrated system with crosstalk, synergism, and regulation, which stands as a paradigm of the interplay between PRMs in the mounting and orchestration of antifungal immunity. Following upon our past experience with the long pentraxin PTX3, a well-established immune effector in the host response to A. fumigatus, we recently reported that this fungal pathogen is targeted in vitro and in vivo by the short pentraxin Serum Amyloid P component (SAP) too. Similar to PTX3, SAP promotes phagocytosis and disposal of the fungal pathogen via complement-dependent pathways. However, the two proteins exploit different mechanisms of complement activation and receptor-mediated phagocytosis, which further extends complexity and integration of the complement-pentraxin crosstalk in the immune response to A. fumigatus. Here we revisit this crosstalk in light of the emerging roles of SAP as a novel PRM with antifungal activity.
Collapse
Affiliation(s)
- Raffaella Parente
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Valentina Possetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Marco Erreni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesca D'Autilia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Barbara Bottazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Doni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
10
|
The Role of Macrophages in the Host's Defense against Sporothrix schenckii. Pathogens 2021; 10:pathogens10070905. [PMID: 34358055 PMCID: PMC8308788 DOI: 10.3390/pathogens10070905] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.
Collapse
|
11
|
Guzman Beltrán S, Sanchez Morales J, González Canto A, Escalona Montaño A, Torres Guerrero H. Human serum proteins bind to Sporothrix schenckii conidia with differential effects on phagocytosis. Braz J Microbiol 2020; 52:33-39. [PMID: 32382937 DOI: 10.1007/s42770-020-00276-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 01/10/2023] Open
Abstract
Serum is an important source of proteins that interact with pathogens. Once bound to the cell surface, serum proteins can stimulate the innate immune system. The phagocytosis of Sporothrix schenckii conidia by human macrophages is activated through human serum opsonisation. In this study, we have attempted to characterise human blood serum proteins that bind to the cell wall of S. schenckii conidia. We systematically observed the same four proteins independent of the plasma donor: albumin, serum amyloid protein (SAP), α-1 antitrypsin (AAT), and transferrin were identified with the help of tandem mass spectrometry. Phagocytosis depended on the concentration of the SAP or α-1 antitrypsin that was used to opsonise the conidia; however, transferrin or albumin did not have any effect on conidia internalisation. The presence of mannose did not affect macrophage phagocytosis of the conidia opsonised with SAP or α-1 antitrypsin, which suggests that these proteins are not recognised by the mannose receptor.
Collapse
Affiliation(s)
- Silvia Guzman Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, 14502, Mexico
| | - Jazmín Sanchez Morales
- Unidad de Investigación en Medicina Experimental, Micología Básica, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Augusto González Canto
- Unidad de Investigación en Medicina Experimental, Patología Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Alma Escalona Montaño
- Unidad Periferica de la Facultad de Medicina, Unidad de Investigación en Medicina Traslacional. Inmunobioquímica Molecular y Cardiopatías, Ciudad de México, 14080, Mexico
| | - Haydee Torres Guerrero
- Unidad de Investigación en Medicina Experimental, Micología Básica, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico.
| |
Collapse
|
12
|
Parente R, Doni A, Bottazzi B, Garlanda C, Inforzato A. The complement system in Aspergillus fumigatus infections and its crosstalk with pentraxins. FEBS Lett 2020; 594:2480-2501. [PMID: 31994174 DOI: 10.1002/1873-3468.13744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Aspergillosis is a life-threatening infection mostly affecting immunocompromised individuals and primarily caused by the saprophytic fungus Aspergillus fumigatus. At the host-pathogen interface, both cellular and humoral components of the innate immune system are increasingly acknowledged as essential players in the recognition and disposal of this opportunistic mold. Fundamental hereof is the contribution of the complement system, which deploys all three activation pathways in the battle against A. fumigatus, and functionally cooperates with other soluble pattern recognition molecules, including pentraxins. In particular, preclinical and clinical observations point to the long pentraxin PTX3 as a nonredundant and complement-dependent effector with protective functions against A. fumigatus. Based on past and current literature, here we discuss how the complement participates in the immune response to this fungal pathogen, and illustrate its crosstalk with the pentraxins, with a focus on PTX3. Emphasis is placed on the molecular mechanisms underlying such processes, the genetic evidence from human epidemiology, and the translational potential of the currently available knowledge.
Collapse
Affiliation(s)
- Raffaella Parente
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Andrea Doni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
13
|
Abstract
Since its description nearly 130 years ago, hundreds of studies have deepened our understanding of coccidioidomycosis, also known as valley fever (VF), and provided useful diagnostic tests and treatments for the disease caused by the dimorphic fungi Coccidioides spp. In general, most of the literature has addressed well-established infections and has described patients who have experienced major complications. In contrast, little attention has been given to the earliest consequences of the pathogen-host interaction and its implications for disease manifestation, progression, and resolution. The purpose of this review is to highlight published studies on early coccidioidomycosis, identify gaps in our knowledge, and suggest new or former research areas that might be or remain fertile ground for insight into the early stages of this invasive fungal disease.
Collapse
|
14
|
Dehullu J, Valotteau C, Herman-Bausier P, Garcia-Sherman M, Mittelviefhaus M, Vorholt JA, Lipke PN, Dufrêne YF. Fluidic Force Microscopy Demonstrates That Homophilic Adhesion by Candida albicans Als Proteins Is Mediated by Amyloid Bonds between Cells. NANO LETTERS 2019; 19:3846-3853. [PMID: 31038969 PMCID: PMC6638552 DOI: 10.1021/acs.nanolett.9b01010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Candida albicans frequently forms drug-resistant biofilms in hospital settings and in chronic disease patients. Cell adhesion and biofilm formation involve a family of cell surface Als (agglutinin-like sequence) proteins. It is now well documented that amyloid-like clusters of laterally arranged Als proteins activate cell-cell adhesion under mechanical stress, but whether amyloid-like bonds form between aggregating cells is not known. To address this issue, we measure the forces driving Als5-mediated intercellular adhesion using an innovative fluidic force microscopy platform. Strong cell-cell adhesion is dependent on expression of amyloid-forming Als5 at high cell surface density and is inhibited by a short antiamyloid peptide. Furthermore, there is greatly attenuated binding between cells expressing amyloid-forming Als5 and cells with a nonamyloid form of Als5. Thus, homophilic bonding between Als5 proteins on adhering cells is the major mode of fungal aggregation, rather than protein-ligand interactions. These results point to a model whereby amyloid-like β-sheet interactions play a dual role in cell-cell adhesion, that is, in formation of adhesin nanoclusters ( cis-interactions) and in homophilic bonding between amyloid sequences on opposing cells ( trans-interactions). Because potential amyloid-forming sequences are found in many microbial adhesins, we speculate that this novel mechanism of amyloid-based homophilic adhesion might be widespread and could represent an interesting target for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Jérôme Dehullu
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Melissa Garcia-Sherman
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter N. Lipke
- Biology Department, City University of New York Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210 United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 4000 Liege, Belgium
| |
Collapse
|
15
|
Serum Amyloid P Component Binds Fungal Surface Amyloid and Decreases Human Macrophage Phagocytosis and Secretion of Inflammatory Cytokines. mBio 2019; 10:mBio.00218-19. [PMID: 30862745 PMCID: PMC6414697 DOI: 10.1128/mbio.00218-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In patients with invasive fungal diseases, there is often little cellular inflammatory response. We tested the idea that binding of the human constitutive plasma protein serum amyloid P component (SAP) (also called PTX2) to Candida albicans dampens the innate immune response to this fungus. Many pathogenic fungi have cell surface amyloid-like structures important for adhesion and biofilm formation. Human SAP bound to fungi that expressed functional cell surface amyloid, but SAP had minimal binding to fungi with reduced expression of cell surface amyloid. In the absence of SAP, phagocytosis of fungi by human macrophages was potentiated by expression of amyloid on the fungi. SAP binding to fungi inhibited their phagocytosis by macrophages. Macrophages pretreated with SAP displayed reduced fungal phagocytosis, reduced secretion of inflammatory cytokines (IFN-γ, IL-6, and TNF-α), and increased secretion of the anti-inflammatory cytokine IL-10. SAP bound to fungi or added to the medium upregulated the expression of the anti-inflammatory receptor CD206 on macrophages. These findings suggest that SAP bound to amyloid-like structures on fungal cells dampens the host cellular immune response in fungal diseases such as invasive candidiasis.IMPORTANCE Macrophages are a key part of our innate immune system and are responsible for recognizing invading microbes, ingesting them, and sending appropriate signals to other immune cells. We have found that human macrophages can recognize invading yeast pathogens that have a specific molecular pattern of proteins on their surfaces: these proteins have structures similar to the structures of amyloid aggregates in neurodegenerative diseases like Alzheimer's disease. However, this surface pattern also causes the fungi to bind a serum protein called serum amyloid P component (SAP). In turn, the SAP-coated yeasts are poorly recognized and seldom ingested by the macrophages, and the macrophages have a more tolerant and less inflammatory response in the presence of SAP. Therefore, we find that surface structures on the yeast can alter how the macrophages react to invading microbes.
Collapse
|
16
|
|
17
|
Jansens KJA, Rombouts I, Grootaert C, Brijs K, Van Camp J, Van der Meeren P, Rousseau F, Schymkowitz J, Delcour JA. Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Compr Rev Food Sci Food Saf 2018; 18:84-105. [PMID: 33337021 DOI: 10.1111/1541-4337.12404] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
To control and enhance protein functionality is a major challenge for food scientists. In this context, research on food protein fibril formation, especially amyloid fibril formation, holds much promise. We here first provide a concise overview of conditions, which affect amyloid formation in food proteins. Particular attention is directed towards amyloid core regions because these sequences promote ordered aggregation. Better understanding of this process will be key to tailor the fibril formation process. Especially seeding, that is, adding preformed protein fibrils to protein solutions to accelerate fibril formation holds promise to tailor aggregation and fibril techno-functionality. Some studies have already indicated that food protein fibrillation indeed improves their techno-functionality. However, much more research is necessary to establish whether protein fibrils are useful in complex food systems and whether and to what extent they resist food processing unit operations. In this review the effect of amyloid formation on gelation, interfacial properties, foaming, and emulsification is discussed. Despite their prevalent role as functional structures, amyloids also receive a lot of attention due to their association with protein deposition diseases, prompting us to thoroughly investigate the potential health impact of amyloid-like aggregates in food. A literature review on the effect of the different stages of the human digestive process on amyloid toxicity leads us to conclude that food-derived amyloid fibrils (even those with potential pathogenic properties) very likely have minimal impact on human health. Nevertheless, prior to wide-spread application of the technology, it is highly advisable to further verify the lack of toxicity of food-derived amyloid fibrils.
Collapse
Affiliation(s)
- Koen J A Jansens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent Univ., Coupure Links 653, B-9000, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent Univ., Coupure Links 653, B- 9000, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, B-3000 Leuven, Belgium. Authors Rousseau and Schymkowitz are also with Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
18
|
Golconda U, Sobonya RE, Klotz SA. Do Pentraxins Bind to Fungi in Invasive Human Gastrointestinal Candidiasis? J Fungi (Basel) 2018; 4:jof4030111. [PMID: 30227609 PMCID: PMC6162546 DOI: 10.3390/jof4030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 11/18/2022] Open
Abstract
Tissue from 13 autopsy cases with invasive gastrointestinal candidiasis was studied for the binding of the pentraxins, C-reactive protein (CRP), pentraxin 3 (PTX3), and serum amyloid P component (SAP) to fungal surfaces. Invasive candidal infection was demonstrated using a hematoxylin and eosin stain and a Gomori methenamine silver stain (GMS). Immunohistochemistry was performed with CRP and PTX3 monoclonal antibodies and did not demonstrate CRP or PTX3 bound to fungi (0 of 13 cases), although CRP was extensively deposited on human tissue. A polyclonal antibody to SAP showed that SAP was bound to fungi in 12 of 13 cases. Although all three pentraxins have been reported to bind to fungi or bacteria, only SAP was bound to filamentous and yeast forms of Candida in human tissue, as detected by immunohistochemistry. SAP was abundantly present on fungi and may have affected the host innate immune response to the invading fungi.
Collapse
Affiliation(s)
- Umamaheshwari Golconda
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Richard E Sobonya
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Stephen A Klotz
- Division of Infections Diseases, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
19
|
Gobeaux F, Wien F. Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7180-7191. [PMID: 29772895 DOI: 10.1021/acs.langmuir.8b00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The common view on the amyloid fibril formation is that it is a multistep process that involves many oligomeric intermediate species, which leads to a high degree of polymorphism. This view derives from numerous kinetic studies whose vast majority was carried out with amyloid β fragments or other pathological amyloidogenic sequences. Yet, it is not clear whether the mechanisms inferred from these studies are universal and also apply to functional amyloids, in particular to peptide hormones which form reversible amyloid structures. In the present work, we study the self-assembly properties of atosiban, a nonapeptide drug, whose sequence is very close to those of the oxytocin and vasopressin hormones. We show that this very soluble peptide consistently self-assembles into 7 nm wide amyloid fibrils above a critical aggregation concentration (2-10 w/w % depending on the buffer conditions). The peptide system is characterized in details, from the monomeric to the assembled form, with osmotic concentration measurements, transmission electron microscopy, small-angle X-ray scattering, infrared and fluorescence spectroscopy, and circular dichroism (CD). We have followed in situ the fibril assembly with fluorescence and synchrotron radiation CD and noticed that the peptide undergoes conformational changes during the process. However, several lines of evidence point toward the association of monomers and dimers into fibrils without passing through oligomeric intermediate species contrary to what is usually reported for pathogenic amyloids. The native β-hairpin conformation of the monomer could explain the straightforward assembly. The tyrosine stacking is also shown to play an important role.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS-NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Frank Wien
- SOLEIL Synchrotron , Saint Aubin 91190 , France
| |
Collapse
|
20
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
21
|
Abstract
It has become apparent that the intestinal microbiota orchestrates important aspects of our metabolism, immunity, and development. Recent work has demonstrated that the microbiota also influences brain function in healthy and diseased individuals. Of great interest are reports that intestinal bacteria play a role in the pathogenic cascade of both Parkinson and Alzheimer diseases. These neurodegenerative disorders both involve misfolding of endogenous proteins that spreads from one region of the body to another in a manner analogous to prions. The mechanisms of how the microbiota influences or is correlated with disease require elaboration. Microbial proteins or metabolites may influence neurodegeneration through the promotion of amyloid formation by human proteins or by enhancing inflammatory responses to endogenous neuronal amyloids. We review the current knowledge concerning bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation. We propose the term “mapranosis” to describe the process of microbiota-associated proteopathy and neuroinflammation. The study of amyloid proteins made by the microbiota and their influence on health and disease is in its infancy. This is a promising area for therapeutic intervention because there are many ways to alter our microbial partners and their products, including amyloid proteins.
Collapse
Affiliation(s)
- Robert P. Friedland
- Department of Neurology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
22
|
Amyloid-Like β-Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiol Mol Biol Rev 2017; 82:82/1/e00035-17. [PMID: 29187516 DOI: 10.1128/mmbr.00035-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular aggregation is an essential step in the formation of biofilms, which promote fungal survival and persistence in hosts. In many of the known yeast cell adhesion proteins, there are amino acid sequences predicted to form amyloid-like β-aggregates. These sequences mediate amyloid formation in vitro. In vivo, these sequences mediate a phase transition from a disordered state to a partially ordered state to create patches of adhesins on the cell surface. These β-aggregated protein patches are called adhesin nanodomains, and their presence greatly increases and strengthens cell-cell interactions in fungal cell aggregation. Nanodomain formation is slow (with molecular response in minutes and the consequences being evident for hours), and strong interactions lead to enhanced biofilm formation. Unique among functional amyloids, fungal adhesin β-aggregation can be triggered by the application of physical shear force, leading to cellular responses to flow-induced stress and the formation of robust biofilms that persist under flow. Bioinformatics analysis suggests that this phenomenon may be widespread. Analysis of fungal abscesses shows the presence of surface amyloids in situ, a finding which supports the idea that phase changes to an amyloid-like state occur in vivo. The amyloid-coated fungi bind the damage-associated molecular pattern receptor serum amyloid P component, and there may be a consequential modulation of innate immune responses to the fungi. Structural data now suggest mechanisms for the force-mediated induction of the phase change. We summarize and discuss evidence that the sequences function as triggers for protein aggregation and subsequent cellular aggregation, both in vitro and in vivo.
Collapse
|
23
|
Gobeaux F, Porcher F, Dattani R. Reversible Morphological Control of Cholecystokinin Tetrapeptide Amyloid Assemblies as a Function of pH. J Phys Chem B 2017; 121:3059-3069. [PMID: 28328228 DOI: 10.1021/acs.jpcb.7b02448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most amyloid assemblies are seen as irreversible and exhibit polymorphism because their assembly is kinetically controlled and different structures are trapped during the aggregation process. However, in the specific case of peptide hormones, formation of amyloid assemblies for storage purposes has been reported. This suggests a strict control of assembly and the ability to disassemble upon hormone secretion. In the present work, we have sought to test these assertions with a short peptide, the cholecystokinin (or gastrin) tetrapeptide (CCK-4), that has been found in both gastrointestinal tract and central nervous system, and whose sequence is shared by a large number of hormones. We have thus studied in vitro this peptide's self-assembling properties in dense phases at different pH levels, thus mimicking in vivo storage conditions. The solubility and morphology of the supramolecular assemblies have been shown to vary with the pH. At low pH, the tetrapeptide exhibits a low solubility and forms microcrystals. At higher pH levels, peptide solubility increases and above a high enough concentration, peptide monomers self-assemble into typical amyloid fibrils of 10-20 nm diameter. The physical network formed by these fibrils results in a birefringent hydrogel phase. Despite the different morphological features exhibited at different pH, structural analysis shows strong similarities. Both supramolecular assemblies-microcrystals and fibrils-are structured by β-sheets. We also show that all these morphologies are reversible and can be either dissolved or changed into one another by switching the pH. In addition, we demonstrate that a modification in the charge sequence of the peptide by amino acid mutation modifies its self-assembly properties. In conclusion, just as the CCK-4 sequence is the minimal sequence required for a complete biological activity at CCKB receptors in the brain, it is also sufficient to form amyloid fibers whose properties can be related to hormone storage and release purposes in vivo.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS-NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette, France
| | - Florence Porcher
- Laboratoire Léon Brillouin, CEA Saclay , 91191 Gif-sur-Yvette, France
| | - Rajeev Dattani
- ESRF-The European Synchrotron , 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
24
|
Reichhardt C, McCrate OA, Zhou X, Lee J, Thongsomboon W, Cegelski L. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Anal Bioanal Chem 2016; 408:7709-7717. [PMID: 27580606 DOI: 10.1007/s00216-016-9868-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in purification protocols.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Oscar A McCrate
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Xiaoxue Zhou
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Jessica Lee
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Wiriya Thongsomboon
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Force Sensitivity in Saccharomyces cerevisiae Flocculins. mSphere 2016; 1:mSphere00128-16. [PMID: 27547825 PMCID: PMC4989244 DOI: 10.1128/msphere.00128-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022] Open
Abstract
The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications. Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca2+, yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Collapse
|
26
|
Klotz SA, Sobonya RE, Lipke PN, Garcia-Sherman MC. Serum Amyloid P Component and Systemic Fungal Infection: Does It Protect the Host or Is It a Trojan Horse? Open Forum Infect Dis 2016; 3:ofw166. [PMID: 27704020 PMCID: PMC5047411 DOI: 10.1093/ofid/ofw166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
It is a striking observation that tissue of patients invaded by the deep mycoses often lacks evidence of an inflammatory response. This lack of host response is often attributed to neutropenia secondary to chemotherapy. However, systematic studies do not support this simplistic explanation. However, invasive fungal lesions are characterized by abundant fungal functional amyloid, which in turn is bound by serum amyloid P component (SAP). We postulate that SAP is important in the local immune response in invasive fungal infections. The interaction between fungal functional amyloid, SAP, and the immune response in deep mycoses is discussed.
Collapse
Affiliation(s)
| | | | - Peter N Lipke
- Department of Biology , City University of New York at Brooklyn
| | | |
Collapse
|
27
|
The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin. mBio 2016; 7:e01815-15. [PMID: 26758179 PMCID: PMC4725003 DOI: 10.1128/mbio.01815-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. IMPORTANCE Protein amyloid aggregates are markers of neurodegenerative diseases such as Alzheimer's and Parkinsonism. Nevertheless, there are also functional amyloids, including biofilm-associated amyloids in bacteria and fungi. In fungi, glycoprotein adhesins aggregate into cell surface patches through amyloid-like interactions, and the adhesin clustering strengthens cell-cell binding. These fungal surface amyloid nanodomains mediate biofilm persistence under flow, and they also moderate host inflammatory responses in fungal infections. To determine whether the amyloid-like properties of fungal surface nanodomains are sequence specific, we ask whether a disease-associated amyloid core sequence has properties equivalent to those of the native sequence in a fungal adhesin. A chimeric adhesin with an amyloid sequence from the Alzheimer's disease protein Aβ instead of its native sequence effectively clustered the adhesins on the cell surface, but it showed a different response to hydrodynamic shear. These results begin an analysis of the sequence dependence for newly discovered activities for fungal surface amyloid nanodomains.
Collapse
|
28
|
Arbeloa-Gutierrez L, Kuberski T, Johnson SM, Sagastibelza I, Alaez JI, Pappagianis D. Reactivation of coccidioidomycosis: a prosthetic joint infection in Spain. Eur J Clin Microbiol Infect Dis 2015; 35:183-6. [PMID: 26638217 DOI: 10.1007/s10096-015-2526-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/24/2022]
Abstract
A resident of Spain was found to have a prosthetic knee infection due to coccidioidomycosis. He had a history of having pneumonia which resolved while living in an area of California endemic for Coccidioides in 1957-1961. The patient left California in 1961 returned to Spain and never left Spain thereafter. In 2006, a total knee replacement was done. In 2013, a prosthetic knee infection was documented due to coccidioidomycosis. By molecular DNA analysis, Coccidioides immitis was identified from the knee tissue, a species most commonly found in California. This represents reactivation of a Coccidioides infection 56 years after leaving the endemic area.
Collapse
Affiliation(s)
- L Arbeloa-Gutierrez
- Orthopedics and Traumatology, Complejo Hospitalario de Navarra, C/Irunlarrea n3, 31008, Pamplona, Spain.,Secretaria de Traumatologia y Cirugia Ortopédica, Clinica Ubarmin, Carretera Aoiz s/n., Elacno/Egües,, 31486, Navarra, Spain
| | - T Kuberski
- Department of Internal Medicine, Infectious Diseases, Maricopa Medical Center, 77 East Missouri Avenue, Unit 73, Phoenix, AZ, 85012, USA.
| | - S M Johnson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - I Sagastibelza
- Orthopedics and Traumatology, Complejo Hospitalario de Navarra, C/Irunlarrea n3, 31008, Pamplona, Spain.,Secretaria de Traumatologia y Cirugia Ortopédica, Clinica Ubarmin, Carretera Aoiz s/n., Elacno/Egües,, 31486, Navarra, Spain
| | - J I Alaez
- Department of Medicine de Clinica Ubarmin, Complejo Hospitalario de Navarra, C/Irunlarrea n3, 31008, Pamplona, Spain
| | - D Pappagianis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|