1
|
Tsugawa S, Ueno F, Sakuma M, Tani H, Ochi R, Graff‐Guerrero A, Noda Y, Uchida H, Mimura M, Oshima S, Matsushita S, Nakajima S. Effects of short-term exposure to moderate amounts of alcohol on brain volume. Neuropsychopharmacol Rep 2025; 45:e12500. [PMID: 39668589 PMCID: PMC11772103 DOI: 10.1002/npr2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 12/14/2024] Open
Abstract
AIM Although numerous studies have reported that chronic alcohol consumption causes brain volume reduction and cerebrospinal fluid volume increase, few studies have examined the acute effects of alcohol on brain structure. This study aims to investigate the short-term brain volume changes following alcohol administration. METHODS Moderate doses of alcohol were administered intravenously to 18 healthy volunteers for a total of 90 min to achieve a blood alcohol concentration of 0.5 mg/mL. An alcohol clamp method combined with physiologically based pharmacokinetic modeling was used to achieve fine control over blood alcohol concentration. T1 images with 3T MRI were scanned at three time points: baseline, 0 min, and 90 min after the end of alcohol administration. Cortical, subcortical, and ventricular volumes were computed after segmentation with FreeSurfer. Repeated measures analysis of variance was used to evaluate longitudinal changes in brain volume at 96 regions. RESULTS Acute alcohol administration increased bilateral lateral ventricular volumes, which lasted until 90 min after the end of alcohol injection. On the other hand, the volumes of total gray matter, left precentral cortex, left caudal middle frontal cortex, and left superior frontal cortex decreased after alcohol administration, but these changes disappeared 90 min after the end of alcohol administration. CONCLUSION Acute injection of moderate doses of alcohol may enlarge ventricle volumes and reduce gray matter volumes. The transient volume changes caused by acute administration of alcohol may be related to changes in CSF flow and water content of brain tissue, which warrants further study.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Fumihiko Ueno
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Multimodal Imaging Group, Research Imaging CentreCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| | - Mutsuki Sakuma
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Hideaki Tani
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Ryo Ochi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Ariel Graff‐Guerrero
- Multimodal Imaging Group, Research Imaging CentreCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Hiroyuki Uchida
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Shunji Oshima
- Sustainable Technology LaboratoriesAsahi Quality and Innovations, LtdMoriya‐ShiIbarakiJapan
| | - Sachio Matsushita
- National Hospital Organization Kurihama Medical and Addiction CenterYokosukaKanagawaJapan
| | - Shinichiro Nakajima
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Multimodal Imaging Group, Research Imaging CentreCentre for Addiction and Mental Health (CAMH)TorontoOntarioCanada
| |
Collapse
|
2
|
Zahr NM. Alcohol Use Disorder and Dementia: A Review. Alcohol Res 2024; 44:03. [PMID: 38812709 PMCID: PMC11135165 DOI: 10.35946/arcr.v44.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
PURPOSE By 2040, 21.6% of Americans will be over age 65, and the population of those older than age 85 is estimated to reach 14.4 million. Although not causative, older age is a risk factor for dementia: every 5 years beyond age 65, the risk doubles; approximately one-third of those older than age 85 are diagnosed with dementia. As current alcohol consumption among older adults is significantly higher compared to previous generations, a pressing question is whether drinking alcohol increases the risk for Alzheimer's disease or other forms of dementia. SEARCH METHODS Databases explored included PubMed, Web of Science, and ScienceDirect. To accomplish this narrative review on the effects of alcohol consumption on dementia risk, the literature covered included clinical diagnoses, epidemiology, neuropsychology, postmortem pathology, neuroimaging and other biomarkers, and translational studies. Searches conducted between January 12 and August 1, 2023, included the following terms and combinations: "aging," "alcoholism," "alcohol use disorder (AUD)," "brain," "CNS," "dementia," "Wernicke," "Korsakoff," "Alzheimer," "vascular," "frontotemporal," "Lewy body," "clinical," "diagnosis," "epidemiology," "pathology," "autopsy," "postmortem," "histology," "cognitive," "motor," "neuropsychological," "magnetic resonance," "imaging," "PET," "ligand," "degeneration," "atrophy," "translational," "rodent," "rat," "mouse," "model," "amyloid," "neurofibrillary tangles," "α-synuclein," or "presenilin." When relevant, "species" (i.e., "humans" or "other animals") was selected as an additional filter. Review articles were avoided when possible. SEARCH RESULTS The two terms "alcoholism" and "aging" retrieved about 1,350 papers; adding phrases-for example, "postmortem" or "magnetic resonance"-limited the number to fewer than 100 papers. Using the traditional term, "alcoholism" with "dementia" resulted in 876 citations, but using the currently accepted term "alcohol use disorder (AUD)" with "dementia" produced only 87 papers. Similarly, whereas the terms "Alzheimer's" and "alcoholism" yielded 318 results, "Alzheimer's" and "alcohol use disorder (AUD)" returned only 40 citations. As pertinent postmortem pathology papers were published in the 1950s and recent animal models of Alzheimer's disease were created in the early 2000s, articles referenced span the years 1957 to 2024. In total, more than 5,000 articles were considered; about 400 are herein referenced. DISCUSSION AND CONCLUSIONS Chronic alcohol misuse accelerates brain aging and contributes to cognitive impairments, including those in the mnemonic domain. The consensus among studies from multiple disciplines, however, is that alcohol misuse can increase the risk for dementia, but not necessarily Alzheimer's disease. Key issues to consider include the reversibility of brain damage following abstinence from chronic alcohol misuse compared to the degenerative and progressive course of Alzheimer's disease, and the characteristic presence of protein inclusions in the brains of people with Alzheimer's disease, which are absent in the brains of those with AUD.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California. Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
3
|
Alcohol Withdrawal and the Associated Mood Disorders-A Review. Int J Mol Sci 2022; 23:ijms232314912. [PMID: 36499240 PMCID: PMC9738481 DOI: 10.3390/ijms232314912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Recreational use of alcohol is a social norm in many communities worldwide. Alcohol use in moderation brings pleasure and may protect the cardiovascular system. However, excessive alcohol consumption or alcohol abuse are detrimental to one's health. Three million deaths due to excessive alcohol consumption were reported by the World Health Organization. Emerging evidence also revealed the danger of moderate consumption, which includes the increased risk to cancer. Alcohol abuse and periods of withdrawal have been linked to depression and anxiety. Here, we present the effects of alcohol consumption (acute and chronic) on important brain structures-the frontal lobe, the temporal lobe, the limbic system, and the cerebellum. Apart from this, we also present the link between alcohol abuse and withdrawal and mood disorders in this review, thus drawing a link to oxidative stress. In addition, we also discuss the positive impacts of some pharmacotherapies used. Due to the ever-rising demands of life, the cycle between alcohol abuse, withdrawal, and mood disorders may be a never-ending cycle of destruction. Hence, through this review, we hope that we can emphasise the importance and urgency of managing this issue with the appropriate approaches.
Collapse
|
4
|
Piekarski DJ, Zahr NM, Zhao Q, Sullivan EV, Pfefferbaum A. Alcohol's effects on the mouse brain are modulated by age and sex. Addict Biol 2022; 27:e13209. [PMID: 36001428 PMCID: PMC9539709 DOI: 10.1111/adb.13209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Binge alcohol consumption is common among adolescents and may impair normal brain development. Emerging, longitudinal studies in adolescents suggest that the effects of binge alcohol exposure on brain structure differ between sexes. To test the hypothesis that the effects of binge alcohol exposure on developmental brain growth trajectories are influenced by age of exposure and sex, adolescent and adult, male and female C57Bl/6 mice (n = 32), were exposed to a binge‐like ethanol (EtOH) exposure paradigm (i.e., 5 cycles of 2 on/2 off days of 5 g/kg EtOH intraperitoneal) or served as saline controls. Longitudinal structural magnetic resonance imaging was acquired at baseline, following binge EtOH exposure, and after 2 weeks of recovery. Alcohol treatment showed interactions with age and sex in altering whole brain volume: adolescents of both sexes demonstrated inhibited whole brain growth relative to their control counterparts, although significance was only attained in female mice which showed a larger magnitude response to EtOH compared to male mice. In region of interest analyses, the somatosensory cortex and cerebellum showed inhibited growth in male and female adolescent mice exposed to EtOH, but the difference relative to controls did not reach multiple comparison‐corrected statistical significance. These data suggest that in mice exposed to binge EtOH treatment, adolescent age of exposure and female sex may confer a higher risk to the detrimental effects of EtOH on brain structure and reinforce the need for direct testing of both sexes.
Collapse
Affiliation(s)
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford California USA
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford California USA
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford California USA
| | - Adolf Pfefferbaum
- Neuroscience Program SRI International Menlo Park California USA
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford California USA
| |
Collapse
|
5
|
Carton L, Auger F, Laloux C, Durieux N, Kyheng M, Potey C, Bergeron S, Rolland B, Deguil J, Bordet R. Effects of acute ethanol and/or diazepam exposure on immediate and delayed hippocampal metabolite levels in rats anesthetized with isoflurane. Fundam Clin Pharmacol 2022; 36:687-698. [DOI: 10.1111/fcp.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Louise Carton
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR‐S1172, Pharmacology Department Lille France
| | - Florent Auger
- Lille In vivo Imaging and Functional Exploration platform Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41‐UMS 2014‐PLBS Lille France
| | - Charlotte Laloux
- Lille In vivo Imaging and Functional Exploration platform Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41‐UMS 2014‐PLBS Lille France
| | - Nicolas Durieux
- Lille In vivo Imaging and Functional Exploration platform Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41‐UMS 2014‐PLBS Lille France
| | - Maéva Kyheng
- ULR 2694‐METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales Univ. Lille, CHU Lille Lille France
- Département de Biostatistiques CHU Lille Lille France
| | - Camille Potey
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR‐S1172, Pharmacology Department Lille France
| | - Sandrine Bergeron
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR‐S1172, Pharmacology Department Lille France
| | - Benjamin Rolland
- Service Universitaire d'Addictologie de Lyon CH Le Vinatier, Hospices Civils de Lyon Bron France
- Inserm U1028, CNRS UMR5292 Université Claude Bernard Lyon 1 Bron France
| | - Julie Deguil
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR‐S1172, Pharmacology Department Lille France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR‐S1172, Pharmacology Department Lille France
| |
Collapse
|
6
|
Qiao Y, Wanigatunga AA, An Y, Liu F, Spira AP, Davatzikos C, Tian Q, Simonsick EM, Ferrucci L, Resnick SM, Schrack JA. Longitudinal associations between energy utilization and brain volumes in cognitively normal middle aged and older adults. Sci Rep 2022; 12:6472. [PMID: 35440799 PMCID: PMC9018828 DOI: 10.1038/s41598-022-10421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Peak energy capacity of the whole person is associated with neurodegeneration. However, change in ability to utilize energy manifests as combination of declining peak energy capacity and rising energetic costs of mobility in mid-to-late life. We examined longitudinal associations between change in energy utilization and brain volumes. Cognitively normal participants from the Baltimore Longitudinal Study of Aging (N = 703, age = 70.4 ± 12.1 years, 54.1% women, 30% black) had concurrent data on brain volumes and energy utilization (defined as ratio of energetic cost of walking to peak energy capacity ("cost-to-capacity ratio") at ≥ 1 visit between 2008 and 2018. We performed linear mixed-effect models, adjusting for demographics, medical history and walking engagement. Average baseline cost-to-capacity ratio was 0.55 ± 0.16, with average annual increase of 0.04 ± 0.13 over 3.9 follow-up years. A 10% higher baseline cost-to-capacity ratio was associated with 2.00 cm3 (SE = 0.44) larger baseline ventricular volume (p < 0.001), and 0.10 cm3 (SE = 0.03) greater annual increase in ventricular volume (p = 0.004) after adjustment. Longitudinal change in cost-to-capacity ratio was not associated with brain volumes. These findings highlight, among cognitive-normal adults, poorer baseline energy utilization is associated with subsequent ventricular enlargement, an indirect measure of central brain atrophy. Future studies should explore whether early detection of worsening energy utilization may act as a marker of underlying brain atrophy.
Collapse
Affiliation(s)
- Yujia Qiao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adam P Spira
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Qu Tian
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center on Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Systemic Administration of the TLR7/8 Agonist Resiquimod (R848) to Mice Is Associated with Transient, In Vivo-Detectable Brain Swelling. BIOLOGY 2022; 11:biology11020274. [PMID: 35205140 PMCID: PMC8869423 DOI: 10.3390/biology11020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Peripheral administration of the E. coli endotoxin lipopolysaccharide (LPS) to rats promotes secretion of pro-inflammatory cytokines and in previous studies was associated with transient enlargement of cortical volumes. Here, resiquimod (R848) was administered to mice to stimulate peripheral immune activation, and the effects on brain volumes and neurometabolites determined. After baseline scans, 24 male, wild-type C57BL mice were triaged into three groups including R848 at low (50 μg) and high (100 μg) doses and saline controls. Animals were scanned again at 3 h and 24 h following treatment. Sickness indices of elevated temperature and body weight loss were observed in all R848 animals. Animals that received 50 μg R848 exhibited decreases in hippocampal N-acetylaspartate and phosphocreatine at the 3 h time point that returned to baseline levels at 24 h. Animals that received the 100 μg R848 dose demonstrated transient, localized, volume expansion (~5%) detectable at 3 h in motor, somatosensory, and olfactory cortices; and pons. A metabolic response evident at the lower dose and a volumetric change at the higher dose suggests a temporal evolution of the effect wherein the neurochemical change is demonstrable earlier than neurostructural change. Transient volume expansion in response to peripheral immune stimulation corresponds with previous results and is consistent with brain swelling that may reflect CNS edema.
Collapse
|
8
|
Anandakrishnan R, Tobey H, Nguyen S, Sandoval O, Klein BG, Costa BM. Cranial manipulation affects cholinergic pathway gene expression in aged rats. J Osteopath Med 2022; 122:95-103. [PMID: 34995434 DOI: 10.1515/jom-2021-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
CONTEXT Age-dependent dementia is a devastating disorder afflicting a growing older population. Although pharmacological agents improve symptoms of dementia, age-related comorbidities combined with adverse effects often outweigh their clinical benefits. Therefore, nonpharmacological therapies are being investigated as an alternative. In a previous pilot study, aged rats demonstrated improved spatial memory after osteopathic cranial manipulative medicine (OCMM) treatment. OBJECTIVES In this continuation of the pilot study, we examine the effect of OCMM on gene expression to elicit possible explanations for the improvement in spatial memory. METHODS OCMM was performed on six of 12 elderly rats every day for 7 days. Rats were then euthanized to obtain the brain tissue, from which RNA samples were extracted. RNA from three treated and three controls were of sufficient quality for sequencing. These samples were sequenced utilizing next-generation sequencing from Illumina NextSeq. The Cufflinks software suite was utilized to assemble transcriptomes and quantify the RNA expression level for each sample. RESULTS Transcriptome analysis revealed that OCMM significantly affected the expression of 36 genes in the neuronal pathway (false discovery rate [FDR] <0.004). The top five neuronal genes with the largest-fold change were part of the cholinergic neurotransmission mechanism, which is known to affect cognitive function. In addition, 39.9% of 426 significant differentially expressed (SDE) genes (FDR<0.004) have been previously implicated in neurological disorders. Overall, changes in SDE genes combined with their role in central nervous system signaling pathways suggest a connection to previously reported OCMM-induced behavioral and biochemical changes in aged rats. CONCLUSIONS Results from this pilot study provide sufficient evidence to support a more extensive study with a larger sample size. Further investigation in this direction will provide a better understanding of the molecular mechanisms of OCMM and its potential in clinical applications. With clinical validation, OCMM could represent a much-needed low-risk adjunct treatment for age-related dementia including Alzheimer's disease.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA
| | - Hope Tobey
- Sports and Osteopathic Medicine, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Steven Nguyen
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Osscar Sandoval
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Bradley G Klein
- Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Blaise M Costa
- Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.,Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Age differences in brain structural and metabolic responses to binge ethanol exposure in fisher 344 rats. Neuropsychopharmacology 2021; 46:368-379. [PMID: 32580206 PMCID: PMC7852871 DOI: 10.1038/s41386-020-0744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
An overarching goal of our research has been to develop a valid animal model of alcoholism with similar imaging phenotypes as those observed in humans with the ultimate objective of assessing the effectiveness of pharmacological agents. In contrast to our findings in humans with alcohol use disorders (AUD), our animal model experiments have not demonstrated enduring brain pathology despite chronic, high ethanol (EtOH) exposure protocols. Relative to healthy controls, older individuals with AUD demonstrate accelerating brain tissue loss with advanced age. Thus, this longitudinally controlled study was conducted in 4-month old (equivalent to ~16-year-old humans) and 17-month old (equivalent to ~45-year-old humans) male and female Fisher 344 rats to test the hypothesis that following equivalent alcohol exposure protocols, older relative to younger animals would exhibit more brain changes as evaluated using in vivo structural magnetic resonance imaging (MRI) and MR spectroscopy (MRS). At baseline, total brain volume as well as the volumes of each of the three constituent tissue types (i.e., cerebral spinal fluid (CSF), gray matter, white matter) were greater in old relative to young rats. Baseline metabolite levels (except for glutathione) were higher in older than younger animals. Effects of binge EtOH exposure on brain volumes and neurometabolites replicated our previous findings in Wistar rats and included ventricular enlargement and reduced MRS-derived creatine levels. Brain changes in response to binge EtOH treatment were more pronounced in young relative to older animals, negating our hypothesis. Higher baseline glutathione levels in female than male rats suggest that female rats are perhaps protected against the more pronounced changes in CSF and gray matter volumes observed in male rats due to superior metabolic homeostasis mechanisms. Additional metabolite changes including low inositol levels in response to high blood alcohol levels support a mechanism of reversible osmolarity disturbances due to temporarily altered brain energy metabolism.
Collapse
|
10
|
Zhao Q, Pohl KM, Sullivan EV, Pfefferbaum A, Zahr NM. Jacobian Mapping Reveals Converging Brain Substrates of Disruption and Repair in Response to Ethanol Exposure and Abstinence in 2 Strains of Rats. Alcohol Clin Exp Res 2021; 45:92-104. [PMID: 33119896 PMCID: PMC8138868 DOI: 10.1111/acer.14496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND In a previous study using Jacobian mapping to evaluate the morphological effects on the brain of binge (4-day) intragastric ethanol (EtOH) on wild-type Wistar rats, we reported reversible thalamic shrinkage and lateral ventricular enlargement, but persistent superior and inferior colliculi shrinkage in response to binge EtOH treatment. METHODS Herein, we used similar voxel-based comparisons of Magnetic Resonance Images collected in EtOH-exposed relative to control animals to test the hypothesis that regardless of the intoxication protocol or the rat strain, the hippocampi, thalami, and colliculi would be affected. RESULTS Two experiments [binge (4-day) intragastric EtOH in Fisher 344 rats and chronic (1-month) vaporized EtOH in Wistar rats] showed similarly affected brain regions including retrosplenial and cingulate cortices, dorsal hippocampi, central and ventroposterior thalami, superior and inferior colliculi, periaqueductal gray, and corpus callosum. While most of these regions showed significant recovery, volumes of the colliculi and periaqueductal gray continued to show response to each proximal EtOH exposure but at diminished levels with repeated cycles. CONCLUSIONS Given the high metabolic rate of these enduringly affected regions, the current findings suggest that EtOH per se may affect cellular respiration leading to brain volume deficits. Further, responsivity greatly diminished likely reflecting neuroadaptation to repeated alcohol exposure. In summary, this unbiased, in vivo-based approach demonstrating convergent brain systems responsive to 2 EtOH exposure protocols in 2 rat strains highlights regions that warrant further investigation in both animal models of alcoholism and in humans with alcohol use disorder.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025
| |
Collapse
|
11
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Sullivan EV. The Many Levels of Relapse to Drinking: Commentary on Meyerhoff and Durazzo (ACER 2020). Alcohol Clin Exp Res 2020; 44:1714-1716. [PMID: 32623744 DOI: 10.1111/acer.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Edith V Sullivan
- From the, Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Zahr NM, Lenart AM, Karpf JA, Casey KM, Pohl KM, Sullivan EV, Pfefferbaum A. Multi-modal imaging reveals differential brain volumetric, biochemical, and white matter fiber responsivity to repeated intermittent ethanol vapor exposure in male and female rats. Neuropharmacology 2020; 170:108066. [PMID: 32240669 DOI: 10.1016/j.neuropharm.2020.108066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
A generally accepted framework derived predominately from animal models asserts that repeated cycles of chronic intermittent ethanol (EtOH; CIE) exposure cause progressive brain adaptations associated with anxiety and stress that promote voluntary drinking, alcohol dependence, and further brain changes that contribute to the pathogenesis of alcoholism. The current study used CIE exposure via vapor chambers to test the hypothesis that repeated episodes of withdrawals from chronic EtOH would be associated with accrual of brain damage as quantified using in vivo magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and MR spectroscopy (MRS). The initial study group included 16 male (~325g) and 16 female (~215g) wild-type Wistar rats exposed to 3 cycles of 1-month in vapor chambers + 1 week of abstinence. Half of each group (n = 8) was given vaporized EtOH to blood alcohol levels approaching 250 mg/dL. Blood and behavior markers were also quantified. There was no evidence for dependence (i.e., increased voluntary EtOH consumption), increased anxiety, or an accumulation of pathology. Neuroimaging brain responses to exposure included increased cerebrospinal fluid (CSF) and decreased gray matter volumes, increased Choline/Creatine, and reduced fimbria-fornix fractional anisotropy (FA) with recovery seen after one or more cycles and effects in female more prominent than in male rats. These results show transient brain integrity changes in response to CIE sufficient to induce acute withdrawal but without evidence for cumulative or escalating damage. Together, the current study suggests that nutrition, age, and sex should be considered when modeling human alcoholism.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA.
| | - Aran M Lenart
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Joshua A Karpf
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Keriann M Casey
- Department of Comparative Medicine, Stanford University, School of Medicine, Stanford, CA. 94305, USA
| | - Kilian M Pohl
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Carton L, Auger F, Kyheng M, Pétrault M, Durieux N, Allorge D, Cottencin O, Jardri R, Bordet R, Rolland B. Dose-dependent metabolite changes after ethanol intoxication in rat prefrontal cortex using in vivo magnetic resonance spectroscopy. Sci Rep 2019; 9:10682. [PMID: 31337845 PMCID: PMC6650461 DOI: 10.1038/s41598-019-47187-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/10/2019] [Indexed: 11/09/2022] Open
Abstract
Ethanol disrupts the balance between the excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission systems. We aimed to assess how acute ethanol intoxication in rats affects the levels of GABA, glutamate and other cerebral metabolites after injection of two different doses of ethanol. One in vivo magnetic resonance spectrum of the prefrontal cortex region was acquired before and six spectra were acquired after intraperitoneal injections of saline or ethanol (1 g/kg or 2 g/kg). Brain kinetics after exposure to ethanol were compared to blood ethanol kinetics. GABA levels significantly decreased after injection of 1 g/kg but not 2 g/kg doses of ethanol. Choline levels, which serve as a marker of alterations in membrane composition, significantly decreased after injection of 2 g/kg but not 1 g/kg doses of ethanol. Acute ethanol intoxication appears to result in specific dose-dependent changes in the GABA level and choline level.
Collapse
Affiliation(s)
- Louise Carton
- University Lille, Inserm U1171 'Degenerative and vascular cognitive disorders', F-59000, Lille, France. .,CHU Lille, department of Pharmacology, F-59000, Lille, France. .,CHU Lille, Psychiatry and Addiction Medicine Department, F-59000, Lille, France.
| | - Florent Auger
- University Lille, Inserm U1171 'Degenerative and vascular cognitive disorders', F-59000, Lille, France.,University Lille, Preclinical Imaging Core Facility, F-59000 Lille, France
| | - Maeva Kyheng
- Univ. Lille, EA 2694 - Santé publique : épidémiologie et qualité des soins, F-59000 Lille, France.,CHU Lille, Service de Biostatistiques, F-59000 Lille, France
| | - Maud Pétrault
- University Lille, Inserm U1171 'Degenerative and vascular cognitive disorders', F-59000, Lille, France.,CHU Lille, department of Pharmacology, F-59000, Lille, France
| | - Nicolas Durieux
- University Lille, Preclinical Imaging Core Facility, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59000, Lille, France.,University Lille, EA 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille, France
| | - Olivier Cottencin
- CHU Lille, Psychiatry and Addiction Medicine Department, F-59000, Lille, France.,University Lille, CNRS UMR 9193 SCALab PsyCHIC Team, F-59000, Lille, France
| | - Renaud Jardri
- University Lille, CNRS UMR 9193 SCALab PsyCHIC Team, F-59000, Lille, France.,CHU Lille, Psychiatry Department, CURE platform, Fontan Hospital, F-59000, Lille, France
| | - Régis Bordet
- University Lille, Inserm U1171 'Degenerative and vascular cognitive disorders', F-59000, Lille, France.,CHU Lille, department of Pharmacology, F-59000, Lille, France
| | - Benjamin Rolland
- Service Universitaire d'Addictologie de Lyon (SUAL), Pôle MOPHA, CRNL, Inserm U1028, CNRS UMR5292, Université Lyon 1, Centre Hospitalier Le Vinatier, Bron, France
| |
Collapse
|
15
|
Shibata D, Suchy-Dicey A, Carty CL, Madhyastha T, Ali T, Best L, Grabowski TJ, Longstreth WT, Buchwald D. Lifestyle Risk Factors and Findings on Brain Magnetic Resonance Imaging of Older Adult American Indians: The Strong Heart Study. Neuroepidemiology 2019; 53:162-168. [PMID: 31163423 DOI: 10.1159/000501181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 12/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinical stroke is prevalent in American Indians, but the lifestyle risk factors for vascular brain injury have not been well-studied in this population. The purpose of this study was to correlate brain magnetic resonance imaging (MRI) findings with obesity, alcohol use, and smoking behaviors in elderly American Indians from the Strong Heart Study. METHODS Cranial MRI scans (n = 789) were analyzed for dichotomous measures of infarcts, hemorrhages, white matter hyperintensities (WMH), and cerebral atrophy and continuous measures of total brain, WMH, and hippocampal volume. Poisson regression was used to estimate prevalence ratios, and linear regression was used to estimate measures of association for continuous outcomes. Models were adjusted for the risk factors of interest as well as age, sex, study site, income, education, hypertension, diabetes, and low-density lipoprotein cholesterol. RESULTS Smoking was associated with increased hippocampal atrophy (p = 0.002) and increased prevalence of sulcal widening (p < 0.001). Relative to nonsmokers, smokers with more than 25 pack-years of smoking had a 27% (95% CI 7-47%) increased prevalence of high-grade sulci, p = 0.005. Body mass index was inversely associated with prevalence of nonlacunar infarcts and sulcal widening (all p = 0.004). Alcohol use was not significantly associated with any of the measured MRI findings. CONCLUSIONS This study found similar associations between smoking and vascular brain injury among American Indians, as seen in other populations. In particular, these findings support the role of smoking as a key correlate for cerebral atrophy.
Collapse
Affiliation(s)
- Dean Shibata
- Department of Radiology, University of Washington, Seattle, Washington, USA,
| | - Astrid Suchy-Dicey
- Partnerships for Native Health, Washington State University, Pullman, Washington, USA
| | - Cara L Carty
- Partnerships for Native Health, Washington State University, Pullman, Washington, USA.,Elson S Floyd College of Medicine, Washington State University, Seattle, Washington, USA
| | - Tara Madhyastha
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, Washington, USA
| | - Tauqeer Ali
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lyle Best
- Strong Heart Study-Dakota Center, Eagle Butte, South Dakota, USA
| | - Thomas J Grabowski
- Integrated Brain Imaging Center, University of Washington, Seattle, Washington, USA.,Department of Neurology, University of Washington, Seattle, Washington, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dedra Buchwald
- Partnerships for Native Health, Washington State University, Pullman, Washington, USA.,Elson S Floyd College of Medicine, Washington State University, Seattle, Washington, USA
| |
Collapse
|
16
|
Fritz M, Klawonn AM, Zahr NM. Neuroimaging in alcohol use disorder: From mouse to man. J Neurosci Res 2019; 100:1140-1158. [PMID: 31006907 DOI: 10.1002/jnr.24423] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
This article provides an overview of recent advances in understanding the effects of alcohol use disorders (AUD) on the brain from the perspective of magnetic resonance imaging (MRI) research in preclinical models and clinical studies. As a noninvasive investigational tool permitting assessment of morphological, metabolic, and hemodynamic changes over time, MRI offers insight into the dynamic course of alcoholism beginning with initial exposure through periods of binge drinking and escalation, sobriety, and relapse and has been useful in differential diagnosis of neurological diseases associated with AUD. Structural MRI has revealed acute and chronic effects of alcohol on both white and gray matter volumes. MR Spectroscopy, able to quantify brain metabolites in vivo, has shed light on biochemical alterations associated with alcoholism. Diffusion tensor imaging permits microstructural characterization of white matter fiber tracts. Functional MRI has allowed for elucidation of hemodynamic responses at rest and during task engagement. Positron emission tomography, a non-MRI imaging tool, has led to a deeper understanding of alcohol-induced receptor and neurotransmitter changes during various stages of drinking and abstinence. Together, such in vivo imaging tools have expanded our understanding of the dynamic course of alcoholism including evidence for regional specificity of the effects of AUD, hints at mechanisms underlying the shift from casual to compulsive use of alcohol, and profound recovery with sustained abstinence.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Neuroscience Program, SRI International, Menlo Park, California
| |
Collapse
|
17
|
Zhao Q, Fritz M, Pfefferbaum A, Sullivan EV, Pohl KM, Zahr NM. Jacobian Maps Reveal Under-reported Brain Regions Sensitive to Extreme Binge Ethanol Intoxication in the Rat. Front Neuroanat 2018; 12:108. [PMID: 30618652 PMCID: PMC6297262 DOI: 10.3389/fnana.2018.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Individuals aged 12-20 years drink 11% of all alcohol consumed in the United States with more than 90% consumed in the form of binge drinking. Early onset alcohol use is a strong predictor of future alcohol dependence. The study of the effects of excessive alcohol use on the human brain is hampered by limited information regarding the quantity and frequency of exposure to alcohol. Animal models can control for age at alcohol exposure onset and enable isolation of neural substrates of exposure to different patterns and quantities of ethanol (EtOH). As with humans, a frequently used binge exposure model is thought to produce dependence and affect predominantly corticolimbic brain regions. in vivo neuroimaging enables animals models to be examined longitudinally, allowing for each animal to serve as its own control. Accordingly, we conducted 3 magnetic resonance imaging (MRI) sessions (baseline, binge, recovery) to track structure throughout the brains of wild type Wistar rats to test the hypothesis that binge EtOH exposure affects specific brain regions in addition to corticolimbic circuitry. Voxel-based comparisons of 13 EtOH- vs. 12 water- exposed animals identified significant thalamic shrinkage and lateral ventricular enlargement as occurring with EtOH exposure, but recovering with a week of abstinence. By contrast, pretectal nuclei and superior and inferior colliculi shrank in response to binge EtOH treatment but did not recover with abstinence. These results identify brainstem structures that have been relatively underreported but are relevant for localizing neurocircuitry relevant to the dynamic course of alcoholism.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Kilian M. Pohl
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| |
Collapse
|
18
|
Zahr NM. The Aging Brain With HIV Infection: Effects of Alcoholism or Hepatitis C Comorbidity. Front Aging Neurosci 2018; 10:56. [PMID: 29623036 PMCID: PMC5874324 DOI: 10.3389/fnagi.2018.00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
As successfully treated individuals with Human Immunodeficiency Virus (HIV)-infected age, cognitive and health challenges of normal aging ensue, burdened by HIV, treatment side effects, and high prevalence comorbidities, notably, Alcohol Use Disorders (AUD) and Hepatitis C virus (HCV) infection. In 2013, people over 55 years old accounted for 26% of the estimated number of people living with HIV (~1.2 million). The aging brain is increasingly vulnerable to endogenous and exogenous insult which, coupled with HIV infection and comorbid risk factors, can lead to additive or synergistic effects on cognitive and motor function. This paper reviews the literature on neuropsychological and in vivo Magnetic Resonance Imaging (MRI) evaluation of the aging HIV brain, while also considering the effects of comorbidity for AUD and HCV.
Collapse
Affiliation(s)
- Natalie M Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
19
|
Zahr NM, Pfefferbaum A. Alcohol's Effects on the Brain: Neuroimaging Results in Humans and Animal Models. Alcohol Res 2017; 38:183-206. [PMID: 28988573 PMCID: PMC5513685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Brain imaging technology has allowed researchers to conduct rigorous studies of the dynamic course of alcoholism through periods of drinking, sobriety, and relapse and to gain insights into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence. In support of postmortem neuropathological studies showing degeneration of white matter, MRI studies have shown a specific vulnerability of white matter to chronic alcohol exposure. Such studies have demonstrated white-matter volume deficits as well as damage to selective gray-matter structures. Diffusion tensor imaging (DTI), by permitting microstructural characterization of white matter, has extended MRI findings in alcoholics. MR spectroscopy (MRS) allows quantification of several metabolites that shed light on brain biochemical alterations caused by alcoholism. This article focuses on MRI, DTI, and MRS findings in neurological disorders that commonly co-occur with alcoholism, including Wernicke's encephalopathy, Korsakoff's syndrome, and hepatic encephalopathy. Also reviewed are neuroimaging findings in animal models of alcoholism and related neurological disorders. This report also suggests that the dynamic course of alcoholism presents a unique opportunity to examine brain structural and functional repair and recovery.
Collapse
Affiliation(s)
- Natalie M Zahr
- Natalie M. Zahr, Ph.D., is a Research Scientist in the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; and Program Director of Translational Imaging, Neuroscience Program, SRI International, Menlo Park, California. Adolf Pfefferbaum, M.D., is Professor of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Stanford, California; and Distinguished Scientist and Center Director of the Neuroscience Program, SRI International, Menlo Park, California
| | - Adolf Pfefferbaum
- Natalie M. Zahr, Ph.D., is a Research Scientist in the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; and Program Director of Translational Imaging, Neuroscience Program, SRI International, Menlo Park, California. Adolf Pfefferbaum, M.D., is Professor of Psychiatry and Behavioral Sciences at Stanford University School of Medicine, Stanford, California; and Distinguished Scientist and Center Director of the Neuroscience Program, SRI International, Menlo Park, California
| |
Collapse
|
20
|
Zahr NM, Rohlfing T, Mayer D, Luong R, Sullivan EV, Pfefferbaum A. Transient CNS responses to repeated binge ethanol treatment. Addict Biol 2016; 21:1199-1216. [PMID: 26283309 DOI: 10.1111/adb.12290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/14/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
The effects of ethanol (EtOH) on in vivo magnetic resonance (MR)-detectable brain measures across repeated exposures have not previously been reported. Of 28 rats weighing 340.66 ± 21.93 g at baseline, 15 were assigned to an EtOH group and 13 to a control group. Animals were exposed to five cycles of 4 days of intragastric (EtOH or dextrose) treatment and 10 days of recovery. Rats in both groups had structural MR imaging and whole-brain MR spectroscopy (MRS) scans at baseline, immediately following each binge period and after each recovery period (total = 11 scans per rat). Blood alcohol level at each of the five binge periods was ~300 mg/dl. Blood drawn at the end of the experiment did not show group differences for thiamine or its phosphate derivatives. Postmortem liver histopathology provided no evidence for hepatic steatosis, alcoholic hepatitis or alcoholic cirrhosis. Cerebrospinal fluid volumes of the lateral ventricles and cisterns showed enlargement with each binge EtOH exposure but recovery with each abstinence period. Similarly, changes in MRS metabolite levels were transient: levels of N-acetylaspartate and total creatine decreased, while those of choline-containing compounds and the combined resonance from glutamate and glutamine increased with each binge EtOH exposure cycle and then recovered during each abstinence period. Changes in response to EtOH were in expected directions based on previous single-binge EtOH exposure experiments, but the current MR findings do not provide support for accruing changes with repeated binge EtOH exposure.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| | | | - Dirk Mayer
- Neuroscience Program; SRI International; Menlo Park CA USA
- Diagnostic Radiology and Nuclear Medicine; University of Maryland School of Medicine; Baltimore MD USA
| | - Richard Luong
- Department of Comparative Medicine; Stanford University; Stanford CA USA
| | - Edith V. Sullivan
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
| | - Adolf Pfefferbaum
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| |
Collapse
|
21
|
Zahr NM, Sullivan EV, Rohlfing T, Mayer D, Collins AM, Luong R, Pfefferbaum A. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo. Psychopharmacology (Berl) 2016; 233:2675-86. [PMID: 27129864 PMCID: PMC4919142 DOI: 10.1007/s00213-016-4313-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). OBJECTIVES This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. METHODS Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. RESULTS Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. CONCLUSIONS These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy M Collins
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA
- Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA
| |
Collapse
|
22
|
Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV. Brain pathways to recovery from alcohol dependence. Alcohol 2015; 49:435-52. [PMID: 26074423 PMCID: PMC4468789 DOI: 10.1016/j.alcohol.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022]
Abstract
This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Antonio Noronha
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenneth R Warren
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mahesh Thakkar
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - John Matochik
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Adolf Pfefferbaum
- Neuroscience Program, Center for Health Science, SRI International, Menlo Park, CA, USA
| | - Howard C Becker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - David Lovinger
- Laboratory of Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Egli
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - George Fein
- Neurobehavioral Research, Inc., Ala Moana Pacific Center, Honolulu, HI, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Kathleen A Grant
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Le Berre AP, Pitel AL, Chanraud S, Beaunieux H, Eustache F, Martinot JL, Reynaud M, Martelli C, Rohlfing T, Pfefferbaum A, Sullivan EV. Sensitive biomarkers of alcoholism's effect on brain macrostructure: similarities and differences between France and the United States. Front Hum Neurosci 2015; 9:354. [PMID: 26157376 PMCID: PMC4477159 DOI: 10.3389/fnhum.2015.00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 11/13/2022] Open
Abstract
Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS.
Collapse
Affiliation(s)
- Anne-Pascale Le Berre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanford, CA, USA
- INSERM, EPHE, Université de Caen/Basse-Normandie, Unité U1077, GIP Cyceron, CHU de CaenCaen, France
| | - Anne-Lise Pitel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanford, CA, USA
- INSERM, EPHE, Université de Caen/Basse-Normandie, Unité U1077, GIP Cyceron, CHU de CaenCaen, France
| | - Sandra Chanraud
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanford, CA, USA
- EPHEBordeaux, France
- INCIA, UMR-Centre National de la Recherche Scientifique 5287, Université BordeauxBordeaux, France
- Neuroscience Program, SRI InternationalMenlo Park, CA, USA
| | - Hélène Beaunieux
- INSERM, EPHE, Université de Caen/Basse-Normandie, Unité U1077, GIP Cyceron, CHU de CaenCaen, France
| | - Francis Eustache
- INSERM, EPHE, Université de Caen/Basse-Normandie, Unité U1077, GIP Cyceron, CHU de CaenCaen, France
| | - Jean-Luc Martinot
- INSERM Research Unit 1000, Université Paris-Sud et Université Paris Descartes, SHFJ, I2BMOrsay, France
| | - Michel Reynaud
- INSERM, UMR 669Villejuif, France
- Department of Psychiatry and Addictology, APHP, Paul Brousse HospitalVillejuif, France
- Faculté de Médecine, Université Paris-Sud 11Le Kremlin Bicêtre, France
| | - Catherine Martelli
- INSERM, UMR 669Villejuif, France
- Department of Psychiatry and Addictology, APHP, Paul Brousse HospitalVillejuif, France
- Faculté de Médecine, Université Paris-Sud 11Le Kremlin Bicêtre, France
| | | | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanford, CA, USA
- Neuroscience Program, SRI InternationalMenlo Park, CA, USA
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanford, CA, USA
| |
Collapse
|
24
|
Pfefferbaum A, Zahr NM, Mayer D, Rohlfing T, Sullivan EV. Dynamic responses of selective brain white matter fiber tracts to binge alcohol and recovery in the rat. PLoS One 2015; 10:e0124885. [PMID: 25894968 PMCID: PMC4403879 DOI: 10.1371/journal.pone.0124885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/18/2015] [Indexed: 01/08/2023] Open
Abstract
To determine the dynamics of white matter vulnerability to excessive alcohol consumption, diffusion tensor imaging (DTI) was used in an animal model of alcohol exposure. Quantitative, in vivo fiber tracking results are presented from rats with DTI conducted at 3 time points: baseline; after 4 days of intragastric alcohol to blood alcohol levels of ~250mg/dL; and after one week of recovery. Binge alcohol followed by a week of sobriety resulted in rapidly reversible decreases in fractional anisotropy (FA), a measure of the coherence of fiber tracts, in callosal genu and fimbria-fornix but not splenium; and increases in mean diffusivity (MD), an index of freely diffusing water in tissue, selective to the fimbria-fornix. These effects were confirmed with tract-based spatial statistics (TBSS). The directionality of changes in DTI metrics reproduce those observed in human alcoholism. That a single exposure to binge alcohol can cause substantial transient changes detectable in DTI metrics demonstrates the potential for rapid neuroplasticity.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA, United States of America
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
25
|
Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A. Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy. Exp Neurol 2014; 261:109-19. [PMID: 24973622 PMCID: PMC4194214 DOI: 10.1016/j.expneurol.2014.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023]
Abstract
Thiamine (vitamin B1) deficiency, associated with a variety of conditions, including chronic alcoholism and bariatric surgery for morbid obesity, can result in the neurological disorder Wernicke's encephalopathy (WE). Recent work building upon early observations in animal models of thiamine deficiency has demonstrated an inflammatory component to the neuropathology observed in thiamine deficiency. The present, multilevel study including in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) and postmortem quantification of chemokine and cytokine proteins sought to determine whether a combination of these in vivo neuroimaging tools could be used to characterize an in vivo MR signature for neuroinflammation. Thiamine deficiency for 12days was used to model neuroinflammation; glucose loading in thiamine deficiency was used to accelerate neurodegeneration. Among 38 animals with regional brain tissue assayed postmortem for cytokine/chemokine protein levels, three groups of rats (controls+glucose, n=6; pyrithiamine+saline, n=5; pyrithiamine+glucose, n=13) underwent MRI/MRS at baseline (time 1), after 12days of treatment (time 2), and 3h after challenge (glucose or saline, time 3). In the thalamus of glucose-challenged, thiamine deficient animals, correlations between in vivo measures of pathology (lower levels of N-acetyle aspartate and higher levels of lactate) and postmortem levels of monocyte chemotactic protein-1 (MCP-1, also known as chemokine ligand 2, CCL2) support a role for this chemokine in thiamine deficiency-related neurodegeneration, but do not provide a unique in vivo signature for neuroinflammation.
Collapse
Affiliation(s)
- Natalie M Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA.
| | - Carsten Alt
- Immunology Program, SRI International, Menlo Park, CA 94025, USA; Palo Alto Institute for Research and Education, Palo Alto, CA 94304, USA
| | - Dirk Mayer
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Amy Manning-Bog
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R321, Stanford, CA 94305, USA
| | - Edith V Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
26
|
Zahr NM, Mayer D, Rohlfing T, Sullivan EV, Pfefferbaum A. Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol 2014; 24:654-64. [PMID: 25345895 PMCID: PMC4493672 DOI: 10.1111/bpa.12197] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022] Open
Abstract
Neuroinflammatory mechanisms contribute to the brain pathology resulting from human immunodeficiency virus (HIV) infection. Magnetic resonance spectroscopy (MRS) has been touted as a suitable method for discriminating in vivo markers of neuroinflammation. The present MRS study was conducted in four groups: alcohol dependent (A, n = 37), HIV-infected (H, n = 33), alcohol dependent + HIV infected (HA, n = 38) and healthy control (C, n = 62) individuals to determine whether metabolites would change in a pattern reflecting neuroinflammation. Significant four-group comparisons were evident only for striatal choline-containing compounds (Cho) and myo-inositol (mI), which follow-up analysis demonstrated were due to higher levels in HA compared with C individuals. To explore the potential relevance of elevated Cho and mI, correlations between blood markers, medication status and alcohol consumption were evaluated in H + HA subjects. Having an acquired immune deficiency syndrome (AIDS)-defining event or hepatitis C was associated with higher Cho; lower Cho levels, however, were associated with low thiamine levels and with highly active antiretroviral HIV treatment (HAART). Higher levels of mI were related to greater lifetime alcohol consumed, whereas HAART was associated with lower mI levels. The current results suggest that competing mechanisms can influence in vivo Cho and mI levels, and that elevations in these metabolites cannot necessarily be interpreted as reflecting a single underlying mechanism, including neuroinflammation.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
- Neuroscience ProgramSRI InternationalMenlo ParkCA
| | - Dirk Mayer
- Neuroscience ProgramSRI InternationalMenlo ParkCA
- Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMD
| | | | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine (MC5723)StanfordCA
- Neuroscience ProgramSRI InternationalMenlo ParkCA
| |
Collapse
|
27
|
Bjork JM, Gilman JM. The effects of acute alcohol administration on the human brain: insights from neuroimaging. Neuropharmacology 2014; 84:101-10. [PMID: 23978384 PMCID: PMC3971012 DOI: 10.1016/j.neuropharm.2013.07.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/05/2023]
Abstract
Over the last quarter century, researchers have peered into the living human brain to develop and refine mechanistic accounts of alcohol-induced behavior, as well as neurobiological mechanisms for development and maintenance of addiction. These in vivo neuroimaging studies generally show that acute alcohol administration affects brain structures implicated in motivation and behavior control, and that chronic intoxication is correlated with structural and functional abnormalities in these same structures, where some elements of these decrements normalize with extended sobriety. In this review, we will summarize recent findings about acute human brain responses to alcohol using neuroimaging techniques, and how they might explain behavioral effects of alcohol intoxication. We then briefly address how chronic alcohol intoxication (as inferred from cross-sectional differences between various drinking populations and controls) may yield individual brain differences between drinking subjects that may confound interpretation of acute alcohol administration effects. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- James M Bjork
- Division of Clinical Neuroscience and Behavioral Research, National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd, Room 3163, Bethesda, MD 20892, USA.
| | - Jodi M Gilman
- Laboratory of Neuroimaging and Genetics, MGH Division of Psychiatric Neuroscience, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| |
Collapse
|
28
|
Bae M, Bandaru VVR, Patel N, Haughey NJ. Ceramide metabolism analysis in a model of binge drinking reveals both neuroprotective and toxic effects of ethanol. J Neurochem 2014; 131:645-54. [PMID: 25060779 DOI: 10.1111/jnc.12834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023]
Abstract
Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide-degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0, and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, whereas EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species.
Collapse
Affiliation(s)
- Mihyun Bae
- Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
29
|
Lo JC, Loh KK, Zheng H, Sim SKY, Chee MWL. Sleep duration and age-related changes in brain structure and cognitive performance. Sleep 2014; 37:1171-8. [PMID: 25061245 DOI: 10.5665/sleep.3832] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
STUDY OBJECTIVES To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. DESIGN Community-based longitudinal brain and cognitive aging study using a convenience sample. SETTING Participants were studied in a research laboratory. PARTICIPANTS Relatively healthy adults aged 55 y and older at study commencement. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. CONCLUSIONS In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. CITATION Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.
Collapse
Affiliation(s)
- June C Lo
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Kep Kee Loh
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Hui Zheng
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Sam K Y Sim
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
30
|
Rat strain differences in brain structure and neurochemistry in response to binge alcohol. Psychopharmacology (Berl) 2014; 231:429-45. [PMID: 24030467 PMCID: PMC3904647 DOI: 10.1007/s00213-013-3253-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). OBJECTIVES Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. METHODS The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. RESULTS As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. CONCLUSIONS The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.
Collapse
|
31
|
Abstract
Chronic alcohol consumption results in structural changes to the brain. In alcoholics without coexisting thiamine deficiency or liver disease this is largely restricted to a loss of white-matter volume. When it occurs, neuronal loss is limited in anatomic distribution and only detected with quantitative techniques. This relative paucity of neurodegeneration is reflected in studies of gene and protein expression in postmortem brain where findings are subtle and discordant between studies. In alcoholics with coexisting pathologies, neuronal loss is more marked and affects a wider range of anatomic regions, especially subcortical nuclei. Although this more widespread damage may reflect a more severe drinking history, there is evidence linking thiamine deficiency and the consequences of liver disease to the pathogenesis of alcohol-related brain damage. Furthermore, a range of other factors, such as cigarette smoking and mood disorders, that are common in alcoholics, have the potential to influence studies of brain pathology and should be considered in further studies of the neuropathology of alcoholism.
Collapse
Affiliation(s)
- Greg T Sutherland
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Donna Sheedy
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jillian J Kril
- Department of Pathology, Sydney Medical School, University of Sydney, Sydney, Australia; Department of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
32
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
33
|
Sullivan EV, Pfefferbaum A. Neuropsychology and neuroimaging studies in alcohol-dependence. ACTA ACUST UNITED AC 2013. [DOI: 10.3917/rne.053.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|