1
|
Wang H, Shi Z, Hu R, Wang X, Chen J, Che H. Real-time fear emotion recognition in mice based on multimodal data fusion. Sci Rep 2025; 15:11797. [PMID: 40189678 PMCID: PMC11973163 DOI: 10.1038/s41598-025-95483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
A multimodal emotion recognition method that utilizes facial expressions, body postures, and movement trajectories to detect fear in mice is proposed in this study. By integrating and analyzing these distinct data sources through feature encoders and attention classifiers, we developed a robust emotion classification model. The performance of the model was evaluated by comparing it with single-modal methods, and the results showed significant accuracy improvements. Our findings indicate that the multimodal fusion emotion recognition model enhanced the precision of emotion detection, achieving a fear recognition accuracy of 86.7%. Additionally, the impacts of different monitoring durations and frame sampling rates on the achieved recognition accuracy were investigated in this study. The proposed method provides an efficient and simple solution for conducting real-time, comprehensive emotion monitoring in animal research, with potential applications in neuroscience and psychiatric studies.
Collapse
Affiliation(s)
- Hao Wang
- Public Computer Teaching and Research Center, Jilin University, Changchun, 130012, China
| | - Zhanpeng Shi
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruijie Hu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xinyi Wang
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Jian Chen
- College of Animal Science, Jilin University, Changchun, 130062, China.
| | - Haoyuan Che
- Public Computer Teaching and Research Center, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2025; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
3
|
Viellard JMA, Melleu FF, Tamais AM, de Almeida AP, Zerbini C, Ikebara JM, Domingues K, de Lima MAX, Oliveira FA, Motta SC, Canteras NS. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr Biol 2024; 34:2657-2671.e7. [PMID: 38810639 DOI: 10.1016/j.cub.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.
Collapse
Affiliation(s)
- Juliette M A Viellard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia M Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alisson P de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliane M Ikebara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Karolina Domingues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Miguel A X de Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC)-Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Simone C Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
4
|
Burnett LE, Koppensteiner P, Symonova O, Masson T, Vega-Zuniga T, Contreras X, Rülicke T, Shigemoto R, Novarino G, Joesch M. Shared behavioural impairments in visual perception and place avoidance across different autism models are driven by periaqueductal grey hypoexcitability in Setd5 haploinsufficient mice. PLoS Biol 2024; 22:e3002668. [PMID: 38857283 PMCID: PMC11216578 DOI: 10.1371/journal.pbio.3002668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Despite the diverse genetic origins of autism spectrum disorders (ASDs), affected individuals share strikingly similar and correlated behavioural traits that include perceptual and sensory processing challenges. Notably, the severity of these sensory symptoms is often predictive of the expression of other autistic traits. However, the origin of these perceptual deficits remains largely elusive. Here, we show a recurrent impairment in visual threat perception that is similarly impaired in 3 independent mouse models of ASD with different molecular aetiologies. Interestingly, this deficit is associated with reduced avoidance of threatening environments-a nonperceptual trait. Focusing on a common cause of ASDs, the Setd5 gene mutation, we define the molecular mechanism. We show that the perceptual impairment is caused by a potassium channel (Kv1)-mediated hypoexcitability in a subcortical node essential for the initiation of escape responses, the dorsal periaqueductal grey (dPAG). Targeted pharmacological Kv1 blockade rescued both perceptual and place avoidance deficits, causally linking seemingly unrelated trait deficits to the dPAG. Furthermore, we show that different molecular mechanisms converge on similar behavioural phenotypes by demonstrating that the autism models Cul3 and Ptchd1, despite having similar behavioural phenotypes, differ in their functional and molecular alteration. Our findings reveal a link between rapid perception controlled by subcortical pathways and appropriate learned interactions with the environment and define a nondevelopmental source of such deficits in ASD.
Collapse
Affiliation(s)
- Laura E. Burnett
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tomás Masson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Tomas Vega-Zuniga
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ximena Contreras
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine, Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
5
|
Williford KM, Taylor A, Melchior JR, Yoon HJ, Sale E, Negasi MD, Adank DN, Brown JA, Bedenbaugh MN, Luchsinger JR, Centanni SW, Patel S, Calipari ES, Simerly RB, Winder DG. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023; 48:1031-1041. [PMID: 36941364 PMCID: PMC10209190 DOI: 10.1038/s41386-023-01569-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/22/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.
Collapse
Affiliation(s)
- Kellie M Williford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - James R Melchior
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Eryn Sale
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Milen D Negasi
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Acuña LR, Back F, Barp CG, Guilherme Tassoni Bortoloci J, Assreuy J, Carobrez AP. Role of nitric oxide on defensive behavior and long-term aversive learning induced by chemical stimulation of the dorsolateral periaqueductal gray matter. Neurobiol Learn Mem 2023; 200:107735. [PMID: 36813080 DOI: 10.1016/j.nlm.2023.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
The midbrain periaqueductal gray matter, especially the dorsolateral portion (dlPAG), coordinates immediate defensive responses (DR) to threats, but also ascends forebrain information for aversive learning. The synaptic dynamics in the dlPAG regulate the intensity and type of behavioral expression, as well as long-term processes such as memory acquisition, consolidation, and retrieval. Among several neurotransmitters and neural modulators, nitric oxide seems to play an important regulatory role in the immediate expression of DR, but it remains unclear if this gaseous on-demand neuromodulator contributes to aversive learning. Therefore, the role of nitric oxide in the dlPAG was investigated, during conditioning in an olfactory aversive task. The behavioral analysis consisted of freezing and crouch-sniffing in the conditioning day after glutamatergic NMDA agonist injection into the dlPAG. Two days later, rats were re-exposed to the odor cue and avoidance was measured. 7NI, a selective neuronal nitric oxide synthase inhibitor (40 and 100 nmol), injected before NMDA (50 pmol) impaired immediate DR and consequent aversive learning. The scavenging of extrasynaptic nitric oxide by C-PTIO (1 and 2 nmol) induced similar results. Moreover, spermine NONOate, a nitric oxide donor (5, 10, 20, 40, and 80 nmol), produced DR by itself, but only the low dose also promoted learning. The following experiments utilized a fluorescent probe, DAF-FM diacetate (5 µM), directly into the dlPAG, to quantify nitric oxide in the three previous experimental situations. Nitric oxide levels were increased after NMDA stimulation, decreased after 7NI, and increased after spermine NONOate, in line with alterations in defensive expression. Altogether, the results indicate that nitric oxide plays a modulatory and decisive role in the dlPAG regarding immediate DR and aversive learning.
Collapse
Affiliation(s)
- Lucía R Acuña
- Department of Pharmacology, Universidade Federal de Santa Catarina, Brazil; Instituto Misionero de Biodiversidad, Puerto Iguazú, Argentina
| | - Franklin Back
- Department of Pharmacology, Universidade Federal de Santa Catarina, Brazil
| | - Clarissa G Barp
- Department of Pharmacology, Universidade Federal de Santa Catarina, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, Brazil
| | - Antonio P Carobrez
- Department of Pharmacology, Universidade Federal de Santa Catarina, Brazil.
| |
Collapse
|
7
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
8
|
Almohaimeed HM, Batawi AH, Mohammedsaleh ZM, Al Jaouni S, Mutlq Alsawat SA, Abd El Wahab MG, AbdElfattah AA, Ayuob NN. Musk ( Moschus moschiferus) Attenuates Changes in Main Olfactory Bulb of Depressed Mice: Behavioral, Biochemical, and Histopathological Evidence. Front Behav Neurosci 2021; 15:704180. [PMID: 34512285 PMCID: PMC8430345 DOI: 10.3389/fnbeh.2021.704180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musk (Moschus moschiferus) has been described to have a significant impact on the central nervous system, as well as anticonvulsion and antidepressant effects. This study was designed to evaluate the efficacy of musk in alleviating alterations induced in olfactory bulb of depressed mice exposed to chronic stress and identify the mechanism behind it. METHODS Fifty male albino mice were divided into five groups (n = 10 each): control, musk, chronic unpredictable mild stress (CUMS), fluoxetine-treated, and musk-treated groups were included in this study. Behavioral changes and serum levels of corticosterone and proinflammatory cytokines included tumor necrosis factor α, interleukin 6, and oxidant/antioxidant profile were assessed at the end of the experiment. Main olfactory bulb (MOB) has been processed for histopathological examination. Gene expression of caspase-3, glial fibrillary acidic protein, and Ki67 were assessed in the MOB using quantitative real-time polymerase chain reaction. RESULTS The study showed that musk inhalation significantly reduced (p < 0.001) corticosterone level, immobility time, inflammatory cytokines, and oxidative stress markers in CUMS-exposed mice compared to the untreated CUMS group. Musk lessened CUMS-associated neuronal alterations in the MOB and significantly reduced apoptosis and enhanced neural cell proliferation (p < 0.001) comparable to fluoxetine. Musk significantly enhanced the level of antioxidants in the serum and significantly reduced inflammatory cytokines. The anti-inflammatory and antioxidant activity of musk and its constituents seemed to be behind its neuroprotective effect observed in this study. CONCLUSION Musk effectively ameliorated the chronic stress-induced behavioral, biochemical, and neuronal structural changes in MOB mostly through its antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hailah M. Almohaimeed
- Department of Basic Science, Medical College, Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Ashwaq H. Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdullatif Jameel Chair of Prophetic Medical Applications, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Manal G. Abd El Wahab
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
- Faculty of Nurses, National Gard, King Saud University, Jeddah, Saudi Arabia
| | - Amany A. AbdElfattah
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nasra N. Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
9
|
Montardy Q, Zhou Z, Liu X, Lei Z, Zeng P, Chen C, Liu Y, Huang K, Wei M, Wang L. Glutamatergic and gabaergic neuronal populations in the dorsal Periacqueductual Gray have different functional roles in aversive conditioning. Neurosci Lett 2020; 732:135059. [PMID: 32454151 DOI: 10.1016/j.neulet.2020.135059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022]
Abstract
The dorsal periacqueductal gray (dPAG) is a midbrain structure having an essential role in coordinating defensive behaviors in response to aversive stimulation. However, the question of whether dPAG neurons can respond to aversive conditioning and retrieval, properties involved in emergence of negative emotional state, is still under debate. Here we used calcium imaging by fiber photometry to record the activity of dPAGVGluT2+ and dPAGGAD2+ neuronal populations during unconditioned and conditioned aversive stimulation. Then, following an unconditioned stimulation we performed a retrieval experiment to quantify memory-like responses of dPAG neurons. This shown that whilst both dPAGVGluT2+ and dPAGGAD2+ neuronal populations respond to direct US stimulation, and to CS stimulation during conditioning, only the dPAGVGluT2+ population persisted in responding to the CS stimulation during retrieval. Finally to better understand these divergences in dPAGVGluT2+ and dPAGGAD2+ responses, we investigated their respective connectivity patterns by performing a cell specific monosynaptic retrograde rabies virus tracing experiment. This revealed that different patterns of fibers projects to dPAGVGluT2+ and dPAGGAD2+, which could explain part of their response specificities. This may indicate that glutamatergic subpopulation is a main contributor of aversive memories in dPAG.
Collapse
Affiliation(s)
- Quentin Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuemei Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuogui Lei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Pengyu Zeng
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Chen Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Yuanming Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Kang Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxia Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Ayuob NN, Balgoon MJ, Ali S, Alnoury IS, ALmohaimeed HM, AbdElfattah AA. Ocimum basilicum (Basil) Modulates Apoptosis and Neurogenesis in Olfactory Pulp of Mice Exposed to Chronic Unpredictable Mild Stress. Front Psychiatry 2020; 11:569711. [PMID: 33061923 PMCID: PMC7518217 DOI: 10.3389/fpsyt.2020.569711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ocimum basilicum (O. basilicum) was described to have antidepressant and anxiolytic activities. Although the relationship between the main olfactory bulb (MOB) and depression was recently reported, the chronic stress-induced dysfunction of the MOB is not clearly described. OBJECTIVES This study aimed to assess the efficacy of inhalation of O. basilicum essential oils in improving chronic unpredictable mild stress (CUMS)-induced changes in MOB of mice and understand the mechanism underlying such effect. MATERIALS AND METHODS Adult male mice (n=40) were assigned into four groups included the control, CUMS-exposed, CUMS + fluoxetine (FLU), CUMS + O. basilicum. Behavioral changes, serum corticosterone level, and gene expression of GFAP, Ki 67, and caspase-3 were assessed using real-time PCR (RT-PCR). Histopathological and immunochemical examination of the MOB was performed. RESULTS FLU and O. basilicum significantly down-regulated (p = 0.002, p<0.001) caspase-3 gene expression indicating reduced apoptosis and up-regulated (p = 0.002, p < 0.001) Ki67 gene expression indicating enhanced neurogenesis in MOB, respectively. FLU and O. basilicum-treated mice markedly improved MOB mitral cell layer distortion and shrinkage induced by CUMS. CONCLUSION O. basilicum relieved both biochemically and histopathological chronic stress-induced changes in the main olfactory bulb possibly through up-regulation of gene expression of GFAP and Ki67 and down-regulation of caspase-3 in the MOB.
Collapse
Affiliation(s)
- Nasra N Ayuob
- Department of Medical Histology, Faculty of Medicine, Delta University for Science and Technology, Mansoura, Egypt.,Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Ali
- Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Histology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Ibrahim S Alnoury
- Department of ENT, H&N Surgery, Faculty of Medicine, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Hailah M ALmohaimeed
- Department of Basic Science, Medical College, Princess Noruh bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Amany A AbdElfattah
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Kedrov AV, Mineyeva OA, Enikolopov GN, Anokhin KV. Involvement of Adult-born and Preexisting Olfactory Bulb and Dentate Gyrus Neurons in Single-trial Olfactory Memory Acquisition and Retrieval. Neuroscience 2019; 422:75-87. [DOI: 10.1016/j.neuroscience.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
12
|
Giachero M, Pavesi E, Calfa G, Motta SC, Canteras NS, Molina VA, Carobrez AP. Inactivation of the dorsolateral periaqueductal gray matter impairs the promoting influence of stress on fear memory during retrieval. Brain Struct Funct 2019; 224:3117-3132. [DOI: 10.1007/s00429-019-01956-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
13
|
Ayuob NN, Abdel-Tawab HS, El-Mansy AA, Ali SS. The protective role of musk on salivary glands of mice exposed to chronic unpredictable mild stress. J Oral Sci 2019; 61:95-102. [PMID: 30918218 DOI: 10.2334/josnusd.17-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study assessed the impact of chronic unpredictable mild stress (CUMS) on the structure of mouse salivary glands and the role of musk in alleviating this impact. Forty male albino mice were distributed equally into four groups; control (untreated), CUMS (exposed to CUMS for 4 weeks), CUMS+fluoxetine (FLU) (exposed to CUMS then treated with FLU, CUMS+musk (exposed to CUMS then treated with musk). Behavioral changes and serum corticosterone levels were assessed at the end of the experiment. The submandibular and parotid glands were dissected out and processed for histopathological and immunohistochemical examination using antibodies against alpha smooth muscle actin (ASMA) and brain-derived neurotropic factor (BDNF). Exposure to CUMS significantly (P < 0.001) increased the serum corticosterone level and induced depression. CUMS also induced vacuolation in acinar cells along with a significant (P < 0.001) reduction of ASMA immunoexpression, indicating an effect on myoepithelial cells, and a significant (P < 0.001) increase of BDNF expression in the gland ductal system. Both FLU and musk alleviated the CUMS-induced behavioral, biochemical and histopathological changes in the salivary glands. In conclusion, musk ameliorates stress-induced structural changes in mouse salivary glands. This effect might be mediated through up-regulation of BDNF secretion by the glands.
Collapse
Affiliation(s)
- Nasra N Ayuob
- Anatomy Department, Faculty of Medicine, King Abdulaziz University.,Histology Department, Faculty of Medicine, Mansoura University
| | | | - Ahmed A El-Mansy
- Histology Department, Faculty of Medicine, Mansoura University.,Department of Basic Medical Science, Horus University
| | - Soad S Ali
- Anatomy Department, Faculty of Medicine, King Abdulaziz University.,Histology Department, Faculty of Medicine, Assuit University.,Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications, King Abdulaziz University
| |
Collapse
|
14
|
Shinohara F, Asaoka Y, Kamii H, Minami M, Kaneda K. Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry. Addict Biol 2019; 24:509-521. [PMID: 29480583 DOI: 10.1111/adb.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Effects of stress on the reward system are well established in the literature. Although previous studies have revealed that stress can reinstate extinguished addictive behaviors related to cocaine, the effects of stress on the rewarding memory of cocaine are not fully understood. Here, we provide evidence that stress potentiates the expression of rewarding memory of cocaine via the activation of brainstem-reward circuitry using a cocaine-induced conditioned place preference (CPP) paradigm combined with restraint stress in rats. The rats exposed to 30-minute restraint stress immediately before posttest exhibited significantly larger CPP scores compared with non-stressed rats. Intra-laterodorsal tegmental nucleus (LDT) microinjection of a β or α2 adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. Consistent with this observation, intra-LDT microinjection of a β or α2 adrenoceptor agonist before posttest increased cocaine CPP. Additionally, intra-ventral tegmental area (VTA) microinjection of antagonists for the muscarinic acetylcholine, nicotinic acetylcholine or glutamate receptors attenuated the stress-induced enhancement of cocaine CPP. Finally, intra-medial prefrontal cortex (mPFC) microinjection of a D1 receptor antagonist also reduced the stress-induced enhancement of cocaine CPP. These findings suggest a mechanism wherein the LDT is activated by noradrenergic input from the locus coeruleus, leading to the activation of VTA dopamine neurons via both cholinergic and glutamatergic transmission and the subsequent excitation of the mPFC to enhance the memory of cocaine-induced reward value.
Collapse
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| |
Collapse
|
15
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
16
|
Canteras NS. Hypothalamic survival circuits related to social and predatory defenses and their interactions with metabolic control, reproductive behaviors and memory systems. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Ayuob NN, El Wahab MGA, Ali SS, Abdel-Tawab HS. Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus. Metab Brain Dis 2018; 33:795-804. [PMID: 29356981 DOI: 10.1007/s11011-017-0173-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), one of the progressive neurodegenerative diseases might be associated with exposure to stress and altered living conditions. This study aimed to evaluate the effectiveness of Ocimum basilicum (OB) essential oils in improving the neurodegenerative-like changes induced in mice after exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice divided into four groups (n = 10); the control, CUMS, CUMS + Fluoxetine, CUMS + OB were used. Behavioral tests, serum corticosterone level, hippocampus protein level of the glucocorticoid receptors (GRs) and brain-dreived neurotropic factor (BDNF) were determined after exposure to CUMS. Hippocampus was histopathologically examined. Data were analyzed using statistical package for the social sciences (SPSS) and P value of less than 0.05 was considered significant. OB diminished the depression manifestation as well as impaired short term memory observed in the mice after exposure to the CUMS as evidenced by the forced swimming and elevated plus maze test. OB also up-regulated the serum corticosterone level, hippocampal protein level of the glucocorticoid receptor and the brain-derived neurotropic factor and reduced the neurodegenerative and atrophic changes induced in the hippocampus after exposure to CUMS. Essential oils of OB alleviated the memory impairment and hippocampal neurodegenerative changes induced by exposure to the chronic unpredictable stress indicating that it is the time to test its effectiveness on patients suffering from Alzheimer disease.
Collapse
Affiliation(s)
- Nasra Naeim Ayuob
- Anatomy department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Manal Galal Abd El Wahab
- Department of Anatomy, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
- Department of Basic Sciences, Nursing College, King Saud Bin Abd El Aziz University, National guard, Jeddah, Saudi Arabia
- Yousef Abdullatif Jameel, Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Shaker Ali
- Anatomy department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Histology Department, Faculty of Medicine, Assuit University, Assiut, Egypt
| | | |
Collapse
|
18
|
Can Ocimum basilicum relieve chronic unpredictable mild stress-induced depression in mice? Exp Mol Pathol 2017; 103:153-161. [DOI: 10.1016/j.yexmp.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022]
|
19
|
Dexamethasone impairs encoding and expression of aversive conditioning promoted by pentylenetetrazole. Behav Pharmacol 2017; 31:435-447. [PMID: 28863004 DOI: 10.1097/fbp.0000000000000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral and neuroendocrine responses following threatening situations promote the release of corticosterone, which is known to modulate trauma-related learning and memory process. However, it remains unknown whether the aversive learning generated by interoceptive fear conditioning is affected by glucocorticoid modulation. Therefore, the present study aimed to investigate the role of dexamethasone suppression in encoding and expression of pentylenetetrazole-induced olfactory fear conditioning (OFC) and in contextual second-order conditioning promoted by the conditioned odor. Adult male Long-Evans rats were treated with dexamethasone 60 min before the encoding or the expression in both OFC and contextual second-order conditioning. Dexamethasone treatment impaired encoding and expression of the OFC, but failed to impair encoding and expression of the contextual second-order conditioning. Altogether, our results show that although OFC and thereafter contextual second-order conditioning may allow the study of traumatic memories, each order of conditioning seems to present specific features related to their pharmacological modulation. These findings highlight the importance of addressing the role of neuromodulatory systems in first-order and second-order conditioning to gain a better understanding of these phenomena and support future therapies related to traumatic memories.
Collapse
|
20
|
Ali SS, Abd El Wahab MG, Ayuob NN, Suliaman M. The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech Histochem 2017; 92:390-401. [DOI: 10.1080/10520295.2017.1323276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- SS Ali
- Anatomy Department, Faculty of Medicine, King Abdulaziz University
| | - MG Abd El Wahab
- Anatomy Department, Faculty of Medicine for Girls, Al Azhar University
- Faculty of Nurses, National Gard, King Saud University, Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - NN Ayuob
- Anatomy Department, Faculty of Medicine, King Abdulaziz University
- Histology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - M Suliaman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 2017; 76:39-47. [DOI: 10.1016/j.neubiorev.2016.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
|
22
|
Silva BA, Gross CT, Gräff J. The neural circuits of innate fear: detection, integration, action, and memorization. ACTA ACUST UNITED AC 2016; 23:544-55. [PMID: 27634145 PMCID: PMC5026211 DOI: 10.1101/lm.042812.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022]
Abstract
How fear is represented in the brain has generated a lot of research attention, not only because fear increases the chances for survival when appropriately expressed but also because it can lead to anxiety and stress-related disorders when inadequately processed. In this review, we summarize recent progress in the understanding of the neural circuits processing innate fear in rodents. We propose that these circuits are contained within three main functional units in the brain: a detection unit, responsible for gathering sensory information signaling the presence of a threat; an integration unit, responsible for incorporating the various sensory information and recruiting downstream effectors; and an output unit, in charge of initiating appropriate bodily and behavioral responses to the threatful stimulus. In parallel, the experience of innate fear also instructs a learning process leading to the memorization of the fearful event. Interestingly, while the detection, integration, and output units processing acute fear responses to different threats tend to be harbored in distinct brain circuits, memory encoding of these threats seems to rely on a shared learning system.
Collapse
Affiliation(s)
- Bianca A Silva
- Laboratory of Neuroepigenetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Souza RR, Carobrez AP. Acquisition and expression of fear memories are distinctly modulated along the dorsolateral periaqueductal gray axis of rats exposed to predator odor. Behav Brain Res 2016; 315:160-7. [PMID: 27522018 DOI: 10.1016/j.bbr.2016.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
The dorsolateral region of the midbrain periaqueductal gray (dlPAG) modulates both innate and conditioned fear responses. However, the contribution of the rostrocaudal portions of the dlPAG to defense reactions and aversive memories remains unclear. Here, we sought to investigate the effects of N-methyl-d-aspartate (NMDA) receptor blockade within rostral or caudal dlPAG of rats exposed to innate and learned fear to cat odor. For this, adult male Wistar rats were microinjected with the NMDA antagonist D-2-amino-5-phosphono-pentanoate (AP5; 3 or 6nmol/0.2μl) into the rostral or caudal dlPAG before and after the exposure to the cat odor or to the context paired with the predator odor. The results demonstrated that cat odor exposure induced unconditioned defensive behaviors as well as contextual fear. AP5 microinjected in the rostral dlPAG reduced the defensive responses to cat odor and impaired the acquisition, but not consolidation of contextual fear. On the other hand, AP5 infused within the caudal dlPAG promoted long-lasting reduction of contextual fear expression. Altogether, our data suggest that NMDA receptors mediate a functional dichotomy in the rostrocaudal axis of dlPAG regulating unconditioned and conditioned defensive reactions to predatory cues.
Collapse
Affiliation(s)
- Rimenez R Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio P Carobrez
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
24
|
The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res 2016; 366:271-284. [DOI: 10.1007/s00441-016-2468-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022]
|
25
|
Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works. Anat Sci Int 2016; 92:539-553. [PMID: 27444866 DOI: 10.1007/s12565-016-0357-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
Abstract
Depression has become a common public health problem that is showing increasing prevalence. Slow onset of action, low response rates and drug resistance are potential limitations of the current antidepressant drugs. Alternative therapy using natural substances, specifically aromatherapy, is currently tried to treat depression. This work aimed to assess the efficacy of musk in relieving the behavioral, biochemical and hippocampal histopathological changes induced by exposure to chronic mild stress in mice and explore the possible mechanism behind this antidepressant-like effect. Forty male albino mice were divided into four groups (n = 10): control, a group exposed to chronic unpredictable mild stress (CUMS) and two groups exposed to CUMS and then treated with fluoxetine or musk. Behavioral changes and serum corticosterone levels were assessed at the end of the experiment. Protein and gene expressions of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) in the hippocampus were assessed using ELISA and real-time RT-PCR, respectively. Histopathological examination of the hippocampus and immunohistochemical techniques using glial fibrillary acidic protein (GFAP), Ki67, caspase-3, BDNF and GR were performed. Inhalation of musk had an antidepressant-like effect in an animal model of depression. Musk alleviated the behavioral changes and elevated serum corticosterone levels induced by exposure to chronic stress. It reduced the hippocampal neuronal apoptosis and stimulated neurogenesis in the dentate gyrus. Musk's action may be related to the upregulation of hippocampal GR and BDNF expressions. Musk is considered a potential antidepressant so it is advisable to assess its efficacy in treating depressed patient.
Collapse
|
26
|
Silva BA, Mattucci C, Krzywkowski P, Cuozzo R, Carbonari L, Gross CT. The ventromedial hypothalamus mediates predator fear memory. Eur J Neurosci 2016; 43:1431-9. [PMID: 26991018 DOI: 10.1111/ejn.13239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
The amygdala has been shown to be essential for the processing of acute and learned fear across animal species. However, the downstream neural circuits that mediate these fear responses differ according to the nature of the threat, with separate pathways having been identified for predator, conspecific and physically harmful threats. In particular, the dorsomedial part of the ventromedial hypothalamus (VHMdm) is critical for the expression of defensive responses to predators. Here, we tested the hypothesis that this circuit also participates in predator fear memory by transient pharmacogenetic inhibition of the VMHdm and its downstream effector, the dorsal periaqueductal grey, during predator fear learning in the mouse. Our data demonstrate that neural activity in the VMHdm is required for both the acquisition and recall of predator fear memory, whereas that of its downstream effector, the dorsal periaqueductal grey, is required only for the acute expression of fear. These findings are consistent with a role for the medial hypothalamus in encoding an internal emotional state of fear.
Collapse
Affiliation(s)
- Bianca A Silva
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| | - Camilla Mattucci
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| | - Piotr Krzywkowski
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| | - Rachel Cuozzo
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| | - Laura Carbonari
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Monterotondo, Italy
| |
Collapse
|
27
|
Canteras NS, Pavesi E, Carobrez AP. Olfactory instruction for fear: neural system analysis. Front Neurosci 2015; 9:276. [PMID: 26300721 PMCID: PMC4526802 DOI: 10.3389/fnins.2015.00276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 01/17/2023] Open
Abstract
Different types of predator odors engage elements of the hypothalamic predator-responsive circuit, which has been largely investigated in studies using cat odor exposure. Studies using cat odor have led to detailed mapping of the neural sites involved in innate and contextual fear responses. Here, we reviewed three lines of work examining the dynamics of the neural systems that organize innate and learned fear responses to cat odor. In the first section, we explored the neural systems involved in innate fear responses and in the acquisition and expression of fear conditioning to cat odor, with a particular emphasis on the role of the dorsal premammillary nucleus (PMd) and the dorsolateral periaqueductal gray (PAGdl), which are key sites that influence innate fear and contextual conditioning. In the second section, we reviewed how chemical stimulation of the PMd and PAGdl may serve as a useful unconditioned stimulus in an olfactory fear conditioning paradigm; these experiments provide an interesting perspective for the understanding of learned fear to predator odor. Finally, in the third section, we explored the fact that neutral odors that acquire an aversive valence in a shock-paired conditioning paradigm may mimic predator odor and mobilize elements of the hypothalamic predator-responsive circuit.
Collapse
Affiliation(s)
- Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Eloisa Pavesi
- Department of Pharmacology, CCB, Federal University of Santa Catarina Florianópolis, Brazil
| | - Antonio P Carobrez
- Department of Pharmacology, CCB, Federal University of Santa Catarina Florianópolis, Brazil
| |
Collapse
|
28
|
Kunwar PS, Zelikowsky M, Remedios R, Cai H, Yilmaz M, Meister M, Anderson DJ. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 2015; 4. [PMID: 25748136 PMCID: PMC4379496 DOI: 10.7554/elife.06633] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/05/2015] [Indexed: 12/26/2022] Open
Abstract
Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI:http://dx.doi.org/10.7554/eLife.06633.001 Animals have evolved a large number of ‘defensive behaviors’ to deal with the threat of predators. Examples include reptiles camouflaging themselves to avoid discovery, fish and birds swarming to confuse predators, insects releasing toxic chemicals, and humans readying themselves to fight or flee. In mammals, defensive behaviors are thought to be mediated by a region of the brain called the amygdala. This structure, which is known as the brain's ‘emotion center’, receives and processes information from the senses about impending threats. It then sends instructions on how to deal with these threats to other regions of the brain including the hypothalamus, which pass them on to the brain regions that control the behavioral, endocrine and involuntary responses of the mammal. For many years it has been thought that the role of the hypothalamus is to serve simply as a relay for emotion states encoded in the amygdala, rather than as an emotion center itself. However, Kunwar et al. have now challenged this assumption with the aid of a technique called optogenetics, in which light is used to activate specific populations of genetically labeled neurons. When light was used to directly activate neurons within the ventromedial hypothalamus in awake mice, the animals instantly froze and/or fled, just as they would when faced with a predator. Given that the optical stimulation had completely bypassed the amygdala, this suggested that the hypothalamus must be capable of generating this defensive response without any input from the amygdala. The freezing and fleeing responses resembled the responses to a predator in a number of key ways. Mice chose to avoid areas of their cage in which they had received the stimulation, suggesting that—like a predator—these areas induced an unpleasant emotional state, perhaps akin to anxiety or fear. Freezing and fleeing persisted for several seconds after the stimulation had stopped, just as freezing and fleeing responses to predators do not immediately cease after the threat has gone. And finally, destroying the neurons targeted by the stimulation made mice less likely to avoid one of their main predators, the rat. It also made the animals less anxious. Overall the results suggest that the hypothalamus may be more than simply a relay for the amygdala, and that ‘amygdala-centric’ views of emotion processing may need to be re-visited. DOI:http://dx.doi.org/10.7554/eLife.06633.002
Collapse
Affiliation(s)
- Prabhat S Kunwar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Moriel Zelikowsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ryan Remedios
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Haijiang Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Melis Yilmaz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
29
|
Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology 2014; 79:201-11. [DOI: 10.1016/j.neuropharm.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
|
30
|
Souza RR, França SL, Bessa MM, Takahashi RN. The usefulness of olfactory fear conditioning for the study of early emotional and cognitive impairment in reserpine model. Behav Processes 2013; 100:67-73. [PMID: 23978602 DOI: 10.1016/j.beproc.2013.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/20/2013] [Accepted: 08/13/2013] [Indexed: 12/01/2022]
Abstract
Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes.
Collapse
Affiliation(s)
- Rimenez R Souza
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
31
|
Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Silva CR, Ferreira J, Losso EM, Andreatini R. Anxiolytic-like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:412-418. [PMID: 23524167 DOI: 10.1016/j.jep.2013.03.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/04/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lavandula angustifolia (lavender) inhalation has been used in folk medicine for the treatment of anxiety, and clinical and animal studies have corroborated its anxiolytic effect, although its mechanism of action is still not fully understood. AIMS OF THE STUDY The objective of the present study was to determine whether the GABAA/benzodiazepine complex or serotonin neurotransmission mediates the anxiolytic-like effect of lavender essential oil. MATERIALS AND METHODS Male Swiss mice were subjected to the marble-burying test after being exposed to the aroma of lavender essential oil (1-5%), amyl acetate (5%; used as a behaviorally neutral odor), or distilled water for 15 min via inhalation. Additionally, the effect of 5% lavender essential oil was also evaluated in mice subjected to the elevated plus maze. GABAA/benzodiazepine mediation was evaluated by pretreating the mice with the GABAA receptor antagonist picrotoxin before the marble burying test and [(3)H]flunitrazepam binding to the benzodiazepine site on the GABAA receptor. Serotonergic mediation was studied by pretreating the mice with O-methyl-[3H]-N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY100635), a serotonin 5-HT1A receptor antagonist before the marble burying test. We also evaluated changes in the pharmacologically induced serotonin syndrome and the effects of combined administration of subeffective doses of lavender essential oil and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). RESULTS Lavender essential oil (1-5%) decreased the number of marbles buried compared with the control and amyl acetate groups. In the elevated plus maze, 5% lavender essential oil inhalation increased the percentage of time spent on and number of entries into the open arms compared with controls. No effect was seen in the number of closed arm entries or number of beam interruptions in the automated activity chamber. Pretreatment with the GABAA receptor antagonist picrotoxin (0.5mg/kg) did not modify the behavioral effect of 5% lavender essential oil in the marble-burying test. Lavender essential oil also did not alter [(3)H]flunitrazepam binding to the benzodiazepine site on the GABAA receptor. Pretreatment with the serotonin 5-HT1A receptor antagonist WAY100635 (3mg/kg) blocked the anxiolytic-like effect of lavender essential oil and the 5-HT1A receptor agonist 8-OH-DPAT (3mg/kg). A combination of ineffective doses of 8-OH-DPAT (0.5mg/kg) and lavender essential oil (0.1%) reduced the number of marbles buried. Finally, 5% lavender essential oil attenuated the serotonin syndrome induced by 40 mg/kg fluoxetine plus 80 mg/kg 5-hydroxytryptophan. CONCLUSIONS These results indicate an important role for the serotonergic system in the anxiolytic-like effect of lavender essential oil.
Collapse
Affiliation(s)
- Lea R Chioca
- Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, PO Box 19031, Curitiba, PR 81540-990, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mochny CR, Kincheski GC, Molina VA, Carobrez AP. Dorsolateral periaqueductal gray stimulation prior to retrieval potentiates a contextual fear memory in rats. Behav Brain Res 2013; 237:76-81. [DOI: 10.1016/j.bbr.2012.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/27/2022]
|
33
|
The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One 2012; 7:e50361. [PMID: 23209724 PMCID: PMC3508919 DOI: 10.1371/journal.pone.0050361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/19/2012] [Indexed: 01/15/2023] Open
Abstract
The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.
Collapse
|
34
|
Abstract
Fear is an emotion that has powerful effects on behaviour and physiology across animal species. It is accepted that the amygdala has a central role in processing fear. However, it is less widely appreciated that distinct amygdala outputs and downstream circuits are involved in different types of fear. Data show that fear of painful stimuli, predators and aggressive members of the same species are processed in independent neural circuits that involve the amygdala and downstream hypothalamic and brainstem circuits. Here, we discuss data supporting multiple fear pathways and the implications of this distributed system for understanding and treating fear.
Collapse
Affiliation(s)
- Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory, via Ramarini 32, 00015 Monterotondo, Italy.
| | | |
Collapse
|
35
|
Abstract
I propose a reconceptualization of key phenomena important in the study of emotion-those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and toward questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
36
|
Sobrinho CR, Canteras NS. A study of the catecholaminergic inputs to the dorsal premammillary nucleus. Neurosci Lett 2011; 501:157-62. [PMID: 21782889 DOI: 10.1016/j.neulet.2011.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/08/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022]
Abstract
The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses.
Collapse
Affiliation(s)
- Cleyton Roberto Sobrinho
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Lineu Prestes, 2415, CEP 05508-000 Sao Paulo, SP, Brazil
| | | |
Collapse
|