1
|
The Potential Role of R4 Regulators of G Protein Signaling (RGS) Proteins in Type 2 Diabetes Mellitus. Cells 2022; 11:cells11233897. [PMID: 36497154 PMCID: PMC9739376 DOI: 10.3390/cells11233897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and heterogeneous disease that primarily results from impaired insulin secretion or insulin resistance (IR). G protein-coupled receptors (GPCRs) are proposed as therapeutic targets for T2DM. GPCRs transduce signals via the Gα protein, playing an integral role in insulin secretion and IR. The regulators of G protein signaling (RGS) family proteins can bind to Gα proteins and function as GTPase-activating proteins (GAP) to accelerate GTP hydrolysis, thereby terminating Gα protein signaling. Thus, RGS proteins determine the size and duration of cellular responses to GPCR stimulation. RGSs are becoming popular targeting sites for modulating the signaling of GPCRs and related diseases. The R4 subfamily is the largest RGS family. This review will summarize the research progress on the mechanisms of R4 RGS subfamily proteins in insulin secretion and insulin resistance and analyze their potential value in the treatment of T2DM.
Collapse
|
2
|
Ptchd1 mediates opioid tolerance via cholesterol-dependent effects on μ-opioid receptor trafficking. Nat Neurosci 2022; 25:1179-1190. [PMID: 35982154 DOI: 10.1038/s41593-022-01135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls μ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the μ-opioid receptor against overstimulation.
Collapse
|
3
|
Darira SV, Sutton LP. The interaction, mechanism and function of GPR158-RGS7 cross-talk. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:167-176. [PMID: 36357076 DOI: 10.1016/bs.pmbts.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GPR158 is an orphan G protein-coupled receptor (GPCR) that is broadly expressed in the brain and displays unique structural characteristics and signaling mechanisms. GPR158 is a binding partner for the regulator of G protein signaling 7 (RGS7) and augments its expression, subcellular localization, and catalytic activity. Recent cryo-electron microscopy (cryo-EM) studies have revealed the structure of GPR158 alone and in complex with RGS7. The GPR158-RGS7 complex is shown to be regulated by chronic stress exposure and is a modulator of stress-induced depression. This review highlights the signaling mechanism and function of GPR158-RGS7 and provides a context for the unique formation of GPCR-RGS complexes.
Collapse
Affiliation(s)
- Shradha V Darira
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Laurie P Sutton
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
4
|
Stoveken HM, Fernandez-Vega V, Muntean BS, Patil DN, Shumate J, Bannister TD, Scampavia L, Spicer TP, Martemyanov KA. Identification of Potential Modulators of the RGS7/Gβ5/R7BP Complex. SLAS DISCOVERY 2021; 26:1177-1188. [PMID: 34112017 DOI: 10.1177/24725552211020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulators of G protein signaling (RGS) proteins serve as critical regulatory nodes to limit the lifetime and extent of signaling via G protein-coupled receptors (GPCRs). Previously, approaches to pharmacologically inhibit RGS activity have mostly focused on the inhibition of GTPase activity by interrupting the interaction of RGS proteins with the G proteins they regulate. However, several RGS proteins are also regulated by association with binding partners. A notable example is the mammalian RGS7 protein, which has prominent roles in metabolic control, vision, reward, and actions of opioid analgesics. In vivo, RGS7 exists in complex with the binding partners type 5 G protein β subunit (Gβ5) and R7 binding protein (R7BP), which control its stability and activity, respectively. Targeting the whole RGS7/Gβ5/R7BP protein complex affords the opportunity to allosterically tune opioid receptor signaling following opioid engagement while potentially bypassing undesirable side effects. Hence, we implemented a novel strategy to pharmacologically target the interaction between RGS7/Gβ5 and R7BP. To do so, we searched for protein complex inhibitors using a time-resolved fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay that measures compound-mediated alterations in the FRET signal between RGS7/Gβ5 and R7BP. We performed two HTS campaigns, each screening ~100,000 compounds from the Scripps Drug Discovery Library (SDDL). Each screen yielded more than 100 inhibitors, which will be described herein.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Dipak N Patil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Justin Shumate
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Thomas D Bannister
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Timothy P Spicer
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
5
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
7
|
Senese NB, Kandasamy R, Kochan KE, Traynor JR. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front Mol Neurosci 2020; 13:5. [PMID: 32038168 PMCID: PMC6992652 DOI: 10.3389/fnmol.2020.00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and βγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.
Collapse
Affiliation(s)
- Nicolas B Senese
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychiatry, Chicago, IL, United States
| | - Ram Kandasamy
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Kelsey E Kochan
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Muntean BS, Patil DN, Madoux F, Fossetta J, Scampavia L, Spicer TP, Martemyanov KA. A High-Throughput Time-Resolved Fluorescence Energy Transfer Assay to Screen for Modulators of RGS7/Gβ5/R7BP Complex. Assay Drug Dev Technol 2019; 16:150-161. [PMID: 29658790 DOI: 10.1089/adt.2017.839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are excellent drug targets exploited by majority of the Food and Drug Administration-approved medications, but when modulated, are often accompanied by significant adverse effects. Targeting of other elements in GPCR pathways for improved safety and efficacy is thus an unmet need. The strength of GPCR signaling is tightly regulated by regulators of G protein signaling (RGS) proteins, making them attractive drug targets. We focused on a prominent RGS complex in the brain consisting of RGS7 and its binding partners Gβ5 and R7BP. These complexes play critical roles in regulating multiple GPCRs and essential physiological processes, yet no small molecule modulators are currently available to modify its function. In this study, we report a novel high-throughput approach to screen for small molecule modulators of the intramolecular transitions in the RGS7/Gβ5/R7BP complex known to be involved in its allosteric regulation. We developed a time-resolved fluorescence energy transfer-based in vitro assay that utilizes full-length recombinant proteins and shows consistency, excellent assay statistics, and high level of sensitivity. We demonstrated the potential of this approach by screening two compound libraries (LOPAC 1280 and MicroSource Spectrum). This study confirms the feasibility of the chosen strategy for identifying small molecule modulators of RGS7/Gβ5/R7BP complex for impacting signaling downstream of the GPCRs.
Collapse
Affiliation(s)
- Brian S Muntean
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Dipak N Patil
- 1 Department of Neuroscience, The Scripps Research Institute , Jupiter, Florida
| | - Franck Madoux
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | | - Louis Scampavia
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | - Timothy P Spicer
- 2 Department of Molecular Medicine, The Scripps Research Institute , Jupiter, Florida
| | | |
Collapse
|
9
|
Wang D, Stoveken HM, Zucca S, Dao M, Orlandi C, Song C, Masuho I, Johnston C, Opperman KJ, Giles AC, Gill MS, Lundquist EA, Grill B, Martemyanov KA. Genetic behavioral screen identifies an orphan anti-opioid system. Science 2019; 365:1267-1273. [PMID: 31416932 DOI: 10.1126/science.aau2078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/22/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Caitlin Johnston
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthew S Gill
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Gaspari S, Cogliani V, Manouras L, Anderson EM, Mitsi V, Avrampou K, Carr FB, Zachariou V. RGS9-2 Modulates Responses to Oxycodone in Pain-Free and Chronic Pain States. Neuropsychopharmacology 2017; 42:1548-1556. [PMID: 28074831 PMCID: PMC5436127 DOI: 10.1038/npp.2017.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022]
Abstract
Regulator of G-protein signaling 9-2 (RGS9-2) is a striatal-enriched signal-transduction modulator known to have a critical role in the development of addiction-related behaviors following exposure to psychostimulants or opioids. RGS9-2 controls the function of several G-protein-coupled receptors, including dopamine receptor and mu opioid receptor (MOR). We previously showed that RGS9-2 complexes negatively control morphine analgesia, and promote the development of morphine tolerance. In contrast, RGS9-2 positively modulates the actions of other opioid analgesics, such as fentanyl and methadone. Here we investigate the role of RGS9-2 in regulating responses to oxycodone, an MOR agonist prescribed for the treatment of severe pain conditions that has addictive properties. Using mice lacking the Rgs9 gene (RGS9KO), we demonstrate that RGS9-2 positively regulates the rewarding effects of oxycodone in pain-free states, and in a model of neuropathic pain. Furthermore, although RGS9-2 does not affect the analgesic efficacy of oxycodone or the expression of physical withdrawal, it opposes the development of oxycodone tolerance, in both acute pain and chronic neuropathic pain models. Taken together, these data provide new information on the signal-transduction mechanisms that modulate the rewarding and analgesic actions of oxycodone.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Valeria Cogliani
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Greece
| | - Ethan M Anderson
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Vasiliki Mitsi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Kleopatra Avrampou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Venetia Zachariou
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| |
Collapse
|
11
|
Abstract
Itch is a protective sensation producing a desire to scratch. Pathologic itch can be a chronic symptom of illnesses such as uremia, cholestatic liver disease, neuropathies and dermatitis, however current therapeutic options are limited. Many types of cell surface receptors, including those present on cells in the skin, on sensory neurons and on neurons in the spinal cord, have been implicated in itch signaling. The role of G protein signaling in the regulation of pruriception is poorly understood. We identify here 2 G protein signaling components whose mutation impairs itch sensation. R7bp (a.k.a. Rgs7bp) is a palmitoylated membrane anchoring protein expressed in neurons that facilitates Gαi/o -directed GTPase activating protein activity mediated by the Gβ5/R7-RGS complex. Knockout of R7bp diminishes scratching responses to multiple cutaneously applied and intrathecally-administered pruritogens in mice. Knock-in to mice of a GTPase activating protein-insensitive mutant of Gαo (Gnao1 G184S/+) produces a similar pruriceptive phenotype. The pruriceptive defect in R7bp knockout mice was rescued in double knockout mice also lacking Oprk1, encoding the G protein-coupled kappa-opioid receptor whose activation is known to inhibit itch sensation. In a model of atopic dermatitis (eczema), R7bp knockout mice showed diminished scratching behavior and enhanced sensitivity to kappa opioid agonists. Taken together, our results indicate that R7bp is a key regulator of itch sensation and suggest the potential targeting of R7bp-dependent GTPase activating protein activity as a novel therapeutic strategy for pathological itch.
Collapse
|
12
|
Salaga M, Storr M, Martemyanov KA, Fichna J. RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives. Bioessays 2016; 38:344-54. [PMID: 26817719 PMCID: PMC4916644 DOI: 10.1002/bies.201500118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.
Collapse
Affiliation(s)
- Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Martin Storr
- Walter Brendel Center of Experimental Medicine, University of Munich, Germany
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| |
Collapse
|
13
|
Stewart A, Maity B, Fisher RA. Two for the Price of One: G Protein-Dependent and -Independent Functions of RGS6 In Vivo. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:123-51. [PMID: 26123305 DOI: 10.1016/bs.pmbts.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulator of G protein signaling 6 (RGS6) is unique among the members of the RGS protein family as it remains the only protein with the demonstrated capacity to control G protein-dependent and -independent signaling cascades in vivo. RGS6 inhibits signaling mediated by γ-aminobutyric acid B receptors, serotonin 1A receptors, μ opioid receptors, and muscarinic acetylcholine 2 receptors. RGS6 deletion triggers distinct behavioral phenotypes resulting from potentiated signaling by these G protein-coupled receptors namely ataxia, a reduction in anxiety and depression, enhanced analgesia, and increased parasympathetic tone, respectively. In addition, RGS6 possesses potent proapoptotic and growth suppressive actions. In heart, RGS6-dependent reactive oxygen species (ROS) production promotes doxorubicin (Dox)-induced cardiomyopathy, while in cancer cells RGS6/ROS signaling is necessary for activation of the ataxia telangiectasia mutated/p53/apoptosis pathway required for the chemotherapeutic efficacy of Dox. Further, by facilitating Tip60 (trans-acting regulator protein of HIV type 1-interacting protein 60 kDa)-dependent DNA methyltransferase 1 degradation, RGS6 suppresses cellular transformation in response to oncogenic Ras. The culmination of these G protein-independent actions results in potent tumor suppressor actions of RGS6 in the murine mammary epithelium. This work summarizes evidence from human genetic studies and model animals implicating RGS6 in normal physiology, disease, and the pharmacological actions of multiple drugs. Though efforts by multiple laboratories have contributed to the ever-growing RGS6 oeuvre, the pleiotropic nature of this gene will likely lead to additional work detailing the importance of RGS6 in neuropsychiatric disorders, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
14
|
Orlandi C, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Martemyanov KA. Orphan Receptor GPR158 Is an Allosteric Modulator of RGS7 Catalytic Activity with an Essential Role in Dictating Its Expression and Localization in the Brain. J Biol Chem 2015; 290:13622-39. [PMID: 25792749 DOI: 10.1074/jbc.m115.645374] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Regulators of G protein signaling control the duration and extent of signaling via G protein-coupled receptor (GPCR) pathways by accelerating the GTP hydrolysis on G protein α subunits thereby promoting termination of GPCR signaling. A member of this family, RGS7, plays a critical role in the nervous system where it regulates multiple neurotransmitter GPCRs that mediate vision, memory, and the action of addictive drugs. Previous studies have established that in vivo RGS7 forms mutually exclusive complexes with the membrane protein RGS7-binding protein or the orphan receptor GPR158. In this study, we examine the impact of GPR158 on RGS7 in the brain. We report that knock-out of GPR158 in mice results in marked post-transcriptional destabilization of RGS7 and substantial loss of its association with membranes in several brain regions. We further identified the RGS7-binding site in the C terminus of GPR158 and found that it shares significant homology with the RGS7-binding protein. The proximal portion of the GPR158 C terminus additionally contained a conserved sequence that was capable of enhancing RGS7 GTPase-activating protein activity in solution by an allosteric mechanism acting in conjunction with the regulators of the G protein signaling-binding domain. The distal portion of the GPR158 C terminus contained several phosphodiesterase E γ-like motifs and selectively recruited G proteins in their activated state. The results of this study establish GPR158 as an essential regulator of RGS7 in the native nervous system with a critical role in controlling its expression, membrane localization, and catalytic activity.
Collapse
Affiliation(s)
- Cesare Orlandi
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Keqiang Xie
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ikuo Masuho
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Ana Fajardo-Serrano
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Lujan
- the Instituto de Investigación en Descapacidades Neuronales (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Kirill A Martemyanov
- From the Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458 and
| |
Collapse
|
15
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Terzi D, Gaspari S, Manouras L, Descalzi G, Mitsi V, Zachariou V. RGS9-2 modulates sensory and mood related symptoms of neuropathic pain. Neurobiol Learn Mem 2014; 115:43-8. [PMID: 25150149 DOI: 10.1016/j.nlm.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
The signal transduction modulator Rgs9-2 (Regulator of G protein signaling 9-2) plays a key role in dopaminergic and opioidergic transmission in the striatum. Rgs9-2 is a potent modulator of opiate reward and analgesia, but its role in chronic pain remains unknown. Here, we use the spared nerve injury model (SNI), to evaluate the influence of Rgs9-2 in sensory symptoms, as well as in anxiety and depression-like behaviors observed under neuropathic pain conditions. Our data demonstrate that knockout of the Rgs9 gene reduces the intensity of thermal hyperalgesia and mechanical allodynia the first few days after nerve injury. This small, but significant effect is only observed at early time points after nerve injury, whereas after the first week of SNI, Rgs9 knockout (Rgs9KO) and Rgs9 wildtype (Rgs9WT) mice show similar levels of mechanical allodynia and thermal hyperalgesia. Furthermore, Rgs9-2 deletion exacerbates anxiety and depression like behaviors several weeks after the emergence of the neuropathic pain symptoms. Our findings also reveal a temporal and regional regulation of Rgs9-2 protein expression by neuropathic pain, as Rgs9-2 levels are reduced in the spinal cord a few days after nerve injury, whereas decreased Rgs9-2 levels in the Nucleus Accumbens (NAc) are only observed several weeks after nerve injury. Thus, adaptations in Rgs9-2 activity in the spinal cord and in the NAc may contribute to sensory and affective components of neuropathic pain.
Collapse
Affiliation(s)
- Dimitra Terzi
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Sevasti Gaspari
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Lefteris Manouras
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Giannina Descalzi
- Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, United States
| | - Vassiliki Mitsi
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece
| | - Venetia Zachariou
- University of Crete Faculty of Medicine, Department of Basic Sciences, Heraklion, Crete 71003, Greece; Icahn School of Medicine at Mount Sinai, Fishberg Department of Neuroscience and Friedman Brain Institute, Department of Pharmacology and Systems Therapeutics, United States.
| |
Collapse
|
17
|
Gaspari S, Papachatzaki MM, Koo JW, Carr FB, Tsimpanouli ME, Stergiou E, Bagot RC, Ferguson D, Mouzon E, Chakravarty S, Deisseroth K, Lobo MK, Zachariou V. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine. Neuropsychopharmacology 2014; 39:1968-77. [PMID: 24561386 PMCID: PMC4059906 DOI: 10.1038/npp.2014.45] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signalling 9-2 (Rgs9-2) modulates the actions of a wide range of CNS-acting drugs by controlling signal transduction of several GPCRs in the striatum. RGS9-2 acts via a complex mechanism that involves interactions with Gα subunits, the Gβ5 protein, and the adaptor protein R7BP. Our recent work identified Rgs9-2 complexes in the striatum associated with acute or chronic exposures to mu opioid receptor (MOR) agonists. In this study we use several new genetic tools that allow manipulations of Rgs9-2 activity in particular brain regions of adult mice in order to better understand the mechanism via which this protein modulates opiate addiction and analgesia. We used adeno-associated viruses (AAVs) to express forms of Rgs9-2 in the dorsal and ventral striatum (nucleus accumbens, NAc) in order to examine the influence of this protein in morphine actions. Consistent with earlier behavioural findings from constitutive Rgs9 knockout mice, we show that Rgs9-2 actions in the NAc modulate morphine reward and dependence. Notably, Rgs9-2 in the NAc affects the analgesic actions of morphine as well as the development of analgesic tolerance. Using optogenetics we demonstrate that activation of Channelrhodopsin2 in Rgs9-2-expressing neurons, or in D1 dopamine receptor (Drd1)-enriched medium spiny neurons, accelerates the development of morphine tolerance, whereas activation of D2 dopamine receptor (Drd2)-enriched neurons does not significantly affect the development of tolerance. Together, these data provide new information on the signal transduction mechanisms underlying opiate actions in the NAc.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Maria M Papachatzaki
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Ja Wook Koo
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Fiona B Carr
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | | | - Eugenia Stergiou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Rosemary C Bagot
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Deveroux Ferguson
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Sumana Chakravarty
- Division of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India
| | - Karl Deisseroth
- Departments of Bioengineering and Physiology and Behavioural Sciences, Stanford Univerity, Stanford, CA, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Venetia Zachariou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY 10029, USA, Tel: +1 212 6598612; E-mail:
| |
Collapse
|
18
|
Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models. Proc Natl Acad Sci U S A 2013; 110:8254-9. [PMID: 23630294 DOI: 10.1073/pnas.1214696110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator of G protein signaling 4 (Rgs4) is a signal transduction protein that controls the function of monoamine, opiate, muscarinic, and other G protein-coupled receptors via interactions with Gα subunits. Rgs4 is expressed in several brain regions involved in mood, movement, cognition, and addiction and is regulated by psychotropic drugs, stress, and corticosteroids. In this study, we use genetic mouse models and viral-mediated gene transfer to examine the role of Rgs4 in the actions of antidepressant medications. We first analyzed human postmortem brain tissue and found robust up-regulation of RGS4 expression in the nucleus accumbens (NAc) of subjects receiving standard antidepressant medications that target monoamine systems. Behavioral studies of mice lacking Rgs4, including specific knockdowns in NAc, demonstrate that Rgs4 in this brain region acts as a positive modulator of the antidepressant-like and antiallodynic-like actions of several monoamine-directed antidepressant drugs, including tricyclic antidepressants, selective serotonin reuptake inhibitors, and norepinephrine reuptake inhibitors. Studies using viral-mediated increases in Rgs4 activity in NAc further support this hypothesis. Interestingly, in prefrontal cortex, Rgs4 acts as a negative modulator of the actions of nonmonoamine-directed drugs that are purported to act as antidepressants: the N-methyl-D-aspartate glutamate receptor antagonist ketamine and the delta opioid agonist (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide. Together, these data reveal a unique modulatory role of Rgs4 in the brain region-specific actions of a wide range of antidepressant drugs and indicate that pharmacological interventions at the level of RGS4 activity may enhance the actions of such drugs used for the treatment of depression and neuropathic pain.
Collapse
|