1
|
Jarcho MR, Gowda A, Walden A, Chavez Y, Amidei A, Normann MC, Akinbo-Jacobs OI, Kovalev D, Linley J, Endsley L, Crandall T, Grippo AJ. Voluntary exercise is a moderately effective mitigator of chronic social isolation stress in two female rodent models. Physiol Behav 2025; 295:114902. [PMID: 40174691 PMCID: PMC12021556 DOI: 10.1016/j.physbeh.2025.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
Depression is a common mood disorders, particularly among women, and often with social stress precursors. Exercise, in addition to the known physical benefits, can have psychological benefits, potentially alleviating certain symptoms of stressors. This study investigated the impact of chronic social isolation stress in two female rodent models - mice and prairie voles. To assess the mitigating impact of exercise, paired and isolated animals were either provided 24-hour access to running wheels in their cages or remained sedentary. In mice, only animals that remained paired and had access to exercise wheels retained adaptive levels of active behaviors in the forced-swim test. However, either remaining paired or having access to a running wheel prevented increased corticosterone levels in mice. By contrast, in voles, either being paired or having access to a running wheel promoted adaptive levels of active behaviors in the forced-swim test. Similar to mice, either being paired or having access to a running wheel also prevented increased corticosterone levels in prairie voles. Body weight and adrenal:body mass ratios were not affected by either isolation or exercise in either species. Together these findings highlight the important differences between female rodents of different species in responses to chronic social stress. They also allude to differences between female and male rodent models. Lastly, these results indicate that for female rodents, exercise can provide certain mitigating effects against chronic social stress consequences.
Collapse
Affiliation(s)
- Michael R Jarcho
- Department of Psychology, Siena College, Loudonville, NY 12211, USA.
| | - Asavari Gowda
- Department of Psychology, Siena College, Loudonville, NY 12211, USA
| | - Annamaria Walden
- Department of Psychology, Siena College, Loudonville, NY 12211, USA
| | - Yessenia Chavez
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Jessica Linley
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Linnea Endsley
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Teva Crandall
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
Kirckof A, Kneller E, Vitale EM, Johnson MA, Smith AS. The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles. Neuropharmacology 2025; 267:110298. [PMID: 39778625 PMCID: PMC11936331 DOI: 10.1016/j.neuropharm.2025.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level. Here, a novel odor preference test was used to assess social vs non-social odor investigation, and a sucrose preference test was used to assess non-social, reward-driven motivation. Females that lost a male partner investigated partner- and food-associated cues significantly more than females that lost a female cagemate or remained intact with a male partner. However, females experiencing the loss of a male partner did not change investigation of stranger-associated cues. Western blotting revealed significant increases of dopamine receptor type 1 (DRD1) and oxytocin receptor protein content in specific brain regions in response to the loss of distinct social relationships. Such effects included an increase in DRD1 in the medial preoptic area of the hypothalamus (mPOA) in females experiencing loss of a male partner compared to all other conditions. Pharmacological antagonism of DRD1 in the mPOA blocked the loss-associated increase of investigation of the partner odor but did not affect investigation of food or stranger odors. This reveals a novel dopamine-mediated mechanism for partner-seeking behavior during periods of partner loss in female prairie voles.
Collapse
Affiliation(s)
- Adrianna Kirckof
- Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Emma Kneller
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Erika M Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Adam S Smith
- Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
3
|
Bertollo AG, Puntel CF, da Silva BV, Martins M, Bagatini MD, Ignácio ZM. Neurobiological Relationships Between Neurodevelopmental Disorders and Mood Disorders. Brain Sci 2025; 15:307. [PMID: 40149827 PMCID: PMC11940368 DOI: 10.3390/brainsci15030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), neurodevelopmental disorders (NDDs) are a group of conditions that arise early in development and are characterized by deficits in personal, social, academic, or occupational functioning. These disorders frequently co-occur and include conditions such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Mood disorders (MDs), such as major depressive disorder and bipolar disorder, also pose significant global health challenges due to their high prevalence and substantial impact on quality of life. Emerging evidence highlights overlapping neurobiological mechanisms between NDDs and MDs, including shared genetic susceptibilities, neurotransmitter dysregulation (e.g., dopaminergic and serotonergic pathways), neuroinflammation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Environmental factors such as early-life adversity further exacerbate these vulnerabilities, contributing to the complexity of their clinical presentation and comorbidity. Functional neuroimaging studies reveal altered connectivity in brain regions critical for emotional regulation and executive function, such as the prefrontal cortex and amygdala, across these disorders. Despite these advances, integrative diagnostic frameworks and targeted therapeutic strategies remain underexplored, limiting effective intervention. This review synthesizes current knowledge on the shared neurobiological underpinnings of NDDs and MDs, emphasizing the need for multidisciplinary research, including genetic, pharmacological, and psychological approaches, for unified diagnosis and treatment. Addressing these intersections can improve clinical outcomes and enhance the quality of life for individuals affected by these disorders.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil;
| | - Camila Ferreira Puntel
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Brunna Varela da Silva
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| | - Marcio Martins
- Postgraduate Program in Contemporary Cultural Studies, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | - Margarete Dulce Bagatini
- Cell Culture Laboratory, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil;
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil; (C.F.P.); (B.V.d.S.)
| |
Collapse
|
4
|
Fricker BA, Jiang J, Esquilin-Rodriguez CJ, Dowling ML, Kelly AM. Hypothalamic vasopressin neural densities are higher in male Mongolian gerbils after separation from a pair bond partner and may facilitate behavior to form a new bond. Behav Brain Res 2024; 473:115181. [PMID: 39117148 DOI: 10.1016/j.bbr.2024.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Although pair bonding has been studied for several decades, only somewhat recently have researchers began studying the neural consequences of separation from a pair bond partner. Here we examined the impact of partner separation on the socially monogamous Mongolian gerbil. Using a within-subjects design, we assessed nonsocial, nonreproductive, and reproductive behavior in male gerbils pre- and post- either 4 weeks of cohabitation with or separation from a pair bond partner. We then conducted an immediate early gene study to examine the influence of partner separation on hypothalamic oxytocin and vasopressin neural responses to interactions with a novel, opposite-sex conspecific.
Collapse
Affiliation(s)
- B A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, USA
| | - J Jiang
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, USA
| | | | - M L Dowling
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, USA
| | - A M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, USA.
| |
Collapse
|
5
|
Vitale EM, Tbaba AH, Sanchez S, Hale L, Kenkel WM, Johnson MA, Smith AS. Pair bond quality influences social conditioned place preference expression, passive coping behavior, and central oxytocin receptor expression following partner loss in male prairie voles. Soc Neurosci 2024; 19:273-286. [PMID: 39577457 DOI: 10.1080/17470919.2024.2428598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Indexed: 11/24/2024]
Abstract
The dissolving of social bonds is disruptive and leads to increased stress responsivity and a strong desire for reunion. The oxytocin (OXT) system is critical for the formation of social attachments, such as pair bonds, and is also involved in social recognition, social memory, and social vigilance. Therefore, long-term changes in the OXT system resulting from cohabitation and pair bonding may contribute to reunion-seeking behavior. Here, we employed social conditioned place preference (SCPP) and the forced swim test (FST) to examine sensitivity to partner-associated contexts and passive stress coping following a period of partner separation. We found that opposite-sex cohabitation led to SCPP formation only in male prairie voles with a strong preference for their partner, and this SCPP was maintained following short-term loss of a pair bonded partner. Furthermore, pair bonded males that were separated from their partner displayed more passive stress-coping than those that were not bonded to their lost partner, suggesting that differences in prairie vole mating tactics (i.e. formation of a bond or not) influence the behavioral response to partner separation. Finally, we found changes in OXTR binding that may reflect variation in loss-related behavioral phenotypes based on different mating strategies.
Collapse
Affiliation(s)
- Erika M Vitale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Amina H Tbaba
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| | - Sophia Sanchez
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Luanne Hale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
6
|
Sadino JM, Donaldson ZR. Prairie voles as a model for adaptive reward remodeling following loss of a bonded partner. Ann N Y Acad Sci 2024; 1535:20-30. [PMID: 38594916 PMCID: PMC11334365 DOI: 10.1111/nyas.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Loss of a loved one is a painful event that substantially elevates the risk for physical and mental illness and impaired daily function. Socially monogamous prairie voles are laboratory-amenable rodents that form life-long pair bonds and exhibit distress upon partner separation, mirroring phenotypes seen in humans. These attributes make voles an excellent model for studying the biology of loss. In this review, we highlight parallels between humans and prairie voles, focusing on reward system engagement during pair bonding and loss. As yearning is a unique feature that differentiates loss from other negative mental states, we posit a model in which the homeostatic reward mechanisms that help to maintain bonds are disrupted upon loss, resulting in yearning and other negative impacts. Finally, we synthesize studies in humans and voles that delineate the remodeling of reward systems during loss adaptation. The stalling of these processes likely contributes to prolonged grief disorder, a diagnosis recently added to the Diagnostic and Statistical Manual for Psychiatry.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Miao Y, Kong X, Zhao B, Fang F, Chai J, Huang J. Loneliness and Social Isolation with Risk of Incident Non-alcoholic Fatty Liver Disease, UK Biobank 2006 to 2022. HEALTH DATA SCIENCE 2024; 5:0220. [PMID: 39780850 PMCID: PMC11704091 DOI: 10.34133/hds.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Background: Although loneliness and social isolation are proposed as important risk factors for metabolic diseases, their associations with the risk of non-alcoholic fatty liver disease (NAFLD) have not been elucidated. The aims of this study were to determine whether loneliness and social isolation are independently associated with the risk of NAFLD and to explore potential mediators for the observed associations. Methods: In this large prospective cohort analysis with 405,073 participants of the UK Biobank, the status of loneliness and social isolation was assessed through self-administrated questionnaires at study recruitment. The primary endpoint of interest was incident NAFLD. Multivariable-adjusted Cox proportional hazard regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals for the associations between loneliness, social isolation, and risk of NAFLD. Results: During a median follow-up of 13.6 years, there were 5,570 cases of NAFLD identified. In the multivariable-adjusted model, loneliness and social isolation were both statistically significantly associated with an increased risk of NAFLD (HR = 1.22 and 1.13, respectively). No significant multiplicative or additive interaction was found between loneliness and social isolation on the risk of NAFLD. The mediation analysis estimated that 30.4%, 16.2%, 5.3%, 4.1%, 10.5%, and 33.2% of the loneliness-NAFLD association was mediated by unhealthy lifestyle score, obesity, current smoking, irregular physical activity, suboptimal sleep duration, and depression, respectively. On the other hand, 25.6%, 10.1%, 15.5%, 10.1%, 8.1%, 11.6%, 9.6%, 4.8%, and 3.0% of the social isolation-NAFLD association was mediated by unhealthy lifestyle score, obesity, current smoking, irregular physical activity, suboptimal sleep duration, depression, C-reactive protein, count of white blood cells, and count of neutrophils, respectively. Conclusions: Our study demonstrated that loneliness and social isolation were associated with an elevated risk of NAFLD, independent of other important risk factors. These associations were partially mediated by lifestyle, depression, and inflammatory factors. Our findings substantiate the importance of loneliness and social isolation in the development of NAFLD.
Collapse
Affiliation(s)
- Ya Miao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Xiangya School of Public Health, Central South University, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Changsha, China
- Furong Laboratory, Changsha, China
| | - Xiaoke Kong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Xiangya School of Public Health, Central South University, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Changsha, China
- Furong Laboratory, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Xiangya School of Public Health, Central South University, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Changsha, China
- Furong Laboratory, Changsha, China
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Xiangya School of Public Health, Central South University, Changsha, China
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Changsha, China
- Furong Laboratory, Changsha, China
| |
Collapse
|
8
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Vitale EM, Kirckof A, Smith AS. Partner-seeking and limbic dopamine system are enhanced following social loss in male prairie voles (Microtus ochrogaster). GENES, BRAIN, AND BEHAVIOR 2023; 22:e12861. [PMID: 37519035 PMCID: PMC10733564 DOI: 10.1111/gbb.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Death of a loved one is recognized as one of life's greatest stresses, and 10%-20% of bereaved individuals will experience a complicated or prolonged grieving period that is characterized by intense yearning for the deceased. The monogamous prairie vole (Microtus ochrogaster) is a rodent species that forms pair bonds between breeding partners and has been used to study the neurobiology of social behaviors and isolation. Male prairie voles do not display distress after isolation from a familiar, same-sex conspecific; however, separation from a bonded female partner increases emotional, stress-related, and proximity-seeking behaviors. Here, we tested the investigatory response of male voles to partner odor during a period of social loss. We found that males who lost their partner spent significantly more time investigating partner odor but not non-partner social odor or food odor. Bachelor males and males in intact pairings did not respond uniquely to any odor. Furthermore, we examined dopamine (DA) receptor mRNA expression in the anterior insula cortex (aIC), nucleus accumbens (NAc), and anterior cingulate (ACC), regions with higher activation in grieving humans. While we found some effects of relationship type on DRD1 and DRD2 expression in some of these regions, loss of a high-quality opposite-sex relationship had a significant effect on DA receptor expression, with pair-bonded/loss males having higher expression in the aIC and ACC compared with pair-bonded/intact and nonbonded/loss males. Together, these data suggest that both relationship type and relationship quality affect reunion-seeking behavior and motivational neurocircuits following social loss of a bonded partner.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of PharmacyUniversity of KansasLawrenceKansasUSA
| | - Adrianna Kirckof
- Program in Neuroscience, School of PharmacyUniversity of KansasLawrenceKansasUSA
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of PharmacyUniversity of KansasLawrenceKansasUSA
- Program in Neuroscience, School of PharmacyUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
10
|
Forero SA, Ophir AG. Bonding against the odds: Male prairie vole response to the "widow effect" among females. Behav Processes 2023; 213:104968. [PMID: 37984679 DOI: 10.1016/j.beproc.2023.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Although pair bonding is the preferred mating tactic among socially monogamous prairie voles, naturalistic observations have demonstrated many males remain non-bonded. Moreover, although males readily re-bond after the loss of a partner, females do not (i.e., the "widow effect'). Few studies have attempted to address why so many males remain non-bonded or if a reluctance of re-bonding in females contributes to this outcome. We investigate how female bonding history impacts male pair bond formation. Specifically, we test two alternative hypotheses for how sexually naïve males will behave when paired with widow females. The fecundity hypothesis predicts males will avoid bonding with widow females and be more receptive to novel bond-naïve females. The preference to bond hypothesis predicts males will choose to bond and express a partner preference, irrespective of if a pair-mate is a widow or sexually naïve. Our results demonstrated that males expressed a partner preference for females regardless of their social history. These data support the preference to bond hypothesis and suggest natural variation in bonding may not be strongly due to males forgoing bonding opportunities.
Collapse
|
11
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
12
|
Wang F, Gao Y, Han Z, Yu Y, Long Z, Jiang X, Wu Y, Pei B, Cao Y, Ye J, Wang M, Zhao Y. A systematic review and meta-analysis of 90 cohort studies of social isolation, loneliness and mortality. Nat Hum Behav 2023; 7:1307-1319. [PMID: 37337095 DOI: 10.1038/s41562-023-01617-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
The associations between social isolation, loneliness and the risk of mortality from all causes, cardiovascular disease (CVD) and cancer are controversial. We systematically reviewed prospective studies on the association between social isolation, loneliness and mortality outcomes in adults aged 18 years or older, as well as studies on these relationships in individuals with CVD or cancer, and conducted a meta-analysis. The study protocol was registered with PROSPERO (reg. no. CRD42022299959). A total of 90 prospective cohort studies including 2,205,199 individuals were included. Here we show that, in the general population, both social isolation and loneliness were significantly associated with an increased risk of all-cause mortality (pooled effect size for social isolation, 1.32; 95% confidence interval (CI), 1.26 to 1.39; P < 0.001; pooled effect size for loneliness, 1.14; 95% CI, 1.08 to 1.20; P < 0.001) and cancer mortality (pooled effect size for social isolation, 1.24; 95% CI, 1.19 to 1.28; P < 0.001; pooled effect size for loneliness, 1.09; 95% CI, 1.01 to 1.17; P = 0.030). Social isolation also increased the risk of CVD mortality (1.34; 95% CI, 1.25 to 1.44; P < 0.001). There was an increased risk of all-cause mortality in socially isolated individuals with CVD (1.28; 95% CI, 1.10 to 1.48; P = 0.001) or breast cancer (1.51; 95% CI, 1.34 to 1.70; P < 0.001), and individuals with breast cancer had a higher cancer-specific mortality owing to social isolation (1.33; 95% CI, 1.02 to 1.75; P = 0.038). Greater focus on social isolation and loneliness may help improve people's well-being and mortality risk.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, P. R. China
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Xianchen Jiang
- Department of Chronic Disease Prevention and Control, Quzhou Center for Disease Control and Prevention, Quzhou, P. R. China
| | - Yi Wu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Bing Pei
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Yukun Cao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jingyu Ye
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China.
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, P. R. China.
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, P. R. China.
| |
Collapse
|
13
|
Blumenthal SA, Young LJ. The Neurobiology of Love and Pair Bonding from Human and Animal Perspectives. BIOLOGY 2023; 12:844. [PMID: 37372130 PMCID: PMC10295201 DOI: 10.3390/biology12060844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Love is a powerful emotional experience that is rooted in ancient neurobiological processes shared with other species that pair bond. Considerable insights have been gained into the neural mechanisms driving the evolutionary antecedents of love by studies in animal models of pair bonding, particularly in monogamous species such as prairie voles (Microtus ochrogaster). Here, we provide an overview of the roles of oxytocin, dopamine, and vasopressin in regulating neural circuits responsible for generating bonds in animals and humans alike. We begin with the evolutionary origins of bonding in mother-infant relationships and then examine the neurobiological underpinnings of each stage of bonding. Oxytocin and dopamine interact to link the neural representation of partner stimuli with the social reward of courtship and mating to create a nurturing bond between individuals. Vasopressin facilitates mate-guarding behaviors, potentially related to the human experience of jealousy. We further discuss the psychological and physiological stress following partner separation and their adaptive function, as well as evidence of the positive health outcomes associated with being pair-bonded based on both animal and human studies.
Collapse
Affiliation(s)
- Sarah A. Blumenthal
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Fricker BA, Roshko VC, Jiang J, Kelly AM. Partner separation rescues pair bond-induced decreases in hypothalamic oxytocin neural densities. Sci Rep 2023; 13:4835. [PMID: 36964221 PMCID: PMC10037388 DOI: 10.1038/s41598-023-32076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Studies in prairie voles (Microtus ochrogaster) have shown that although formation of the pair bond is accompanied by a suite of behavioral changes, a bond between two voles can dissolve and individuals can form new pair bonds with other conspecifics. However, the neural mechanisms underlying this behavioral flexibility have not been well-studied. Here we examine plasticity of nonapeptide, vasopressin (VP) and oxytocin (OT), neuronal populations in relation to bonding and the dissolution of bonds. Using adult male and female prairie voles, animals were either pair bonded, co-housed with a same-sex sibling, separated from their pair bond partner, or separated from their sibling. We examined neural densities of VP and OT cell groups and observed plasticity in the nonapeptide populations of the paraventricular nucleus of the hypothalamus (PVN). Voles that were pair bonded had fewer PVN OT neurons, suggesting that PVN OT neural densities decrease with pair bonding, but increase and return to a pre-pair bonded baseline after the dissolution of a pair bond. Our findings suggest that the PVN nonapeptide cell groups are particularly plastic in adulthood, providing a mechanism by which voles can exhibit context-appropriate behavior related to bond status.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Venezia C Roshko
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Jinrun Jiang
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
16
|
Akinbo OI, McNeal N, Hylin M, Hite N, Dagner A, Grippo AJ. The Influence of Environmental Enrichment on Affective and Neural Consequences of Social Isolation Across Development. AFFECTIVE SCIENCE 2022; 3:713-733. [PMID: 36519141 PMCID: PMC9743881 DOI: 10.1007/s42761-022-00131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/10/2022] [Indexed: 05/15/2023]
Abstract
Social stress is associated with depression and anxiety, physiological disruptions, and altered brain morphology in central stress circuitry across development. Environmental enrichment strategies may improve responses to social stress. Socially monogamous prairie voles exhibit analogous social and emotion-related behaviors to humans, with potential translational insight into interactions of social stress, age, and environmental enrichment. This study explored the effects of social isolation and environmental enrichment on behaviors related to depression and anxiety, physiological indicators of stress, and dendritic structural changes in amygdala and hippocampal subregions in young adult and aging prairie voles. Forty-nine male prairie voles were assigned to one of six groups divided by age (young adult vs. aging), social structure (paired vs. isolated), and housing environment (enriched vs. non-enriched). Following 4 weeks of these conditions, behaviors related to depression and anxiety were investigated in the forced swim test and elevated plus maze, body and adrenal weights were evaluated, and dendritic morphology analyses were conducted in hippocampus and amygdala subregions. Environmental enrichment decreased immobility duration in the forced swim test, increased open arm exploration in the elevated plus maze, and reduced adrenal/body weight ratio in aging and young adult prairie voles. Age and social isolation influenced dendritic morphology in the basolateral amygdala. Age, but not social isolation, influenced dendritic morphology in the hippocampal dentate gyrus. Environmental enrichment did not influence dendritic morphology in either brain region. These data may inform interventions to reduce the effects of social stressors and age-related central changes associated with affective behavioral consequences in humans.
Collapse
Affiliation(s)
- Oreoluwa I. Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Michael Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL 62901 USA
| | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| |
Collapse
|
17
|
Haucke M, Golde S, Saft S, Hellweg R, Liu S, Heinzel S. The effects of momentary loneliness and COVID-19 stressors on hypothalamic-pituitary adrenal (HPA) axis functioning: A lockdown stage changes the association between loneliness and salivary cortisol. Psychoneuroendocrinology 2022; 145:105894. [PMID: 36007471 PMCID: PMC9385585 DOI: 10.1016/j.psyneuen.2022.105894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
The COVID-19 pandemic can be characterized as a chronic stressor affecting the hypothalamic-pituitary-adrenal (HPA) axis, indexed by glucocorticoids (e.g., cortisol). We investigated whether salivary cortisol level is increased during a lockdown and whether a lockdown condition affects the association between loneliness, specific COVID-19 related stressors and salivary cortisol level. We conducted a smartphone-based ecological momentary assessment (EMA) study with 280 participants in Germany who experienced at least mild loneliness and distress amid COVID-19 from August 2020 to March 2021. We measured their momentary loneliness and COVID-related stressors including worries, information seeking behaviors and feelings of restriction during "no-lockdown" or "lockdown" stages amid COVID-19. Their salivary cortisol was measured 4 times on the last day of a 7-day EMA study. We found a significant increase in salivary cortisol levels during lockdown compared to no-lockdown. Lockdown stage was found to moderate the relationship between momentary loneliness and salivary cortisol level, i.e., loneliness was positively related to cortisol level specifically during lockdown. Mechanisms explaining the effect of forced social isolation on the association between loneliness and salivary cortisol need to be investigated in future studies.
Collapse
Affiliation(s)
- Matthias Haucke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany; Clinical Psychology and Psychotherapy, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - Sabrina Golde
- Clinical Psychology and Psychotherapy, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - Silvia Saft
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany.
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany.
| | - Shuyan Liu
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany.
| | - Stephan Heinzel
- Clinical Psychology and Psychotherapy, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
18
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
19
|
Bales KL, Rogers FD. Interactions between the
κ
opioid system, corticotropin-releasing hormone and oxytocin in partner loss. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210061. [PMID: 35858099 PMCID: PMC9272146 DOI: 10.1098/rstb.2021.0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective adult social attachments, or ‘pair bonds’, represent central relationships for individuals in a number of social species, including humans. Loss of a pair mate has emotional consequences that may or may not diminish over time, and that often translate into impaired psychological and physical health. In this paper, we review the literature on the neuroendocrine mechanisms for the emotional consequences of partner loss, with a special focus on hypothesized interactions between oxytocin, corticotropin-releasing hormone and the κ opioid system. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- California National Primate Research Center, Davis, CA 95616, USA
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, NJ 08540, USA
- Department of Molecular Biology, Princeton University, NJ 08540, USA
| |
Collapse
|
20
|
Dhaher R, Bronen RA, Spencer L, Colic L, Brown F, Mian A, Sandhu M, Pittman B, Spencer D, Blumberg HP, Altalib H. The Dorsal Bed Nucleus of the Stria Terminalis in Depressed and Non-Depressed Temporal Lobe Epilepsy Patients. Epilepsia 2022; 63:2561-2570. [PMID: 35883245 DOI: 10.1111/epi.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) and depression are common comorbid disorders whose underlying shared neural network has yet to be determined. While animal studies demonstrate a role for the dorsal bed nucleus of the stria terminalis (dBNST) in both seizures and depression, and humans clinical studies demonstrate a therapeutic effect of stimulating this region on treatment-resistant depression, the role for the dBNST in depressed and non-depressed TLE patients is still unclear. Here, we tested the hypothesis that this structure is morphologically abnormal in these epilepsy patients, with an increased abnormality in TLE patients with comorbid depression. METHODS In this case-controlled study, three Tesla structural magnetic resonance imaging scans were obtained from TLE patients with no depression (TLEonly), with depression (TLEdep) and healthy comparison subjects (HC). TLE subjects were recruited from the Yale University Comprehensive Epilepsy Center, diagnosed with the International League Against Epilepsy 2014 Diagnostic Guidelines, and confirmed by video electroencephalography. Diagnosis of major depressive disorder was confirmed by a trained neuropsychologist through a Mini International Neuropsychiatric Interview based on the DSM-IV. The dBNST was delineated manually by reliable raters using Bioimage Suite software. RESULTS The number of patients and subjects included 35 TLEonly patients, 20 TLEdep patients, and 102 HC subjects. Both TLEonly and TLEdep patients had higher dBNST volumes compared to HC subjects, unilaterally in the left hemisphere in the TLEonly patients (p=0.003), and bilaterally in the TLEdep patients (p<0·0001). Furthermore, the TLEdep patients had a higher dBNST volume than the TLEonly patients in the right hemisphere (p=0.02). SIGNIFICANCE Here we demonstrate an abnormality of the dBNST in TLE patients, both without depression (left enlargement) and with depression (bilateral enlargement). Our results demonstrate this region to underlie both temporal lobe epilepsy with and without depression, implicating it as a target to treat the comorbidity between these two disorders.
Collapse
Affiliation(s)
- Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Bronen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.,Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health, Jena, Germany
| | - Franklin Brown
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Ali Mian
- Department of Radiology, Washington University School of Medicine, St Louis, MI, USA
| | - Mani Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dennis Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Child Study Center, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hamada Altalib
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Sailer LL, Patel PP, Park AH, Moon J, Hanadari-Levy A, Ophir AG. Synergistic consequences of early-life social isolation and chronic stress impact coping and neural mechanisms underlying male prairie vole susceptibility and resilience. Front Behav Neurosci 2022; 16:931549. [PMID: 35957922 PMCID: PMC9358287 DOI: 10.3389/fnbeh.2022.931549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic stress can be challenging, lead to maladaptive coping strategies, and cause negative mental and physical health outcomes. Early-life adversity exposes developing young to physical or psychological experiences that risks surpassing their capacity to effectively cope, thereby impacting their lifetime physical and mental wellbeing. Sensitivity to stressful events, like social isolation, has the potential to magnify stress-coping. Chronic stress through social defeat is an established paradigm that models adverse early-life experiences and can trigger enduring alterations in behavioral and neural phenotypes. To assess the degree to which stress resilience and sensitivity stemming from early-life chronic stress impact sociability, we exposed male prairie voles to chronic social defeat stress (CSDS) during adolescence. We simultaneously exposed subjects to either social isolation (CSDS+Isol) or group housing (CSDS+Soc) during this crucial time of development. On PND41, all subjects underwent a social approach test to examine the immediate impact of isolation, CSDS, or their combined effects on sociability. Unlike the CSDS+Isol group which primarily displayed social avoidance, the CSDS+Soc group was split by individuals exhibiting susceptible or resilient stress phenotypes. Notably, the Control+Soc and CSDS+Soc animals and their cage-mates significantly gained body weight between PND31 and PND40, whereas the Control+Isol and CSDS+Isol animals did not. These results suggest that the effects of early-life stress may be mitigated by having access to social support. Vasopressin, oxytocin, and opioids and their receptors (avpr1a, oxtr, oprk1, oprm1, and oprd1) are known to modulate social and stress-coping behaviors in the lateral septum (LS). Therefore, we did an mRNA expression analysis with RT-qPCR of the avpr1a, oxtr, oprk1, oprm1, and oprd1 genes to show that isolation and CSDS, or their collective influence, can potentially differentially bias sensitivity of the LS to early-life stressors. Collectively, our study supports the impact and dimensionality of early-life adversity because the type (isolation vs. CSDS), duration (acute vs. chronic), and combination (isolation + CSDS) of stressors can dynamically alter behavioral and neural outcomes.
Collapse
|
22
|
Arias del Razo R, Velasco Vazquez MDL, Turcanu P, Legrand M, Lau AR, Weinstein TAR, Goetze LR, Bales KL. Effects of Chronic and Acute Intranasal Oxytocin Treatments on Temporary Social Separation in Adult Titi Monkeys (Plecturocebus cupreus). Front Behav Neurosci 2022; 16:877631. [PMID: 35813591 PMCID: PMC9257099 DOI: 10.3389/fnbeh.2022.877631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In socially monogamous titi monkeys, involuntary separation from a pair mate can produce behavioral distress and increased cortisol production. The neuropeptide oxytocin (OXT) is thought to play an important role in the separation response of pair-bonded species. Previous studies from our lab have shown that chronic intranasal oxytocin (IN OXT) during development can have long-term effects on adult social behavior. In the current study, we examined the chronic and acute effects of IN OXT or Saline (SAL) on the subjects’ response to a brief separation from their pair mates. Subjects with a history of chronic IN OXT or SAL treatment during development received a single dose of OXT or SAL as adults 30 min before being separated from their pair mate. Chronic treatment consisted of a daily dose of IN OXT (0.8 IU/kg) or SAL (control) from 12 to 18 months of age. Subjects (N = 29) were introduced to a pair mate at 30 months of age. After the pairs had cohabitated for 5 months, pairs underwent two “Brief Separation” (OXT and SAL) and two “Non-Separation” (OXT and SAL) test sessions. Vocalizations and locomotion were measured as behavioral indices of agitation or distress during the Brief Separation and Non-Separation periods (30 min each). We collected blood samples after the Brief Separation and Non-Separation periods to measure cortisol levels. Our results showed subjects treated with chronic OXT had a reduction in long call and peep vocalizations compared to subjects treated with chronic SAL. Subjects treated with chronic SAL and acute OXT produced more peeps and long calls compared to animals treated with acute SAL; however, patterns in this response depended on sex. Cortisol and locomotion were significantly higher during the Brief Separation period compared to the Non-Separation period; however, we did not find any treatment or sex effects. We conclude that chronic IN OXT given during development blunts the separation response, while acute OXT in chronic SAL subjects had sexually dimorphic effects, which could reflect increased partner seeking behaviors in males and increased anxiety in females.
Collapse
Affiliation(s)
- Rocío Arias del Razo
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
| | | | - Petru Turcanu
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Mathieu Legrand
- CNRS, LNCA UMR 7364, Strasbourg, France
- Centre de Primatologie de l’Université de Strasbourg, Niederhausbergen, France
| | - Allison R. Lau
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Animal Behavior Graduate Group, University of California, Davis, Davis, CA, United States
| | | | - Leana R. Goetze
- California National Primate Research Center, Davis, CA, United States
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen L. Bales
| |
Collapse
|
23
|
Watanasriyakul WT, Scotti MAL, Carter CS, McNeal N, Colburn W, Wardwell J, Grippo AJ. Social isolation and oxytocin antagonism increase emotion-related behaviors and heart rate in female prairie voles. Auton Neurosci 2022; 239:102967. [PMID: 35240436 PMCID: PMC8974671 DOI: 10.1016/j.autneu.2022.102967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/06/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Social isolation influences depression- and anxiety-related disorders and cardiac function. Oxytocin may mediate these conditions through interactions with social behavior, emotion, and cardiovascular function, via central and/or peripheral mechanisms. The present study investigated the influence of oxytocin antagonism using L-368,899, a selective oxytocin receptor antagonist that crosses the blood-brain barrier, on depression- and anxiety-related behaviors and heart rate in prairie voles. This rodent species has translational value for investigating interactions of social stress, behavior, cardiac responses, and oxytocin function. Adult female prairie voles were socially isolated or co-housed with a sibling for 4 weeks. A subset of animals in each housing condition was subjected to 4 sessions of acute L-368,899 (20 mg/kg, ip) or saline administration followed by a depression- or anxiety-related behavioral assessment. A subset of co-housed animals was evaluated for cardiac function following acute administration of L-368,899 (20 mg/kg, ip) and during behavioral assessments. Social isolation (vs. co-housing) increased depression- and anxiety-related behaviors. In isolated animals, L-368,899 (vs. vehicle) did not influence anxiety-related behaviors but exacerbated depression-related behaviors. In co-housed animals, L-368,899 exacerbated depression-related behaviors and increased heart rate at baseline and during behavioral tests. Social isolation produces emotion-related behaviors in prairie voles; central and/or peripheral oxytocin antagonism exacerbates these behavioral signs. Oxytocin antagonism induces depression-relevant behaviors and increases basal and stressor-reactive heart rate in co-housed prairie voles, similar to the consequences of social isolation demonstrated in this model. These results provide translational value for humans who experience behavioral and cardiac consequences of loneliness or social stress.
Collapse
Affiliation(s)
- W Tang Watanasriyakul
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Melissa-Ann L Scotti
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America; Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - C Sue Carter
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, United States of America
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - William Colburn
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Joshua Wardwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, United States of America.
| |
Collapse
|
24
|
Vitale EM, Smith AS. Neurobiology of Loneliness, Isolation, and Loss: Integrating Human and Animal Perspectives. Front Behav Neurosci 2022; 16:846315. [PMID: 35464141 PMCID: PMC9029604 DOI: 10.3389/fnbeh.2022.846315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In social species such as humans, non-human primates, and even many rodent species, social interaction and the maintenance of social bonds are necessary for mental and physical health and wellbeing. In humans, perceived isolation, or loneliness, is not only characterized by physical isolation from peers or loved ones, but also involves negative perceptions about social interactions and connectedness that reinforce the feelings of isolation and anxiety. As a complex behavioral state, it is no surprise that loneliness and isolation are associated with dysfunction within the ventral striatum and the limbic system - brain regions that regulate motivation and stress responsiveness, respectively. Accompanying these neural changes are physiological symptoms such as increased plasma and urinary cortisol levels and an increase in stress responsivity. Although studies using animal models are not perfectly analogous to the uniquely human state of loneliness, studies on the effects of social isolation in animals have observed similar physiological symptoms such as increased corticosterone, the rodent analog to human cortisol, and also display altered motivation, increased stress responsiveness, and dysregulation of the mesocortical dopamine and limbic systems. This review will discuss behavioral and neuropsychological components of loneliness in humans, social isolation in rodent models, and the neurochemical regulators of these behavioral phenotypes with a neuroanatomical focus on the corticostriatal and limbic systems. We will also discuss social loss as a unique form of social isolation, and the consequences of bond disruption on stress-related behavior and neurophysiology.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
25
|
O'Connor MF, Seeley SH. Grieving as a form of learning: Insights from neuroscience applied to grief and loss. Curr Opin Psychol 2022; 43:317-322. [PMID: 34520954 PMCID: PMC8858332 DOI: 10.1016/j.copsyc.2021.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Recent grief research suggests that the influential cognitive stress theory should be updated with evidence from cognitive neuroscience. Combining human and animal neuroscience with attachment theory, we propose that semantic knowledge of the everlasting nature of the attachment figure and episodic, autobiographical memories of the death are in conflict, perhaps explaining the duration of grieving and generating predictions about complications in prolonged grief disorder (PGD). Our gone-but-also-everlasting model emphasizes that grieving may be a form of learning, requiring time and experiential feedback. Difficulties before loss, such as spousal dependency or pre-existing hippocampal volume, can prolong learning and predict PGD. Complications such as avoidance, rumination, and stress-induced hippocampal atrophy may also develop after loss and create functional or structural mechanisms predicting PGD.
Collapse
Affiliation(s)
| | - Saren H Seeley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Hylin MJ, Watanasriyakul WT, Hite N, McNeal N, Grippo AJ. Morphological changes in the basolateral amygdala and behavioral disruptions associated with social isolation. Behav Brain Res 2022; 416:113572. [PMID: 34499940 PMCID: PMC8492539 DOI: 10.1016/j.bbr.2021.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.
Collapse
Affiliation(s)
- Michael J. Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL, 62901
| | | | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115,Author for Correspondence: Angela J. Grippo, Ph.D.Department of PsychologyNorthern Illinois University1425 W. Lincoln HighwayDeKalb, IL, 60115 815-753-0372
| |
Collapse
|
27
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
28
|
Abstract
Social stressors are known to have strong negative impacts on mental health. There is a long history of preclinical social defeat stress studies in rodents focusing on males that has produced important insights into the neural mechanisms that modulate depression- and anxiety-related behavior. Despite these impressive results, a historical weakness of rodent social stress models has been an under-representation of studies in females. This is problematic because rates of depression and anxiety are higher in women versus men. Recently there has been a surge of interest in adapting social stress methods for female rodents. Here we review new rodent models that have investigated numerous facets of social stress in females. The different models have different strengths and weaknesses, with some model systems having stronger ethological validity with other models having better access to molecular tools to manipulate neural circuits. Continued use and refinement of these complementary models will be critical for addressing gaps in understanding the function of neural circuits modulating depression- and anxiety-related behavior in females.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
29
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
30
|
Çalışkan E, Şahin MN, Güldağ MA. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:623-635. [PMID: 34970101 PMCID: PMC8686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Williams Syndrome (WS) is a rare genetic multisystem disorder that occurs because of a deletion of approximately 25 genes in the 7q11.23 chromosome region. This causes dysmorphic facial appearances, multiple congenital cardiovascular defects, delayed motor skills, and abnormalities in connective tissues and the endocrine system. The patients are mostly diagnosed with mild to moderate mental retardation, however, they have a hyper sociable, socially dis-inhibited, and outgoing personality, empathetic behavior, and are highly talkative. Oxytocin (OT), a neuropeptide synthesized at the hypothalamus, plays an important role in cognition and behavior, and is thought to be affecting WS patients' attitudes at its different amounts. Oxytocin receptor gene (OXTR), on chromosome 3p25.3, is considered regulating oxytocin receptors, via which OT exerts its effect. WS is a crucial disorder to understand gene, hormone, brain, and behavior associations in terms of sociality and neuropsychiatric conditions. Alterations to the WS gene region offer an opportunity to deepen our understandings of autism spectrum disorder, schizophrenia, anxiety, or depression. We aim to systematically present the data available of OT/OXTR regulation and expression, and the evidence for whether these mechanisms are dysregulated in WS. These results are important, as they predict strong epigenetic control over social behavior by methylation, single nucleotide polymorphisms, and other alterations. The comparison and collaboration of these studies may help to establish a better treatment or management approach for patients with WS if backed up with future research.
Collapse
Affiliation(s)
- Elif Çalışkan
- Trakya University School of Medicine, Edirne,
Turkey,To whom all correspondence should be addressed:
Elif Çalışkan, Trakya University School of Medicine, Edirne, Turkey;
| | | | | |
Collapse
|
31
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
32
|
Li W, Niu L, Liu Z, Xu X, Shi M, Zhang Y, Deng Y, He J, Xu Y, Wan W, Sun Q, Zhong X, Cao W. Inhibition of the NLRP3 inflammasome with MCC950 prevents chronic social isolation-induced depression-like behavior in male mice. Neurosci Lett 2021; 765:136290. [PMID: 34644625 DOI: 10.1016/j.neulet.2021.136290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Liuyang Traditional Chinese Medicine Hospital, 410300 Liuyang, Hunan, China
| | - Zhenghai Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xuan Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jie He
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; China Key Laboratory Of Brain Science Research & Transformation In Tropical Environment Of Hainan Province, Hainan Medical University, 571199 Haikou, China
| | - Qiumin Sun
- Department of Nursing, Yiyang Medical College, 413000 Yiyang, Hunan, China
| | - Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
33
|
Loneliness: An Immunometabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212162. [PMID: 34831917 PMCID: PMC8618012 DOI: 10.3390/ijerph182212162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Loneliness has been defined as an agonizing encounter, experienced when the need for human intimacy is not met adequately, or when a person’s social network does not match their preference, either in number or attributes. This definition helps us realize that the cause of loneliness is not merely being alone, but rather not being in the company we desire. With loneliness being introduced as a measurable, distinct psychological experience, it has been found to be associated with poor health behaviors, heightened stress response, and inadequate physiological repairing activity. With these three major pathways of pathogenesis, loneliness can do much harm; as it impacts both immune and metabolic regulation, altering the levels of inflammatory cytokines, growth factors, acute-phase reactants, chemokines, immunoglobulins, antibody response against viruses and vaccines, and immune cell activity; and affecting stress circuitry, glycemic control, lipid metabolism, body composition, metabolic syndrome, cardiovascular function, cognitive function and mental health, respectively. Taken together, there are too many immunologic and metabolic manifestations associated with the construct of loneliness, and with previous literature showcasing loneliness as a distinct psychological experience and a health determinant, we propose that loneliness, in and of itself, is not just a psychosocial phenomenon. It is also an all-encompassing complex of systemic alterations that occur with it, expanding it into a syndrome of events, linked through a shared network of immunometabolic pathology. This review aims to portray a detailed picture of loneliness as an “immunometabolic syndrome”, with its multifaceted pathology.
Collapse
|
34
|
Okuda T, Osako Y, Hidaka C, Nishihara M, Young LJ, Mitsui S, Yuri K. Separation from a bonded partner alters neural response to inflammatory pain in monogamous rodents. Behav Brain Res 2021; 418:113650. [PMID: 34748865 DOI: 10.1016/j.bbr.2021.113650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
Pain experience is known to be modified by social factors, but the brain mechanisms remain unspecified. We recently established an animal model of social stress-induced hyperalgesia (SSIH) using a socially monogamous rodent, the prairie vole, in which males separated from their female partners (loss males) became anxious and displayed exacerbated inflammatory pain behaviors compared to males with partners (paired males). In the present study, to explore the neural pathways involved in SSIH, a difference in neuronal activation in pain-related brain regions, or "pain matrix", during inflammatory pain between paired and loss males was detected using Fos immunoreactivity (Fos-ir). Males were paired with a female and pair bonding was confirmed in all subjects using a partner preference test. During formalin-induced inflammatory pain, both paired and loss males showed a significant induction of Fos-ir throughout the analyzed pain matrix components compared to basal condition (without injection), and no group differences in immunoreactivity were found among the injected males in many brain regions. However, the loss males had significantly lower Fos-ir following inflammatory pain in the medial prefrontal cortex and nucleus accumbens shell than the paired males, even though base Fos-ir levels were comparable between groups. Notably, both regions with different Fos-ir are major components of the dopamine and oxytocin systems, which play critical roles in both pair bonding and pain regulation. The present results suggest the possibility that pain exacerbation by social stress emerges through alteration of signaling in social brain circuitry.
Collapse
Affiliation(s)
- Takahiro Okuda
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan; Department of Physical Therapy, Tosa Rehabilitation College, Otsu, Ohtsu, Kochi 781-5103, Japan.
| | - Yoji Osako
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Chiharu Hidaka
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Centre, Aichi Medical University, School of Medicine, 21 Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Center, Emory University School of Medicine, 954 Gatewood Rd. Atlanta, GA 30322, USA; Center for Social Neural Networks, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
35
|
Lin T, Liu X, Zhang D. Does the female seahorse still prefer her mating partner after a period of separation? JOURNAL OF FISH BIOLOGY 2021; 99:1613-1621. [PMID: 34331361 DOI: 10.1111/jfb.14867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
For species showing sexual monogamy, once one male and one female form a mating pair bond, they will be faithful to each other in subsequent breeding events. However, if their pair bond is broken for some reason, do they continue to prefer their partner when they come together again for mating? In other words, can the broken pair bond of sexually monogamous species be repaired? This is an interesting question but not yet well answered. To address this question, in the present study we used the lined seahorse (Hippocampus erectus), a typical sexually monogamous species, to study the partner preference of a female individual who experienced a complete separation followed by a reunion with her partner. Our main findings are as follows: (i) The female seahorse no longer prefers her partner after a separation, whether it is a former partner or a recent partner. No preference for partner-males may indicate that the broken pair bond cannot be repaired. (ii) The female seahorse maintains sexual fidelity to her partner in the absence of separation. However, once the health of her partner decreases, the female will switch mate, and her courtship with the new partner can take place during the pregnancy of her original partner. The first finding may provide insight into whether monogamous species still have an opportunity to reselect a new partner in the future to correct their poor choice once they have mated with a low-quality partner. The answer is that they can still gain an opportunity as long as the pair bonds with their current partners are broken. The second finding may reveal the conditions and timing at which a female seahorse switches her mate. These findings help us better understand the mating system of the seahorse H. erectus.
Collapse
Affiliation(s)
- Tingting Lin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xin Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Dong Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
36
|
Bales KL, Ardekani CS, Baxter A, Karaskiewicz CL, Kuske JX, Lau AR, Savidge LE, Sayler KR, Witczak LR. What is a pair bond? Horm Behav 2021; 136:105062. [PMID: 34601430 DOI: 10.1016/j.yhbeh.2021.105062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Pair bonding is a psychological construct that we attempt to operationalize via behavioral and physiological measurements. Yet, pair bonding has been both defined differently in various taxonomic groups as well as used loosely to describe not just a psychological and affective phenomenon, but also a social structure or mating system (either social monogamy or just pair living). In this review, we ask the questions: What has been the historical definition of a pair bond? Has this definition differed across taxonomic groups? What behavioral evidence do we see of pair bonding in these groups? Does this observed evidence alter the definition of pair bonding? Does the observed neurobiology underlying these behaviors affect this definition as well? And finally, what are the upcoming directions in which the study of pair bonding needs to head?
Collapse
Affiliation(s)
- Karen L Bales
- Department of Psychology, University of California, Davis, United States of America; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States of America; California National Primate Research Center, United States of America.
| | - Cory S Ardekani
- Department of Psychology, University of California, Davis, United States of America
| | - Alexander Baxter
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Chloe L Karaskiewicz
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Jace X Kuske
- Department of Psychology, University of California, Davis, United States of America
| | - Allison R Lau
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Logan E Savidge
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Kristina R Sayler
- Department of Human Ecology, University of California, Davis, United States of America
| | - Lynea R Witczak
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| |
Collapse
|
37
|
Feng Y, Yang Y, Wang Y, Lv X, Zhang X, Wang Y, Zhu Y, Wang Q, He Z, Tai F, Jia R. Sex-dependent effects of pair bond interruption on anxiety- and depression-like behaviors in adult mandarin voles. Behav Processes 2021; 192:104497. [PMID: 34499983 DOI: 10.1016/j.beproc.2021.104497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022]
Abstract
Stable and positive social bonds are pretty vital to the development of animals. Instability and disruptions of social bonds, such as maternal separation and social isolation, always produce disastrous influence on physiology, neuroendocrine and behaviors. Pair bond is one of the most important social bonds in adulthood. But the different effects of pair bond interruption between males and females are rarely studied. In the present study, the monogamous mandarin voles (Microtus mandarinus) were used to confirm the time window of pair bond formation. After that, voles were separated from their partner for 1 or 2 weeks. Then anxiety- and depression-like behaviors were investigated by using open field test, light-dark box test, tail suspension test and forced swimming test, respectively. The results showed that: (1) cohabitation for 5 days is sufficient and necessary for mandarin voles to form pair bond; (2) loss of partner is always crucial for the effects of pair bond interruption, while social isolation works in certain behavioral tests.; (3) pair bond interruption for 2 weeks significantly increased the level of anxiety and depression in adult males, but not female mandarin voles. Overall, this research suggested that loss of partner plays a key role in pair bond interruption in male mandarin voles.
Collapse
Affiliation(s)
- Yiqin Feng
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuying Yang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuan Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiaohuan Lv
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xin Zhang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yuqian Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yunmeng Zhu
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Qiao Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Zhixiong He
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Fadao Tai
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Rui Jia
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China; MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| |
Collapse
|
38
|
Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides 2021; 143:170593. [PMID: 34091013 DOI: 10.1016/j.peptides.2021.170593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The bond between a mother and her child is the strongest bond in nature. Consequently, the loss of a child is one of the most stressful and traumatic life events that causes Prolonged Grief Disorder in up to 94 % of bereaved parents. While both parents are affected, mothers are of higher risk to develop mental health complications; yet, very little research has been done to understand the impact of the loss of a child, stillbirth and pregnancy loss on key neurobiological systems. The emotional impact of losing a child, e.g., Prolonged Grief Disorder, is likely accompanied by dysregulations in neural systems important for mental health. Among those are the neuropeptides contributing to attachment and stress processing. In this review, we present evidence for the involvement of the brain oxytocin (OXT) and corticotropin-releasing factor (CRF) systems, which both play a role in maternal behavior and the stress response, in the neurobiology of grief in mothers from a behavioral and molecular point of view. We will draw conclusions from reviewing relevant animal and human studies. However, the paucity of research on the tragic end to an integral bond in a female's life calls for the need and responsibility to conduct further studies on mothers experiencing the loss of a child both in the clinic and in appropriate animal models.
Collapse
Affiliation(s)
- Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085 Rennes, France.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
39
|
Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain Behav Immun 2021; 96:168-186. [PMID: 34058309 PMCID: PMC8319132 DOI: 10.1016/j.bbi.2021.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Positive social relationships are paramount for the survival of mammals and beneficial for mental and physical health, buffer against stressors, and even promote appropriate immune system functioning. By contrast, impaired social relationships, social isolation, or the loss of a bonded partner lead to aggravated physical and mental health. For example, in humans partner loss is detrimental for the functioning of the immune system and heightens the susceptibility for the development of post-traumatic stress disorders, anxiety disorders, and major depressive disorders. To understand potential underlying mechanisms, the monogamous prairie vole can provide important insights. In the present study, we separated pair bonded male and female prairie voles after five days of co-housing, subjected them to the forced swim test on the fourth day following separation, and studied their microglia morphology and activation in specific brain regions. Partner loss increased passive stress-coping in male, but not female, prairie voles. Moreover, partner loss was associated with microglial priming within the parvocellular region of the paraventricular nucleus of the hypothalamus (PVN) in male prairie voles, whereas in female prairie voles the morphological activation within the whole PVN and the prelimbic cortex (PrL) was decreased, marked by a shift towards ramified microglial morphology. Expression of the immediate early protein c-Fos following partner loss was changed within the PrL of male, but not female, prairie voles. However, the loss of a partner did not affect the investigated aspects of the peripheral immune response. These data suggest a potential sex-dependent mechanism for the regulation of microglial activity following the loss of a partner, which might contribute to the observed differences in passive stress-coping. This study furthers our understanding of the effects of partner loss and its short-term impact on the CNS as well as the CNS immune system and the peripheral innate immune system in both male and female prairie voles.
Collapse
|
40
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
41
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
42
|
Normann MC, Cox M, Akinbo OI, Watanasriyakul WT, Kovalev D, Ciosek S, Miller T, Grippo AJ. Differential paraventricular nucleus activation and behavioral responses to social isolation in prairie voles following environmental enrichment with and without physical exercise. Soc Neurosci 2021; 16:375-390. [PMID: 33947321 DOI: 10.1080/17470919.2021.1926320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Social stressors produce neurobiological and emotional consequences in social species. Environmental interventions, such as environmental enrichment and exercise, may modulate physiological and behavioral stress responses. The present study investigated the benefits of environmental enrichment and exercise against social stress in the socially monogamous prairie vole. Female prairie voles remained paired with a sibling (control) or were isolated from a sibling for 4 weeks. The isolated groups were assigned to isolated sedentary, isolated with environmental enrichment, or isolated with both enrichment and exercise conditions. Behaviors related to depression, anxiety, and sociality were investigated using the forced swim test (FST), elevated plus maze (EPM), and a social crowding stressor (SCS), respectively. cFos expression was evaluated in stress-related circuitry following the SCS. Both enrichment and enrichment with exercise protected against depression-relevant behaviors in the FST and social behavioral disruptions in the SCS, but only enrichment with exercise protected against anxiety-related behaviors in the EPM and altered cFos expression in the hypothalamic paraventricular nucleus in isolated prairie voles. Enrichment may improve emotion-related and social behaviors, however physical exercise may be an important component of environmental strategies for protecting against anxiety-related behaviors and reducing neural activation as a function of social stress.
Collapse
Affiliation(s)
- Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Miranda Cox
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Oreoluwa I Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | | | - Dmitry Kovalev
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Sarah Ciosek
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Thomas Miller
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
43
|
Grippo AJ, McNeal N, Normann MC, Colburn W, Dagner A, Woodbury M. Behavioral and neuroendocrine consequences of disrupting a long-term monogamous social bond in aging prairie voles. Stress 2021; 24:239-250. [PMID: 32820956 PMCID: PMC7914264 DOI: 10.1080/10253890.2020.1812058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Social support from a spouse, long-term partner, or someone who provides emotional or instrumental support may protect against consequences of aging, including mediating behavioral stress reactivity and altering neurobiological process that underlie short-term stress responses. Therefore, long-term social bonding may have behavioral and neurobiological benefits. The socially monogamous prairie vole provides a valuable experimental model for investigating the benefits of long-term social bonds on short-term stress reactivity in aging animals, given their unique social structure of forming enduring opposite-sex bonds, living in family groups, and bi-parental rearing strategies. Male-female pairs of long-term, cohabitating prairie voles were investigated for short-term behavioral and neuroendocrine stress reactivity following either long-term social pairing (control), or a period of social isolation. In Experiment 1, social isolation was associated with altered behavioral reactivity to an acute swim stressor, and greater neural activation in the hypothalamic paraventricular nucleus, as well as specifically the parvocellular region, following the swim stressor (vs. control). In Experiment 2, social isolation was associated with greater corticosterone reactivity following an acute restraint stressor (vs. control). No sex differences were observed. Exploratory correlation and subgroup analyses revealed systematic relationships among various demographic variables (such as age of the subjects, amount of time the pair cohabitated together, and number of litters the pair reared together) and the behavioral and neuroendocrine outcome measures. These findings may inform our understanding of the benefits of long-term social bonding on modulating short-term behavioral and neuroendocrine responses to stress.LAY SUMMARYReceiving social support from a long-term spouse or partner, or having a strong support network from friends, may have important health benefits as people age. In aging monogamous prairie voles, social isolation from a long-term social partner disrupted behaviors and short-term stress responses, whereas living with a long-term partner protected against these disruptions. This research is important for our understanding of the benefits of social support on stress responses as we age.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Marigny C Normann
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - William Colburn
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Matthew Woodbury
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
44
|
Acosta H, Jansen A, Kircher T. Larger bilateral amygdalar volumes are associated with affective loss experiences. J Neurosci Res 2021; 99:1763-1779. [PMID: 33789356 DOI: 10.1002/jnr.24835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 01/06/2023]
Abstract
Affective loss (AL) (i.e., bereavement, relationship breakup) is a stressful life event leading to a heightened risk of developing a psychiatric disorder, for example, depression and anxiety disorder. These disorders have been associated with altered subcortical brain volumes. Little is known though, how AL in healthy subjects is linked to subcortical volumes. In a study with 196 healthy young adults, we probed the association between AL across the individual entire life span, assessed via the List of Threatening Experiences Questionnaire, and magnetic resonance imaging brain gray matter volumes (a priori selected: bilateral amygdalae, hippocampi, thalami; exploratory analyses: nuclei accumbens, caudate, putamina), segmented by use of volBrain. AL was defined as death of a first-degree relative/spouse, close relative/friend, and breakup of a marriage or steady relationship. AL was associated with larger bilateral amygdalar volumes and, after taking into account the total number of ALs, with smaller right hippocampal volumes, both irrespective of sex. Exploratory analyses of striatal volumes yielded an association of AL with larger right nucleus accumbens volumes in men, and increased caudate volumes after the loss of a first-degree relative irrespective of sex. Our data suggest that AL engenders alterations in limbic structures that likely involve processes of chronic stress and amygdala- and hippocampus-dependent fear conditioning, and resemble those observed in general anxiety disorder, childhood maltreatment, and major depressive disorder. Our exploratory findings of striatal volume alterations hint at a modulation of reward processing by AL.
Collapse
Affiliation(s)
- Henriette Acosta
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,Core-Unit Brainimaging, Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
45
|
Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021; 184:1500-1516. [PMID: 33691140 PMCID: PMC8580010 DOI: 10.1016/j.cell.2021.02.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Social homeostasis is the ability of individuals to detect the quantity and quality of social contact, compare it to an established set-point in a command center, and adjust the effort expended to seek the optimal social contact expressed via an effector system. Social contact becomes a positive or negative valence stimulus when it is deficient or in excess, respectively. Chronic deficits lead to set-point adaptations such that reintroduction to the previous optimum is experienced as a surplus. Here, we build upon previous models for social homeostasis to include adaptations to lasting changes in environmental conditions, such as with chronic isolation.
Collapse
Affiliation(s)
- Christopher R Lee
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kay M Tye
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Peen NF, Duque-Wilckens N, Trainor BC. Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 2021; 129:104933. [PMID: 33465346 PMCID: PMC7965339 DOI: 10.1016/j.yhbeh.2021.104933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes. We suggest that further work that directly compares neural mechanisms during stress contagion and stress buffering will be important for identifying what appear to be distinct but overlapping circuits mediating these processes.
Collapse
Affiliation(s)
- Natanja F Peen
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychology, University of California, Davis, CA. USA
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA. USA; Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI. USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA. USA.
| |
Collapse
|
47
|
Lee NS, Beery AK. The role of dopamine signaling in prairie vole peer relationships. Horm Behav 2021; 127:104876. [PMID: 33152338 PMCID: PMC7855828 DOI: 10.1016/j.yhbeh.2020.104876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
Dopamine signaling mediates the formation of some types of social relationships, including reproductive pair bonds in the socially monogamous prairie vole (Microtus ochrogaster). In addition to these pair bonds with mates, prairie voles demonstrate selective preferences for familiar same-sex peers. The dependence of peer relationships on dopamine signaling has not been tested, and the mechanisms supporting these relationships may differ from those underlying pair bonds. We examined the effects of pharmacological manipulations of dopamine signaling on peer partner preference and socially conditioned place preference in female prairie voles. Haloperidol blockade of dopamine receptors at multiple doses did not alter selective preferences for familiar same-sex partners, suggesting that dopamine neurotransmission is not necessary for the formation of prairie vole peer relationships, unlike mate relationships. Dopamine receptor agonist apomorphine facilitated peer partner preferences under conditions normally insufficient for partner preference formation; however, in the absence of effects from blockade, it is difficult to distinguish between a role for dopamine in partner preference formation and the generally rewarding properties of a dopamine agonist. Prairie voles exhibited socially conditioned place preferences for new but not long-term same-sex peers, and these preferences were not blocked by haloperidol. These results suggest that prairie vole peer relationships are less dependent on dopamine signaling than pair bonds, while still being rewarding. The data support distinct roles of dopamine and motivation in prairie vole peer relationships relative to mate relationships, suggesting that reproductive bonds are mediated differently from non-reproductive ones.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America; Neuroscience Program, Department of Psychology, Department of Biology, Smith College, Northampton, MA 01063, United States of America; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
48
|
Arzate-Mejía RG, Lottenbach Z, Schindler V, Jawaid A, Mansuy IM. Long-Term Impact of Social Isolation and Molecular Underpinnings. Front Genet 2020; 11:589621. [PMID: 33193727 PMCID: PMC7649797 DOI: 10.3389/fgene.2020.589621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Prolonged periods of social isolation can have detrimental effects on the physiology and behavior of exposed individuals in humans and animal models. This involves complex molecular mechanisms across tissues in the body which remain partly identified. This review discusses the biology of social isolation and describes the acute and lasting effects of prolonged periods of social isolation with a focus on the molecular events leading to behavioral alterations. We highlight the role of epigenetic mechanisms and non-coding RNA in the control of gene expression as a response to social isolation, and the consequences for behavior. Considering the use of strict quarantine during epidemics, like currently with COVID-19, we provide a cautionary tale on the indiscriminate implementation of such form of social isolation and its potential damaging and lasting effects in mental health.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | | | | | - Ali Jawaid
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Kakarala SE, Roberts KE, Rogers M, Coats T, Falzarano F, Gang J, Chilov M, Avery J, Maciejewski PK, Lichtenthal WG, Prigerson HG. The neurobiological reward system in Prolonged Grief Disorder (PGD): A systematic review. Psychiatry Res Neuroimaging 2020; 303:111135. [PMID: 32629197 PMCID: PMC7442719 DOI: 10.1016/j.pscychresns.2020.111135] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
Prolonged Grief Disorder (PGD) is a debilitating condition affecting between 7% and 10% of bereaved individuals. Past imaging and psychological studies have proposed links between PGD's characteristic symptoms - in particular, profound yearning - and the neural reward system. We conducted a systematic review to investigate this connection. On December 19, 2019, we searched six bibliographic databases for data on the neurobiology of grief and disordered grief. We excluded studies of the hypothalamic-pituitary-adrenal (HPA) axis, animal studies, and reviews. After abstract and full-text screening, twenty-four studies were included in the final review. We found diverse evidence for the activation of several reward-related regions of the brain in PGD. The data reviewed suggest that compared to normative grief, PGD involves a differential pattern of activity in the amygdala and orbitofrontal cortex (OFC); likely differential activity in the posterior cingulate cortex (PCC), rostral or subgenual anterior cingulate cortex (ACC), and basal ganglia overall, including the nucleus accumbens (NAc); and possible differential activity in the insula. It also appears that oxytocin signaling is altered in PGD, though the exact mechanism is unclear. Our findings appear to be consistent with, though not confirmative of, conceptualizing PGD as a disorder of reward, and identify directions for future research.
Collapse
Affiliation(s)
- S E Kakarala
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA
| | - K E Roberts
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - M Rogers
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA
| | - T Coats
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - F Falzarano
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA
| | - J Gang
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA
| | - M Chilov
- Medical Library, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | - J Avery
- Department of Radiology, Weill Cornell Medicine, 1305 York Ave., New York, NY 10021, USA
| | - P K Maciejewski
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA; Department of Radiology, Weill Cornell Medicine, 1305 York Ave., New York, NY 10021, USA
| | - W G Lichtenthal
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, 525 E. 68th St., New York, NY 10065, USA
| | - H G Prigerson
- Cornell Center for Research on End-of-life Care, Weill Cornell Medicine, 420 E. 70th St., New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, 1320 York Ave., New York, NY 10021, USA.
| |
Collapse
|
50
|
Hopf D, Eckstein M, Aguilar-Raab C, Warth M, Ditzen B. Neuroendocrine mechanisms of grief and bereavement: A systematic review and implications for future interventions. J Neuroendocrinol 2020; 32:e12887. [PMID: 32754965 DOI: 10.1111/jne.12887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
Bereavement is associated with many negative behavioural, psychological and physiological consequences and leads to an increased risk of mortality and morbidity. However, studies specifically examining neuroendocrine mechanisms of grief and bereavement have yet to be reviewed. This systematic review is a synthesis of the latest evidence in this field and aims to draw conclusions about the implications of neurobiological findings on the development of new interventions. PRISMA guidelines for systematic reviews were used to search for articles assessing neuroendocrine correlates of grief. Findings were qualitatively summarised. The National Heart, Lung, and Blood Institute Study Assessment Tool was used to assess the quality of the included studies. Out of 460 papers, 20 met the inclusion criteria. However, most were of fair quality only. As a neuroendocrine marker, the majority of the studies reported cortisol as the outcome measure and found elevated mean cortisol levels, flattened diurnal cortisol slopes and higher morning cortisol in bereaved subjects. Cortisol alterations were moderated by individual differences such as emotional reaction to grief, depressive symptoms, grief severity, closeness to the deceased and age or gender. Research on neuroendocrine mechanisms of grief is still in its early stages regarding grief measures and the use and timing of neuroendocrine assessments. Most of the studies focus on cortisol as outcome, and only limited data exist on other biomarkers such as oxytocin. Future research might consider assessing a broader range of neuroendocrine markers and use longitudinal designs with a focus on the psychobiological reactions to loss. Based on this, individually tailored psychosocial interventions, possibly in the palliative care context, might be developed to prevent prolonged grief disorder.
Collapse
Affiliation(s)
- Dora Hopf
- Institute of Medical Psychology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Monika Eckstein
- Institute of Medical Psychology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Corina Aguilar-Raab
- Institute of Medical Psychology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Marco Warth
- Institute of Medical Psychology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Heidelberg University Hospital, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| |
Collapse
|