1
|
Péczely L, Dusa D, Lénárd L, Ollmann T, Kertes E, Gálosi R, Berta B, Szabó Á, László K, Zagoracz O, Karádi Z, Kállai V. The antipsychotic agent sulpiride microinjected into the ventral pallidum restores positive symptom-like habituation disturbance in MAM-E17 schizophrenia model rats. Sci Rep 2024; 14:12305. [PMID: 38811614 PMCID: PMC11136981 DOI: 10.1038/s41598-024-63059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Dysfunction of subcortical D2-like dopamine receptors (D2Rs) can lead to positive symptoms of schizophrenia, and their analog, the increased locomotor activity in schizophrenia model MAM-E17 rats. The ventral pallidum (VP) is a limbic structure containing D2Rs. The D2R antagonist sulpiride is a widespread antipsychotic drug, which can alleviate positive symptoms in human patients. However, it is still not known how sulpiride can influence positive symptoms via VP D2Rs. We hypothesize that the microinjection of sulpiride into the VP can normalize hyperactivity in MAM-E17 rats. In addition, recently, we showed that the microinjection of sulpirid into the VP induces place preference in neurotypical rats. Thus, we aimed to test whether intra-VP sulpiride can also have a rewarding effect in MAM-E17 rats. Therefore, open field-based conditioned place preference (CPP) test was applied in neurotypical (SAL-E17) and MAM-E17 schizophrenia model rats to test locomotor activity and the potential locomotor-reducing and rewarding effects of sulpiride. Sulpiride was microinjected bilaterally in three different doses into the VP, and the controls received only vehicle. The results of the present study demonstrated that the increased locomotor activity of the MAM-E17 rats was caused by habituation disturbance. Accordingly, larger doses of sulpiride in the VP reduce the positive symptom-analog habituation disturbance of the MAM-E17 animals. Furthermore, we showed that the largest dose of sulpiride administered into the VP induced CPP in the SAL-E17 animals but not in the MAM-E17 animals. These findings revealed that VP D2Rs play an important role in the formation of positive symptom-like habituation disturbances in MAM-E17 rats.
Collapse
Affiliation(s)
- László Péczely
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Daniella Dusa
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Erika Kertes
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Rita Gálosi
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Reinforcement Learning Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Beáta Berta
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Szabó
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
| | - Kristóf László
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Olga Zagoracz
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Veronika Kállai
- Learning in Biological and Artificial Systems Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, Szigeti Str. 12, P.O. Box: 99, 7602, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Sarcosine (glycine transporter inhibitor) attenuates behavioural and biochemical changes induced by ketamine, in the rat model of schizophrenia. Exp Brain Res 2023; 241:451-467. [PMID: 36577922 DOI: 10.1007/s00221-022-06530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/29/2022] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a neurological disorder that alters the behavior and affects the quality of life of a patient. It is characterized by hallucinations, disorganized behavior, cognitive dysfunction, hyperlocomotion, and loss of the reward system. Schizophrenia constitutes three symptoms' domains, viz. positive, negative and cognitive. Typical and atypical antipsychotics do not fully resolve all the symptoms' domains thus paving the way to the genesis of the glutamatergic hypothesis, i.e. N-methyl-D-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Positive modulation of NMDA receptors by enhancing co-agonist, glycine effect is proposed to produce a therapeutic effect in schizophrenia. Hence, sarcosine (N-methyl glycine), natural amino acid, and a glycine transporter inhibitor (GlyT-1) which also acts on NMDA receptors were used in the present study. The present study unravels the role of sarcosine in the attenuation of ketamine-induced three symptom domains in a rat model through modulation of oxidative stress, mitochondrial dysfunction, and neuroinflammatory pathways. The animal model of schizophrenia was established by injecting ketamine intraperitoneal (ip) at a 30 mg/kg dose for 10 consecutive days, after which sarcosine (300, 600 mg/kg, ip) as a treatment was given for 7 days followed by behavioral, biochemical, molecular, and histopathological analysis. It was revealed that sarcosine reversed ketamine-induced behavioral impairments. Moreover, sarcosine ameliorated oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation and showed protective effects in histopathological examination by hematoxylin and eosin staining. Hence, conclusively, sarcosine was regarded to attenuate the behavioural symptoms of schizophrenia by alleviating oxidative stress, neuroinflammation, and mitochondrial dysfunction established by the ketamine.
Collapse
|
4
|
Differential expression of miR-148b, miR-129-2 and miR-296 in animal models of schizophrenia-Relevance to NMDA receptor hypofunction. Neuropharmacology 2022; 210:109024. [PMID: 35276119 DOI: 10.1016/j.neuropharm.2022.109024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 03/05/2022] [Indexed: 12/26/2022]
Abstract
Hypofunction of N-methyl-d-aspartate receptors (NMDAR) is a key component in the pathophysiology of schizophrenia. Alterations in the regulation of NMDARs by microRNAs (miRNAs) are possible since numerous miRNAs are differentially expressed in post mortem schizophrenia brain samples. We screened the miRNAs that are altered in schizophrenia against the targets, Grin2A and Grin2B subunits of NMDAR using bioinformatic tools. Among the predicted miRNAs some interacted with the 3'-UTR sequences of Grin2A (miR-296, miR-148b, miR-129-2, miR-137) and Grin2B (miR-296, miR-148b, miR-129-2, miR-223) in dual luciferase assays. This was supported by downregulation of the GluN2B protein in primary hippocampal neurons upon overexpressing Grin2B targeting miRNAs. In two models of schizophrenia-pharmacological MK-801 model and neurodevelopmental methylazoxymethanol acetate (MAM) model which showed cognitive deficits - protein levels of GluN2A and GluN2B were downregulated but their transcript levels were upregulated. miR-296-3p, miR-148b-5p and miR-137 levels showed upregulation in both models which could have interacted with Grin2A/Grin2B transcripts resulting in translational arrest. In MAM model, reciprocal changes in the expression of the 3p and 5p forms of miR-148b and miR-137 were observed. Expression of some genes implicated in schizophrenia such as Neuregulin 1 (NRG1), BDNF and CaMKIIα, were also altered in these models. This is the first report showing downregulation of GluN2A and GluN2B by miR-296, miR-148b and miR-129-2 in vitro and association between them in animal models. Mining miRNAs regulating NMDA receptors might give insights into the pathophysiology of this disorder, providing avenues in therapeutics.
Collapse
|
5
|
Li ML, Peng Y, An Y, Li GY, Lan Y. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia. Brain Behav 2022; 12:e2466. [PMID: 35025141 PMCID: PMC8865150 DOI: 10.1002/brb3.2466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Synaptic N-methyl-d-aspartate receptor subtype 2B(NR2B) is significantly reduced in prefrontal cortex (PFC) in the neurodevelopmental methylazoxymethanol (MAM) model of schizophrenia (SCZ). Recent research has shown that LY395756 can effectively restore NR2B levels and improve cognitive performance in juvenile MAM mice model. However, the underlying mechanisms of these beneficial effects remain unclear. MATERIALS AND METHODS Juvenile MAM mice model of SCZ is used in our study. Synaptic membrane protein levels were examined by western blotting under different treatment conditions. Interaction of cAMP-response element binding protein (CREB) and the promoter of NR2B was detected by the chromatin immunoprecipitation (ChIP) assay. Further examination of signaling pathway that mediates NR2B expression was also investigated by western blotting. RESULTS In the PFC of the juvenile MAM mice schizophrenia model, CREB was found to directly bind with the promoter of NR2B. LY395756 activated the phosphorylation of AKT. Phosphorylated AKT subsequently induced the phosphorylation of CREB, and the activated CREB promoted the expression of NR2B. Subsequent experiments showed that the dephosphorylation of CREB induced by protein phosphatase 1 (PP1) can inhibit NR2B levels. Taken together, these findings support that the AKT/CREB signaling pathway is essential for the promoting effect of LY395756 on synaptic NR2B in PFC in juvenile MAM mice SCZ model. CONCLUSIONS Our investigation has identified a novel mechanism by which LY395756 increases NR2B expression in juvenile MAM mice SCZ model. The AKT/CREB signaling pathway warrants further research as a potential direction for clinical treatment of SCZ.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying An
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guo-Yan Li
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Stark T, Iannotti FA, Di Martino S, Di Bartolomeo M, Ruda-Kucerova J, Piscitelli F, Wotjak CT, D’Addario C, Drago F, Di Marzo V, Micale V. Early Blockade of CB1 Receptors Ameliorates Schizophrenia-like Alterations in the Neurodevelopmental MAM Model of Schizophrenia. Biomolecules 2022; 12:biom12010108. [PMID: 35053256 PMCID: PMC8773886 DOI: 10.3390/biom12010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (T.S.); (J.R.-K.)
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
| | - Carsten T. Wotjak
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.B.); (C.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy; (F.A.I.); (F.P.); (V.D.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de l’Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC G1V 4G5, Canada
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, 95123 Catania, Italy; (S.D.M.); (F.D.)
- Correspondence: ; Tel.: +39-095-4781199
| |
Collapse
|
7
|
Giménez-Roldán S, Steele JC, Palmer VS, Spencer PS. Lytico-bodig in Guam: Historical links between diet and illness during and after Spanish colonization. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2021; 30:335-374. [PMID: 34197260 DOI: 10.1080/0964704x.2021.1885946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper analyses documents on health and disease among Chamorro people during and after 333 years (1565-1898) of the Spanish claim to and occupation of Guam. Here, a complex neurodegenerative disease-known locally as lytico-bodig and medically as amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC)-reached hyperendemic proportions in the mid-twentieth century but then declined and is now disappearing. A tau-dominated polyproteinopathy, clinical phenotypes included amyotrophic lateral sclerosis (ALS or lytico), atypical parkinsonism with dementia (P-D or bodig), and dementia alone. A plausible etiology for lytico-bodig is consumption of flour derived from the incompletely detoxified seed of Cycas micronesica (fadang in Chamorro; Federico in Spanish), a poisonous gymnosperm that survives climatic extremes that can affect the island. Traditional methods for safe consumption appear to have been lost over the course of time since governors Francisco de Villalobos (1796-1862) and Felipe de la Corte (1855-1866) proposed banning consumption in view of its acute toxic effects. A death certificate issued in 1823 might suggest ALS/PDC in people dying with disability or impedidos, and premature aging and a short life was linked to food use of fadang in the mid-1850s (Guam Vital Statistics Report, 1823). During the Japanese occupation of Guam (1941-1944), Chamorro people took refuge in the jungle for months, where they relied on insufficiently processed fadang as a staple food. After World War II, traditional foods and medicines were subsequently replaced as islanders rapidly acculturated to North American life.
Collapse
Affiliation(s)
| | - John C Steele
- Resident Neurologist, Micronesia and Guam (1972-2014)
| | - Valerie S Palmer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Alteration of NMDA receptor trafficking as a cellular hallmark of psychosis. Transl Psychiatry 2021; 11:444. [PMID: 34462417 PMCID: PMC8405679 DOI: 10.1038/s41398-021-01549-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
A dysfunction of the glutamatergic transmission, especially of the NMDA receptor (NMDAR), constitutes one of the main biological substrate of psychotic disorders, such as schizophrenia. The NMDAR signaling hypofunction, through genetic and/or environmental insults, would cause a neurodevelopmental myriad of molecular, cellular, and network alterations that persist throughout life. Yet, the mechanisms underpinning NMDAR dysfunctions remain elusive. Here, we compared the membrane trafficking of NMDAR in three gold-standard models of schizophrenia, i.e., patient's cerebrospinal fluids, genetic manipulations of susceptibility genes, and prenatal developmental alterations. Using a combination of single nanoparticle tracking, electrophysiological, biochemical, and behavioral approaches in rodents, we identified that the NMDAR trafficking in hippocampal neurons was consistently altered in all these different models. Artificial manipulations of the NMDAR surface dynamics with competing ligands or antibody-induced receptor cross-link in the developing rat brain were sufficient to regulate the adult acoustic startle reflex and compensate for an early pathological challenge. Collectively, we show that the NMDAR trafficking is markedly altered in all clinically relevant models of psychosis, opening new avenues of therapeutical strategies.
Collapse
|
9
|
Han Z, Chai W, Wang Z, Xiao F, Dai J. Quantum energy levels of glutamate modulate neural biophotonic signals. Photochem Photobiol Sci 2021; 20:343-356. [PMID: 33721274 DOI: 10.1007/s43630-021-00022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the brain, and it plays an essential and important role in neural functions. Current studies have shown that glutamate can induce neural biophotonic activity and transmission, which may involve the mechanism of photon quantum brain; however, it is unclear whether such a mechanism follows the principle of quantum mechanics. Here we show that the action of glutamate on its receptors leads to a decrease in its quantum energy levels, and glutamate then partially or completely loses its function to further induce the biophotonic activity in mouse brain slices. The reduced quantum energy levels of glutamate can be restored by direct-current electrical discharges and the use of energy transfer of chloroplast photosynthesis; hence, the quantum energy recovered glutamate can again induce significant biophotonic activity. Furthermore, the changes in quantum energy levels of glutamate are related to the exchange and transfer of electron energy on its active hydrogen atom. These findings suggest that the glutamate-induced neural biophotonic signals may be involved in the transfer of the quantum energy levels of glutamate, which implies a quantum mechanism of neurotransmitter action.
Collapse
Affiliation(s)
- Zhengrong Han
- Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Minzu Dadao 182, Wuhan, 430074, China.,Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Weitai Chai
- Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Minzu Dadao 182, Wuhan, 430074, China.,Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Zhuo Wang
- Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Minzu Dadao 182, Wuhan, 430074, China.,Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fangyan Xiao
- Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Minzu Dadao 182, Wuhan, 430074, China.,Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering (WINN), South-Central University for Nationalities, Minzu Dadao 182, Wuhan, 430074, China. .,Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
10
|
McEachern EP, Coley AA, Yang SS, Gao WJ. PSD-95 deficiency alters GABAergic inhibition in the prefrontal cortex. Neuropharmacology 2020; 179:108277. [PMID: 32818520 PMCID: PMC7572776 DOI: 10.1016/j.neuropharm.2020.108277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/01/2022]
Abstract
Postsynaptic Density Protein-95 (PSD-95) is a major scaffolding protein in the excitatory synapses in the brain and a critical regulator of synaptic maturation for NMDA and AMPA receptors. PSD-95 deficiency has been linked to cognitive and learning deficits implicated in neurodevelopmental disorders such as autism and schizophrenia. Previous studies have shown that PSD-95 deficiency causes a significant reduction in the excitatory response in the hippocampus. However, little is known about whether PSD-95 deficiency will affect gamma-aminobutyric acid (GABA)ergic inhibitory synapses. Using a PSD-95 transgenic mouse model (PSD-95+/-), we studied how PSD-95 deficiency affects GABAA receptor expression and function in the medial prefrontal cortex (mPFC) during adolescence. Our results showed a significant increase in the GABAA receptor subunit α1. Correspondingly, there are increases in the frequency and amplitude in spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons in the mPFC of PSD-95+/- mice, along with a significant increase in evoked IPSCs, leading to a dramatic shift in the excitatory-to-inhibitory balance in PSD-95 deficient mice. Furthermore, PSD-95 deficiency promotes inhibitory synapse function via upregulation and trafficking of NLGN2 and reduced GSK3β activity through tyr-216 phosphorylation. Our study provides novel insights on the effects of GABAergic transmission in the mPFC due to PSD-95 deficiency and its potential link with cognitive and learning deficits associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
11
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
12
|
Kállai V, Lénárd L, Péczely L, Gálosi R, Dusa D, Tóth A, László K, Kertes E, Kovács A, Zagoracz O, Berta B, Karádi Z, Ollmann T. Cognitive performance of the MAM-E17 schizophrenia model rats in different age-periods. Behav Brain Res 2020; 379:112345. [PMID: 31704232 DOI: 10.1016/j.bbr.2019.112345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Cognitive disturbances are among the most important features of schizophrenia, and have a significant role in the outcome of the disease. However, the treatment of cognitive symptoms is poorly effective. In order to develop new therapeutic opportunities, the MAM-E17 rat model of schizophrenia can be an appropriate implement. In the present study we investigated several cognitive capabilities of MAM-treated rats using radial arm maze (RAM) task, which corresponds to the recent research directives. Because of the diachronic appearance of schizophrenia symptoms and the early appearance of cognitive deficiencies, we carried out our experiments in three different age-periods of rats, i.e. in prepuberty, late puberty and adulthood. The performance of MAM-E17 rats was similar to control rats in the acquisition phase of RAM task, except for puberty. However, after rearrangement of reward positions (in the reverse paradigm) the number of errors of MAM-treated rats was higher in each age-period. In the reverse paradigm MAM-treated groups visited more frequently those non-rewarding arms, which were previously rewarding. Our results suggest that working memory of MAM-E17 rats is impaired. This deficit depends on the difficulty of the task and on the age-period. MAM-E17 rats seem to be more sensitive in puberty in comparison to controls. Diminished behavioral flexibility was shown as well. These behavioral results observed in MAM-E17 rats were similar to those of cognitive deficiencies in schizophrenia patients. Therefore, MAM-E17 model can be a useful implement for further research aiming to improve cognition in schizophrenia.
Collapse
Affiliation(s)
- Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary.
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Daniella Dusa
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Attila Tóth
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Olga Zagoracz
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Centre for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
13
|
Memory deterioration based on the tobacco smoke exposure and methylazoxymethanol acetate administration vs. aripiprazole, olanzapine and enrichment environment conditions. Pharmacol Biochem Behav 2020; 189:172855. [PMID: 31954117 DOI: 10.1016/j.pbb.2020.172855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 11/20/2022]
Abstract
Enrichment environment conditions, as well as tobacco smoke exposure, may affect cognitive function (e.g. spatial memory) in an animal model of schizophrenia and schizophrenic patients. The aim of this study was to find whether spatial memory function impairment is found in methylazoxymethanol acetate treated rats (an animal model of schizophrenia) and whether aripiprazole (1.5 mg/kg) and olanzapine (0.5 mg/kg) modify these functions. We also were able to determine whether tobacco smoke exposure and enrichment environment conditions have an impact on drug efficacy. The effect of methylazoxymethanol acetate, tobacco smoke exposure, enrichment environment and the use of drugs were studied in the Morris Water Maze test (spatial memory). The results of our study clearly show that enriched environment may have a procognitive effect while tobacco smoke and methylazoxymethanol acetate have a contradictory effect. This paper also confirmed that the use of neuroleptics, namely ARI and OLA, reduced the process of spatial memory deterioration tested in the Morris water maze both in terms of the number of escape latencies and crossed quadrants.
Collapse
|
14
|
Yang J, Guo H, Sun D, Duan J, Rao X, Xu F, Manyande A, Tang Y, Wang J, Wang F. Elevated glutamate, glutamine and GABA levels and reduced taurine level in a schizophrenia model using an in vitro proton nuclear magnetic resonance method. Am J Transl Res 2019; 11:5919-5931. [PMID: 31632560 PMCID: PMC6789232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Accumulating evidence suggests that brain metabolic changes may be associated with the pathophysiology of schizophrenia. Both in vivo and in vitro studies have found glutamatergic and GABAergic abnormalities in different brain regions of individuals with schizophrenia. We report a longitudinal behavioral study in a methylazoxymethanol acetate (MAM) rat model of schizophrenia at three different age periods: prepuberty, late-puberty and early-adulthood. MAM-treated rats showed stable hypolocomotive activity, anxiety and cognitive deficits from late-puberty to early-adulthood. Therefore we detected the metabolites changes of adult MAM-treated rats using an in vitro proton nuclear magnetic resonance (1H-NMR) method. In the MAM-treated rats, glutamate was increased in the thalamus and hypothalamus, glutamine was increased in the hippocampus and GABA was increased in the hippocampus and prefrontal cortex, while taurine showed a decrease in the striatum, temporal cortex and parietal cortex. These abnormalities may be helped further understanding the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhan 430071, Hubei, P. R. China
| | - Huiling Guo
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhan 430071, Hubei, P. R. China
| | - Dandan Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhan 430071, Hubei, P. R. China
- University of Chinese Academy of SciencesBeijing 100049, P. R. China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhan 430071, Hubei, P. R. China
- University of Chinese Academy of SciencesBeijing 100049, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghai 200031, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan 430074, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Department of Geriatric Medicine, First Affiliated Hospital, China Medical UniversityShenyang, Liaoning, P. R. China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhan 430071, Hubei, P. R. China
- University of Chinese Academy of SciencesBeijing 100049, P. R. China
- 2nd Hospital of ShijiazhuangShijiazhuang 050051, Hebei, P. R. China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
- Brain Function Research Section, The First Affiliated Hospital of China Medical UniversityShenyang, Liaoning, P. R. China
| |
Collapse
|
15
|
Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 2019; 9:9486. [PMID: 31263190 PMCID: PMC6602948 DOI: 10.1038/s41598-019-45971-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a major regulator in the maturation of excitatory synapses by interacting and trafficking N-methyl-D-aspartic acid receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPAR) to the postsynaptic membrane. PSD-95 disruption has recently been associated with neuropsychiatric disorders such as schizophrenia and autism. However, the effects of PSD-95 deficiency on the prefrontal cortex (PFC)-associated functions, including cognition, working memory, and sociability, has yet to be investigated. Using a PSD-95 knockout mouse model (PSD-95-/-), we examined how PSD-95 deficiency affects NMDAR and AMPAR expression and function in the medial prefrontal cortex (mPFC) during juvenile and adolescent periods of development. We found significant increases in total protein levels of NMDAR subunits GluN1, and GluN2B, accompanied by decreases in AMPAR subunit GluA1 during adolescence. Correspondingly, there is a significant increase in NMDAR/AMPAR-mediated current amplitude ratio that progresses from juvenile-to-adolescence. Behaviorally, PSD-95-/- mice exhibit a lack of sociability, as well as learning and working memory deficits. Together, our data indicate that PSD-95 deficiency disrupts mPFC synaptic function and related behavior at a critical age of development. This study highlights the importance of PSD-95 during neurodevelopment in the mPFC and its potential link in the pathogenesis associated with schizophrenia and/or autism.
Collapse
Affiliation(s)
- Austin A Coley
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
16
|
Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology 2019; 144:193-207. [DOI: 10.1016/j.neuropharm.2018.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
17
|
Zhang YX, Akumuo RC, España RA, Yan CX, Gao WJ, Li YC. The histone demethylase KDM6B in the medial prefrontal cortex epigenetically regulates cocaine reward memory. Neuropharmacology 2018; 141:113-125. [PMID: 30165076 PMCID: PMC6170674 DOI: 10.1016/j.neuropharm.2018.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic remodeling contributes to synaptic plasticity via modification of gene expression, which underlies cocaine-induced long-term memory. A prevailing hypothesis in drug addiction is that drugs of abuse rejuvenate developmental machinery to render reward circuitry highly plastic and thus engender drug memories to be highly stable. Identification and reversal of these pathological pathways are therefore critical for cocaine abuse treatment. Previous studies revealed an interesting finding in which the mRNA of histone lysine demethylase, KDM6B, is upregulated in the medial prefrontal cortex (mPFC) during early cocaine withdrawal. However, whether and how it contributes to drug-seeking behavior remain unknown. Here we used a conditioned place preference paradigm to investigate the potential role of KDM6B in drug-associated memory. We found that KDM6B protein levels selectively increased in the mPFC during cocaine withdrawal. Notably, systemic injection of KDM6B inhibitor, GSK-J4, disrupted both reconsolidation of cocaine-conditioned memory and cocaine-primed reinstatement, suggesting dual effects of KDM6B in cocaine reward memory. In addition, we found that NMDAR expression and function were both enhanced during early cocaine withdrawal in mPFC. Injection of GSK-J4 selectively reversed this cocaine-induced increase of NR2A expression and synaptic function, suggesting that mal-adaptation of cocaine-induced synaptic plasticity in mPFC largely underlies KDM6B-mediated cocaine-associated memory. Altogether, these data suggest that KDM6B plays an essential role in cocaine-associated memory, which mainly acts through enhancing cocaine-induced synaptic plasticity in the mPFC. Our findings revealed a novel role of KDM6B in cocaine-associated memory and inhibition of KDM6B is a potential strategy to alleviate drug-seeking behavior.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Rita C Akumuo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
18
|
Huo C, Liu X, Zhao J, Zhao T, Huang H, Ye H. Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice. Neuropharmacology 2018; 140:287-301. [PMID: 30056124 DOI: 10.1016/j.neuropharm.2018.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
Abstract
Gestational and perinatal disruption of neural development increases the risk of developing schizophrenia (SCZ) later in life. Embryonic day 17 (E17) methylazoxymethanol (MAM) treatment leads to histological, physiological and behavioural abnormalities in post-puberty rats that model the neuropathological and cognitive deficits reported in SCZ patients. However, the validity of E17 MAM-exposed mice to model SCZ has not been explored. Here we treated E17 C57BL/6 mouse dams with various dosages of MAM. We found that this mouse strain was more vulnerable to MAM treatment than rats and there were gender differences in behavioural abnormalities, histological changes and prefrontal cortical gene expression profiles in MAM (7.5 mg/kg)-exposed mice. Both male and female MAM-exposed mice had deficits in prepulse inhibition. Female MAM-exposed mice exhibited mildly increased spontaneous locomotion activity and social recognition deficits, while male mice were normal. Consistently, only female MAM-exposed mice exhibited reduced brain weight, decreased size of prefrontal cortex (PFC) and enlarged lateral ventricles. Transcriptome analysis of the PFC revealed that there were more differentially expressed genes in female MAM-exposed mice than those in male mice. Moreover, expression of Pvalb, Arc and genes in their association networks were downregulated in the PFC of female MAM-exposed mice. These results indicate that E17 MAM-exposure in C57BL/6 mice leads to behavioural changes that model certain deficits reported in SCZ patients. MAM-exposed female mice may be used to study gene expression changes, inhibitory neural circuit dysfunction and glutamatergic synaptic plasticity deficits with a possible relation to those in the brains of SCZ patients.
Collapse
Affiliation(s)
- Chunyue Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 100069, China
| | - Xu Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Jialu Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Huiling Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Institute for Brain Disorders, Center of Schizophrenia, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Xing B, Han G, Wang MJ, Snyder MA, Gao WJ. Juvenile treatment with mGluR2/3 agonist prevents schizophrenia-like phenotypes in adult by acting through GSK3β. Neuropharmacology 2018; 137:359-371. [PMID: 29793154 DOI: 10.1016/j.neuropharm.2018.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/22/2018] [Accepted: 05/12/2018] [Indexed: 12/01/2022]
Abstract
Prodromal memory deficits represent an important marker for the development of schizophrenia (SZ), in which glutamatergic hypofunction occurs in the prefrontal cortex (PFC). The mGluR2/3 agonist LY379268 (LY37) attenuates excitatory N-methyl-D-aspartate receptor (NMDAR)-induced neurotoxicity, a central pathological characteristic of glutamatergic hypofunction. We therefore hypothesized that early treatment with LY37 would rescue cognitive deficits and confer benefits for SZ-like behaviors in adults. To test this, we assessed whether early intervention with LY37 would improve learning outcomes in the Morris Water Maze for rats prenatally exposed to methylazoxymethanol acetate (MAM), a neurodevelopmental SZ model. We found that a medium dose of LY37 prevents learning deficits in MAM rats. These effects were mediated through postsynaptic mGluR2/3 via improving GluN2B-NMDAR function by inhibiting glycogen synthase kinase-3β (GSK3β). Furthermore, dendritic spine loss and learning and memory deficits observed in adult MAM rats were restored by juvenile LY37 treatment, which did not change prefrontal neuronal excitability and glutamatergic synaptic transmission in adult normal rats. Our results provide a mechanism for mGluR2/3 agonists against NMDAR hypofunction, which may prove to be beneficial in the prophylactic treatment of SZ.
Collapse
Affiliation(s)
- Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 19129, PA, USA
| | - Genie Han
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 19129, PA, USA
| | - Min-Juan Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 19129, PA, USA
| | - Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 19129, PA, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, 19129, PA, USA.
| |
Collapse
|
20
|
Coley AA, Gao WJ. PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:187-194. [PMID: 29169997 PMCID: PMC5801047 DOI: 10.1016/j.pnpbp.2017.11.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
Abstract
The molecular components of the postsynaptic density (PSD) in excitatory synapses of the brain are currently being investigated as one of the major etiologies of neurodevelopmental disorders such as schizophrenia (SCZ) and autism. Postsynaptic density protein-95 (PSD-95) is a major regulator of synaptic maturation by interacting, stabilizing and trafficking N-methyl-d-aspartic acid receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isox-azoleproprionic acid receptors (AMPARs) to the postsynaptic membrane. Recently, there has been overwhelming evidence that associates PSD-95 disruption with cognitive and learning deficits observed in SCZ and autism. For instance, recent genomic and sequencing studies of psychiatric patients highlight the aberrations at the PSD of glutamatergic synapses that include PSD-95 dysfunction. In animal studies, PSD-95 deficiency shows alterations in NMDA and AMPA-receptor composition and function in specific brain regions that may contribute to phenotypes observed in neuropsychiatric pathologies. In this review, we describe the role of PSD-95 as an essential scaffolding protein during synaptogenesis and neurodevelopment. More specifically, we discuss its interactions with NMDA receptor subunits that potentially affect glutamate transmission, and the formation of silent synapses during critical time points of neurodevelopment. Furthermore, we describe how PSD-95 may alter dendritic spine morphologies, thus regulating synaptic function that influences behavioral phenotypes in SCZ versus autism. Understanding the role of PSD-95 in the neuropathologies of SCZ and autism will give an insight of the cellular and molecular attributes in the disorders, thus providing treatment options in patients affected.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
21
|
Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A 2018; 115:2508-2513. [PMID: 29463705 DOI: 10.1073/pnas.1716322115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.
Collapse
|
22
|
Hernan AE, Mahoney JM, Curry W, Richard G, Lucas MM, Massey A, Holmes GL, Scott RC. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus. PLoS One 2018; 13:e0191488. [PMID: 29394267 PMCID: PMC5796690 DOI: 10.1371/journal.pone.0191488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopmental insults leading to malformations of cortical development (MCD) are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM) model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE). To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST) characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.
Collapse
Affiliation(s)
- Amanda E. Hernan
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail: (RCS); (AEH)
| | - J. Matthew Mahoney
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Willie Curry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Greg Richard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Marcella M. Lucas
- Department of Neurology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Andrew Massey
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Gregory L. Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Rod C. Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- University College London, Institute of Child Health, London, United Kingdom
- * E-mail: (RCS); (AEH)
| |
Collapse
|
23
|
Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 2017; 234:2837-2857. [PMID: 28744563 PMCID: PMC5591806 DOI: 10.1007/s00213-017-4679-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/02/2022]
Abstract
RATIONALE Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 μg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.
Collapse
Affiliation(s)
- Adam C Mar
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA.
- Department of Psychology, University of Cambridge, Cambridge, UK.
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Simon R O Nilsson
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Begoña Gamallo-Lana
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ming Lei
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Health Industry Management, Beijing International Studies University, 1 Dingfuzhuang Nanli, Beijing, China
| | - Theda Dourado
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, Uppsala, Sweden
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochem 2017. [PMID: 28628228 DOI: 10.1111/jnc.14101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264.
Collapse
Affiliation(s)
- Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Song-Jun Xu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Neary JL, Perez SM, Peterson K, Lodge DJ, Carless MA. Comparative analysis of MBD-seq and MeDIP-seq and estimation of gene expression changes in a rodent model of schizophrenia. Genomics 2017; 109:204-213. [PMID: 28365388 PMCID: PMC5526217 DOI: 10.1016/j.ygeno.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Abstract
We conducted a comparative study of multiplexed affinity enrichment sequence methodologies (MBD-seq and MeDIP-seq) in a rodent model of schizophrenia, induced by in utero methylazoxymethanol acetate (MAM) exposure. We also examined related gene expression changes using a pooled sample approach. MBD-seq and MeDIP-seq identified 769 and 1771 differentially methylated regions (DMRs) between F2 offspring of MAM-exposed rats and saline control rats, respectively. The assays showed good concordance, with ~56% of MBD-seq-detected DMRs being identified by or proximal to MeDIP-seq DMRs. There was no significant overlap between DMRs and differentially expressed genes, suggesting that DNA methylation regulatory effects may act upon more distal genes, or are too subtle to detect using our approach. Methylation and gene expression gene ontology enrichment analyses identified biological processes important to schizophrenia pathophysiology, including neuron differentiation, prepulse inhibition, amphetamine response, and glutamatergic synaptic transmission regulation, reinforcing the utility of the MAM rodent model for schizophrenia research.
Collapse
Affiliation(s)
- Jennifer L Neary
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Stephanie M Perez
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Kara Peterson
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Daniel J Lodge
- Department of Pharmacology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
26
|
Li ML, Gulchina Y, Monaco SA, Xing B, Ferguson BR, Li YC, Li F, Hu XQ, Gao WJ. Juvenile treatment with a novel mGluR2 agonist/mGluR3 antagonist compound, LY395756, reverses learning deficits and cognitive flexibility impairments in adults in a neurodevelopmental model of schizophrenia. Neurobiol Learn Mem 2017; 140:52-61. [PMID: 28213064 DOI: 10.1016/j.nlm.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 01/23/2023]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental psychiatric disorder, in which cognitive function becomes disrupted at early stages of the disease. Although the mechanisms underlying cognitive impairments remain unclear, N-methyl-D-aspartate receptors (NMDAR) hypofunctioning in the prefrontal cortex (PFC) has been implicated. Moreover, cognitive symptoms in SCZ are usually unresponsive to treatment with current antipsychotics and by onset, disruption of the dopamine system, not NMDAR hypofunctioning, dominates the symptoms. Therefore, treating cognitive deficits at an early stage is a realistic approach. In this study, we tested whether an early treatment targeting mGluR2 would be effective in ameliorating cognitive impairments in the methylazoxymethanol acetate (MAM) model of SCZ. We investigated the effects of an mGluR2 agonist/mGluR3 antagonist, LY395756 (LY39), on the NMDAR expression and function in juveniles, as well as cognitive deficits in adult rats after juvenile treatment. We found that gestational MAM exposure induced a significant decrease in total protein levels of the NMDAR subunit, NR2B, and a significant increase of pNR2BTyr1472 in the juvenile rat PFC. Treatment with LY39 in juvenile MAM-exposed rats effectively recovered the disrupted NMDAR expression. Furthermore, a subchronic LY39 treatment in juvenile MAM-exposed rats also alleviated the learning deficits and cognitive flexibility impairments when tested with a cross-maze based set-shifting task in adults. Therefore, our study demonstrates that targeting dysfunctional NMDARs with an mGluR2 agonist during the early stage of SCZ could be an effective strategy in preventing the development and progression in addition to ameliorating cognitive impairments of SCZ.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Rehabilitation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Rehabilitation, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Sarah A Monaco
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brielle R Ferguson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Feng Li
- Department of Neurobiology and Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, 510275 Guangzhou, China.
| | - Xi-Quan Hu
- Department of Rehabilitation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
27
|
GSK3β Hyperactivity during an Early Critical Period Impairs Prefrontal Synaptic Plasticity and Induces Lasting Deficits in Spine Morphology and Working Memory. Neuropsychopharmacology 2016; 41:3003-3015. [PMID: 27353310 PMCID: PMC5101547 DOI: 10.1038/npp.2016.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder in which the emergence of cognitive symptoms occurs during early adolescence. Glycogen synthase kinase-3β (GSK3β) plays a critical role in synaptic plasticity during development and is highly implicated in the etiology of SZ. However, how GSK3β activity affects synaptic plasticity and working memory function in the prefrontal cortex (PFC) during development remains unknown. Here we show a GSK3β hyperactivity during the early postnatal period in a neurodevelopmental rat SZ model that receives gestational exposure (E17) to the neurotoxin methylazoxymethanol (MAM). Accompanied with this change, adult MAM rats exhibited a significant decrease in spine density as well as impaired working memory, which was rescued by treatment with a GSK3β inhibitor during the juvenile period. Furthermore, the age-dependent hyperactive GSK3β caused a significant deficit in long-term potentiation (LTP) and facilitated long-term depression (LTD) in PFC pyramidal neurons. Notably, these changes in synaptic plasticity occurred only during the late juvenile period and were efficiently reversed by application of GSK3β inhibitors. Because the balance of LTP and LTD plays a critical role in activity-dependent synaptic stabilization and elimination during cortical development, the transient hyperactive GSK3β likely accounts for the cortical spine loss and PFC-dependent cognitive deficits in adulthood. These results highlight the importance of the postnatal trajectory of GSK3β for spine development and PFC function, and may shed light on the prophylactic treatment of cognitive symptoms in the SZ.
Collapse
|
28
|
Lenck-Santini PP, Scott RC. Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a022772. [PMID: 26337111 DOI: 10.1101/cshperspect.a022772] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epilepsy is often associated with cognitive and behavioral impairments that can have profound impact on the quality of life of patients. Although the mechanisms of cognitive impairment are not completely understood, we make an attempt to describe, from a systems perspective, how information processing is affected in epilepsy disorders. The aim of this review is to (1) define the nature of cognitive deficits associated with epilepsy, (2) review fundamental systems-level mechanisms underlying information processing, and (3) describe how information processing is dysfunctional in epilepsy and investigate the relative contributions of etiology, seizures, and interictal discharges (IDs). We conclude that these mechanisms are likely to be important and deserve more detailed scrutiny in the future.
Collapse
Affiliation(s)
| | - Rodney C Scott
- Institute of Child Health, University College of London, London WC1N 3JH, United Kingdom
| |
Collapse
|
29
|
Goda SA, Olszewski M, Piasecka J, Rejniak K, Whittington MA, Kasicki S, Hunt MJ. Aberrant high frequency oscillations recorded in the rat nucleus accumbens in the methylazoxymethanol acetate neurodevelopmental model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 61:44-51. [PMID: 25862088 DOI: 10.1016/j.pnpbp.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Altered activity of the nucleus accumbens (NAc) is thought to be a core feature of schizophrenia and animal models of the disease. Abnormal high frequency oscillations (HFO) in the rat NAc have been associated with pharmacological models of schizophrenia, in particular the N-methyl-d-aspartate receptor (NMDAR) hypofunction model. Here, we tested the hypothesis that abnormal HFO are also associated with a neurodevelopmental rat model. METHODS Using prenatal administration of the mitotoxin methylazoxymethanol acetate (MAM) we obtained the offspring MAM rats. Adult MAM and Sham rats were implanted with electrodes, for local field potential recordings, in the NAc. RESULTS Spontaneous HFO (spHFO) in MAM rats were characterized by increased power and frequency relative to Sham rats. MK801 dose-dependently increased the power of HFO in both groups. However, the dose-dependent increase in HFO frequency found in Sham rats was occluded in MAM rats. The antipsychotic compound, clozapine reduced the frequency of HFO which was similar in both MAM and Sham rats. Further, HFO were modulated in a similar manner by delta oscillations in both MAM and Sham rats. CONCLUSION Together these findings suggest that increased HFO frequency represents an important feature in certain animal models of schizophrenia. These findings support the hypothesis that altered functioning of the NAc is a core feature in animal models of schizophrenia.
Collapse
Affiliation(s)
- Sailaja A Goda
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maciej Olszewski
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Piasecka
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Rejniak
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Miles A Whittington
- The Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Stefan Kasicki
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Mark J Hunt
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland; The Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
30
|
Alterations in spatial memory and anxiety in the MAM E17 rat model of hippocampal pathology in schizophrenia. Psychopharmacology (Berl) 2015; 232:4099-112. [PMID: 25633092 PMCID: PMC4970796 DOI: 10.1007/s00213-014-3862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/29/2014] [Indexed: 12/26/2022]
Abstract
Adult rats exposed to methylazoxymethanol acetate (MAM) at embryonic day 17 (E17) display robust pathological alterations in the hippocampus. However, discrepancies exist in the literature regarding the behavioural effects of this pre-natal manipulation. Therefore, a systematic assessment of MAM E17-induced behavioural alterations was conducted using a battery of dorsal and ventral hippocampus-dependent tests. Compared to saline controls, MAM E17-treated rats displayed deficits in spatial reference memory in both the aversive hidden platform watermaze task and an appetitive Y-maze task. Deficits in the spatial reference memory watermaze task were replicated across three different cohorts and two laboratories. In contrast, there was little, or no, effect on the non-spatial, visible platform watermaze task or an appetitive, non-spatial, visual discrimination task, respectively. MAM rats were also impaired in the spatial novelty preference task which assesses short-term memory, and displayed reduced anxiety levels in the elevated plus maze task. Thus, MAM E17 administration resulted in abnormal spatial information processing and reduced anxiety in a number of hippocampus-dependent behavioural tests, paralleling the effects of dorsal and ventral hippocampal lesions, respectively. These findings corroborate recent pathological and physiological studies, further highlighting the usefulness of MAM E17 as a model of hippocampal dysfunction in at least some aspects of schizophrenia.
Collapse
|
31
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
32
|
Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013; 7:31. [PMID: 23543703 PMCID: PMC3608949 DOI: 10.3389/fncel.2013.00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a disabling mental illness that is now recognized as a neurodevelopmental disorder. It is likely that genetic risk factors interact with environmental perturbations to affect normal brain development and that this altered trajectory results in a combination of positive, negative, and cognitive symptoms. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. Proper expression and regulation of NMDARs in the brain is critical for learning and memory processes as well as cortical plasticity and maturation. Evidence from both animal models and human studies implicates a dysfunction of NMDARs both in disease progression and symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered neurodevelopment that may contribute to the progression and development of symptoms for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing on the AKT/GSK3β pathway, and how their mutations and interactions can lead to NMDAR dysfunction during development. Additionally, we explore what open questions remain and suggest where schizophrenia research needs to move in order to provide mechanistic insight into the cause of NMDAR dysfunction, as well as generate possible new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|