1
|
Storozheva ZI, Kirenskaya AV, Samylkin DV, Gruden MA, Sewell RDE. Association of GAD1 gene polymorphism rs3749034 with the information processing and cognitive event-related potentials in schizophrenia patients and healthy subjects. Clin Neurophysiol 2024; 166:142-151. [PMID: 39168087 DOI: 10.1016/j.clinph.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Glutamic acid decarboxylase, an enzyme in GABA biosynthesis, is encoded by the GAD1 gene, the transcriptional activity of which is affected by the rs3749034 polymorphism. The aim was to investigate the effects of rs3749034 on cognitive event-related potentials (P300) in healthy subjects and schizophrenic patients. METHODS Determination of rs3749034 polymorphism was performed in 89 healthy volunteers and 109 schizophrenic patients (males). Two-stimulus oddball task performance and P300 auditory evoked potentials were analyzed and patient symptomatology was assessed using the Positive and Negative Syndrome Scale (PANSS). RESULTS An increased frequency of C allele carriers was disclosed in patients. In controls, superior task performance was observed in cytosine-thymine carriers, while a greater P300 amplitude and shorter latency were found in C/C carriers. Analogous effects were found in patients with a disease onset before 25 years of age. Higher N5 and lower P3 and G5 PANSS scales were revealed in C/C homozygotes. CONCLUSIONS The findings substantiate an involvement of GABA-ergic mechanisms in maintaining an optimal excitatory-inhibitory balance and an association of rs3749034 with early-onset disorder and negative symptoms of schizophrenia. SIGNIFICANCE These results are important for understanding underlying mechanisms and the development of evidence-based methods for assessing the risk of schizophrenia.
Collapse
Affiliation(s)
| | - Anna V Kirenskaya
- Center of Psychosomatic Medicine and Psychotherapy "Alvian", Moscow, Russia
| | - Denis V Samylkin
- National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - Marina A Gruden
- P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Pharmacy, CECOS University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
2
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
3
|
di Hou M, Santoro V, Biondi A, Shergill SS, Premoli I. A systematic review of TMS and neurophysiological biometrics in patients with schizophrenia. J Psychiatry Neurosci 2021; 46:E675-E701. [PMID: 34933940 PMCID: PMC8695525 DOI: 10.1503/jpn.210006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation can be combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) to evaluate the excitatory and inhibitory functions of the cerebral cortex in a standardized manner. It has been postulated that schizophrenia is a disorder of functional neural connectivity underpinned by a relative imbalance of excitation and inhibition. The aim of this review was to provide a comprehensive overview of TMS-EMG and TMS-EEG research in schizophrenia, focused on excitation or inhibition, connectivity, motor cortical plasticity and the effect of antipsychotic medications, symptom severity and illness duration on TMS-EMG and TMS-EEG indices. METHODS We searched PsycINFO, Embase and Medline, from database inception to April 2020, for studies that included TMS outcomes in patients with schizophrenia. We used the following combination of search terms: transcranial magnetic stimulation OR tms AND interneurons OR glutamic acid OR gamma aminobutyric acid OR neural inhibition OR pyramidal neurons OR excita* OR inhibit* OR GABA* OR glutam* OR E-I balance OR excitation-inhibition balance AND schizoaffective disorder* OR Schizophrenia OR schizophreni*. RESULTS TMS-EMG and TMS-EEG measurements revealed deficits in excitation or inhibition, functional connectivity and motor cortical plasticity in patients with schizophrenia. Increased duration of the cortical silent period (a TMS-EMG marker of γ-aminobutyric acid B receptor activity) with clozapine was a relatively consistent finding. LIMITATIONS Most of the studies used patients with chronic schizophrenia and medicated patients, employed cross-sectional group comparisons and had small sample sizes. CONCLUSION TMS-EMG and TMS-EEG offer an opportunity to develop a novel and improved understanding of the physiologic processes that underlie schizophrenia and to assess the therapeutic effect of antipsychotic medications. In the future, these techniques may also help predict disease progression and further our understanding of the excitatory/inhibitory balance and its implications for mechanisms that underlie treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Meng di Hou
- From the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Hou, Shergill); the Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Santoro, Biondi, Premoli); and the Kent and Medway Medical School, Canterbury, UK (Shergill)
| | | | | | | | | |
Collapse
|
4
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
5
|
Overs BJ, Lenroot RK, Roberts G, Green MJ, Toma C, Hadzi-Pavlovic D, Pierce KD, Schofield PR, Mitchell PB, Fullerton JM. Cortical mediation of relationships between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res Neuroimaging 2021; 309:111258. [PMID: 33529975 DOI: 10.1016/j.pscychresns.2021.111258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Bipolar disorder is associated with cognitive deficits and cortical changes for which the developmental dynamics are not well understood. The dopamine D2 receptor (DRD2) gene has been associated with both psychiatric disorders and cognitive variability. Here we examined the mediating role of brain structure in the relationship between DRD2 genomic variation and cognitive performance, with target cortical regions selected based on evidence of association with DRD2, bipolar disorder and/or cognition from prior literature. Participants (n = 143) were aged 12-30 years and comprised 62 first-degree relatives of bipolar patients (deemed 'at-risk'), 55 controls, and 26 patients with established bipolar disorder; all were unrelated Caucasian individuals with complete data across the three required modalities (structural magnetic resonance imaging, neuropsychological and genetic data). A DRD2 haplotype was derived from three functional polymorphisms (rs1800497, rs1076560, rs2283265) associated with alternative splicing (i.e., D2-short/-long isoforms). Moderated mediation analyses explored group differences in relationships between this DRD2 haplotype, three structural brain networks which subsume the identified cortical regions of interest (frontoparietal, dorsal-attention, and ventral-attention), and three cognitive indices (intelligence, attention, and immediate memory). Controls who were homozygous for the DRD2 major haplotype demonstrated greater cognitive performance as a result of dorsal-attention network mediation. However, this association was absent in the 'at-risk' group. This study provides the first evidence of a functional DRD2-brain-cognition pathway. The absence of typical brain-cognition relationships in young 'at-risk' individuals may reflect biological differences that precede illness onset. Further insight into early pathogenic processes may facilitate targeted early interventions.
Collapse
Affiliation(s)
- Bronwyn J Overs
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Rhoshel K Lenroot
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Melissa J Green
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Claudio Toma
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Dusan Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Kerrie D Pierce
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia.
| |
Collapse
|
6
|
Fatih P, Kucuker MU, Vande Voort JL, Doruk Camsari D, Farzan F, Croarkin PE. A Systematic Review of Long-Interval Intracortical Inhibition as a Biomarker in Neuropsychiatric Disorders. Front Psychiatry 2021; 12:678088. [PMID: 34149483 PMCID: PMC8206493 DOI: 10.3389/fpsyt.2021.678088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Long-interval intracortical inhibition (LICI) is a paired-pulse transcranial magnetic stimulation (TMS) paradigm mediated in part by gamma-aminobutyric acid receptor B (GABAB) inhibition. Prior work has examined LICI as a putative biomarker in an array of neuropsychiatric disorders. This review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) sought to examine existing literature focused on LICI as a biomarker in neuropsychiatric disorders. There were 113 articles that met the inclusion criteria. Existing literature suggests that LICI may have utility as a biomarker of GABAB functioning but more research with increased methodologic rigor is needed. The extant LICI literature has heterogenous methodology and inconsistencies in findings. Existing findings to date are also non-specific to disease. Future research should carefully consider existing methodological weaknesses and implement high-quality test-retest reliability studies.
Collapse
Affiliation(s)
- Parmis Fatih
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - M Utku Kucuker
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Jennifer L Vande Voort
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Centre for Engineering-Led Brain Research, Simon Fraser University, Surrey, BC, Canada
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Lett TA, Vogel BO, Ripke S, Wackerhagen C, Erk S, Awasthi S, Trubetskoy V, Brandl EJ, Mohnke S, Veer IM, Nöthen MM, Rietschel M, Degenhardt F, Romanczuk-Seiferth N, Witt SH, Banaschewski T, Bokde ALW, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Ittermann B, Martinot JL, Martinot MLP, Nees F, Papadopoulos-Orfanos D, Paus T, Poustka L, Fröhner JH, Smolka MN, Whelan R, Schumann G, Tost H, Meyer-Lindenberg A, Heinz A, Walter H, IMAGEN consortium. Cortical Surfaces Mediate the Relationship Between Polygenic Scores for Intelligence and General Intelligence. Cereb Cortex 2020; 30:2707-2718. [PMID: 31828294 PMCID: PMC7175009 DOI: 10.1093/cercor/bhz270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Recent large-scale, genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with general intelligence. The cumulative influence of these loci on brain structure is unknown. We examined if cortical morphology mediates the relationship between GWAS-derived polygenic scores for intelligence (PSi) and g-factor. Using the effect sizes from one of the largest GWAS meta-analysis on general intelligence to date, PSi were calculated among 10 P value thresholds. PSi were assessed for the association with g-factor performance, cortical thickness (CT), and surface area (SA) in two large imaging-genetics samples (IMAGEN N = 1651; IntegraMooDS N = 742). PSi explained up to 5.1% of the variance of g-factor in IMAGEN (F1,1640 = 12.2-94.3; P < 0.005), and up to 3.0% in IntegraMooDS (F1,725 = 10.0-21.0; P < 0.005). The association between polygenic scores and g-factor was partially mediated by SA and CT in prefrontal, anterior cingulate, insula, and medial temporal cortices in both samples (PFWER-corrected < 0.005). The variance explained by mediation was up to 0.75% in IMAGEN and 0.77% in IntegraMooDS. Our results provide evidence that cumulative genetic load influences g-factor via cortical structure. The consistency of our results across samples suggests that cortex morphology could be a novel potential biomarker for neurocognitive dysfunction that is among the most intractable psychiatric symptoms.
Collapse
Affiliation(s)
- Tristram A Lett
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carolin Wackerhagen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College, Institute of Neuroscience, College Green, Dublin 2, Ireland
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Erin B Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry,” University Paris Sud, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes; Sorbonne Université; and AP-HP, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Tomáš Paus
- Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, Bloorview Research Institute, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075, Göttingen, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Heike Tost
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | | |
Collapse
|
8
|
Shi Y, Li Y, Zhang J, Xiao Y, Yan P, Zhu Y. GAD1 but not GAD2 polymorphisms are associated with heroin addiction phenotypes. Neurosci Lett 2020; 717:134704. [PMID: 31866536 DOI: 10.1016/j.neulet.2019.134704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Heroin addiction is a chronic complex brain disease that contains multiple phenotypes, which vary widely among addicts and may be affected by genetic factors. A total of 801 unrelated heroin addicts were recruited and divided into different subgroups according to eight phenotypes of heroin addiction. Polymorphisms in GAD1 (rs3762555, rs3762556, rs3791878, rs3749034, rs11532313 and rs769395) and GAD2 (rs2839669, rs2839670 and rs2236418) were genotyped using the SNaPshot assay. Associations between genetic variants and the eight phenotypes were mainly assessed by binary logistic regression. RESULTS We found that the frequencies of G allele of GAD1 rs3749034 and rs3762555 were associated with daily dose of methadone use and memory change after heroin addiction. The C allele frequency of GAD1 rs3762556 was associated with lower daily dose of methadone use. In GAD1, SNPs rs3762556, rs3762555, rs3791878 and rs3749034 had strong linkage, and the frequency of the C-G-C-A haplotype was higher in the lower dose of methadone group. Patients with the TT genotype of rs11542313 were maintained on lower dose of methadone than patients with the CC genotype. The G alleles of rs3762555 and rs3749034 were lower, while the T allele of rs11542313 was higher, in the memory decreased group. The results of association analyses of GAD2 with phenotypes of heroin addiction showed no significant differences. CONCLUSION GAD1 polymorphisms were associated with phenotypes of heroin addiction, especially the daily dose of methadone use and memory change in the Han Chinese population. These results may provide individualized guidance for the treatment of heroin addiction.
Collapse
Affiliation(s)
- Yuhui Shi
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunxiao Li
- Department of Human Anatomy, Shaanxi University of Chinese Medicine, Xianyan, Shaanxi, China
| | - Jinyu Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifan Xiao
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongsheng Zhu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Hadjis E, Hyde M, Choueiry J, Jaworska N, Nelson R, de la Salle S, Smith D, Aidelbaum R, Knott V. Effect of GAD1 genotype status on auditory attention and acute nicotine administration in healthy volunteers. Hum Psychopharmacol 2019; 34:e2684. [PMID: 30488987 DOI: 10.1002/hup.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The effects of GABA modulating drugs and nicotine, the prototypical nicotinic cholinergic agonist, on attention have been investigated using subcomponents of the P300 event-related potentials (ERP), which index involuntary (P3a) and voluntary attention (P3b). However, investigations into how such pharmacologic effects interact with genetic features in the GABA system remain unclear. This study examined the moderating effects of a single nucleotide polymorphism (rs7557793) in the glutamic acid decarboxylase 67 (GAD1) gene, which is implicated in the conversion of glutamate to GABA, on P300-indices of auditory attentional processing; the influence of nicotine administration was also assessed. METHODS The effects of GAD1 genotype (TT/CC/CT) were examined on the P3a/b in response to an auditory selective attention task in healthy, nonsmoking male volunteers (N = 126; 18-40 years). Participants responded to rare target stimuli (P3b-eliciting) and ignored frequent nontarget stimuli as well as rare distractor stimuli (P3a-eliciting). In a subsample (N = 59), P3a/b profiles to acute nicotine (vs. placebo) administration were examined as a function of GAD1 genotype. As a secondary aim, earlier sensory processes were assessed with N200 ERP subcomponents elicited by novel (N2a) and target (N2b) auditory stimuli. RESULTS GAD1 allelic variation moderated early sensory processes, enhancing N2a amplitudes in CT versus TT carriers. Further, TT homozygotes exhibited larger P3b amplitudes than CC homozygotes in the placebo versus nicotine condition. Regardless of genotype, nicotine versus placebo moderated the N200 ERP. CONCLUSION These findings expand our knowledge regarding the attentional effects of GAD1 genetic variants in relation to nicotine.
Collapse
Affiliation(s)
- Efthymios Hadjis
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Molly Hyde
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Joelle Choueiry
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Renee Nelson
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara de la Salle
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Rob Aidelbaum
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
11
|
Kirenskaya AV, Storozheva ZI, Gruden MA, Sewell RDE. COMT and GAD1 gene polymorphisms are associated with impaired antisaccade task performance in schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 2018; 268:571-584. [PMID: 29429137 PMCID: PMC6096577 DOI: 10.1007/s00406-018-0881-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
Genetic influences modulating executive functions engaging prefrontal cortical brain systems were investigated in 141 male subjects. The effects of variations in two genes implicated in dopamine and GABA activities in the prefrontal cortex: rs4680 (Val158/Met polymorphism of the catechol-o-methyltransferase gene-COMT) and rs3749034 (C/T) substitution in the promoter region of the glutamic acid decarboxylase gene (GAD1) were studied on antisaccade (AS) performance in healthy subjects and schizophrenic patients. Genotyping revealed a trend towards a reduced proportion of COMT Val/Met heterozygotes and a significantly increased frequency of the GAD1 rs3749034 C allele in schizophrenic patients relative to controls. Patients had elevated error rates, increased AS latencies and increased latency variability (coefficient of variation) compared to controls. The influence of polymorphisms was observed only in patients but not in controls. A substantial effect of the COMT genotype was noted on the coefficient of variation in latency, and this measure was higher in Val homozygotes compared to Met allele carriers (p < 0.05) in the patient group. The outcome from rs3749034 was also disclosed on the error rate (higher in T carriers relative to C homozygotes, p < 0.01) and latency (increased in C homozygotes relative to T carriers, p < 0.01). Binary logistic regression showed that inclusion of the genotype factor (i.e., selective estimation of antisaccade measures in CC carriers) considerably increased the validity of the diagnostic model based on the AS measures. These findings may well be derived from specific genetic associations with prefrontal cortex functioning in schizophrenia.
Collapse
Affiliation(s)
- Anna V Kirenskaya
- Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Lane. 23, 119034, Moscow, Russian Federation
| | - Zinaida I Storozheva
- Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky Lane. 23, 119034, Moscow, Russian Federation
| | - Marina A Gruden
- Federal State Budgetary Scientific Institution "P. K. Anokhin Research Institute of Normal Physiology", Baltiskaya St., 8, 125315, Moscow, Russian Federation
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, Cardiff, CF10 3NB, UK.
| |
Collapse
|
12
|
Weng X, Liu F, Zhang H, Kan M, Wang T, Dong M, Liu Y. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus. Diabetes Res Clin Pract 2018; 142:10-18. [PMID: 29596946 DOI: 10.1016/j.diabres.2018.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Offspring exposed to gestational diabetes mellitus (GDM) are at a high risk for metabolic diseases. The mechanisms behind the association between offspring exposed to GDM in utero and an increased risk of health consequences later in life remain unclear. The aim of this study was to clarify the changes in methylation levels in the foetuses of women with GDM and to explore the possible mechanisms linking maternal GDM with a high risk of metabolic diseases in offspring later in life. METHODS A genome-wide comparative methylome analysis on the umbilical cord blood of infants born to 30 women with GDM and 33 women with normal pregnancy was performed using Infinium HumanMethylation 450 BeadChip assays. A quantitative methylation analysis of 18 CpG dinucleotides was verified in the validation umbilical cord blood samples from 102 newborns exposed to GDM and 103 newborns who experienced normal pregnancy by MassARRAY EpiTYPER. RESULTS A total of 4485 differentially methylated sites (DMSs), including 2150 hypermethylated sites and 2335 hypomethylated sites, with a mean β-value difference of >0.05, were identified by the 450k array. Good agreement was observed between the massarray validation data and the 450k array data (R2 > 0.99; P < 0.0001). Thirty-seven CpGs (representing 20 genes) with a β-value difference of > 0.15 between the GDM and healthy groups were identified and showed potential as clinical biomarkers for GDM. "hsa04940: Type I diabetes mellitus" was the most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, with a P-value = 3.20E-07 and 1.36E-02 in the hypermethylated and hypomethylated genepathway enrichment analyses, respectively. In the Gene Ontology (GO) pathway analyses, immune MHC (major histocompatibility complex)-related pathways and neuron development-related pathways were significantly enriched. CONCLUSIONS Our results suggest that GDM has epigenetic effects on genes that are preferentially involved in the Type I diabetes mellitus pathway, immune MHC-related pathways and neuron development-related pathways, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming.
Collapse
Affiliation(s)
- Xiaoling Weng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Fatao Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Mengyuan Kan
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ting Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, PR China
| | - Yun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China; Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| |
Collapse
|
13
|
Multimodal neuroimaging measures and intelligence influence pedophile child sexual offense behavior. Eur Neuropsychopharmacol 2018; 28:818-827. [PMID: 29880336 DOI: 10.1016/j.euroneuro.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Pedophilia is a heterogeneous disorder for which the neurobiological correlates are not well established. In particular, there are no biological markers identifying individuals with high risk to commit child sexual offense (CSO). Pedophiles with CSO (P+CSO; N = 73), pedophiles without CSO (P-CSO; N = 77), and non-pedophilic controls (NPC; N = 133) were assessed using multimodal structural neuroimaging measures including: cortical thickness (CT), surface area (SA), and white matter fractional anisotropy (FA), as well as full scale IQ (FSIQ) performance. Cortex-wise mediation analyses were used to assess the relationships among brain structure, FSIQ and CSO behavior. Lower FSIQ performance was strongly predict with P+CSO (Wald Chi2 = 13.0, p = 3.1 × 10-5). P+CSO had lower CT in the right motor cortex and pronounced reductions in SA spanning the bilateral frontal, temporal, cingulate, and insular regions (PFWE-corrected < 0.05). P+CSO also had lower FA particularly in the corpus callosum (PFWE-corrected < 0.05). The relationship between SA and P+CSO was significantly mediated by FSIQ, particularly in the prefrontal and anterior insular cortices (PFWE-corrected < 0.05). Within P+CSO, left prefrontal and right anterior cingulate SA negatively correlated with number of CSOs (PFWE-corrected < 0.05). This study demonstrates converging neurobiological findings in which P+CSO had lower FSIQ performance, reduced CT, reduced SA, and reduced FA, compared to P-CSO as well as NPC. Further, FSIQ potentially mediates abuse by pedophiles via aberrant SA, whereas the CT and FA associations were independent of FSIQ differences. These findings suggest aberrant neuroanatomy and lower intelligence as a potential core feature underlying child sexual abuse behavior by pedophiles.
Collapse
|
14
|
Ferri F, Nikolova YS, Perrucci MG, Costantini M, Ferretti A, Gatta V, Huang Z, Edden RAE, Yue Q, D’Aurora M, Sibille E, Stuppia L, Romani GL, Northoff G. A Neural "Tuning Curve" for Multisensory Experience and Cognitive-Perceptual Schizotypy. Schizophr Bull 2017; 43:801-813. [PMID: 28168302 PMCID: PMC5472158 DOI: 10.1093/schbul/sbw174] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our coherent perception of external events is enabled by the integration of inputs from different senses occurring within a range of temporal offsets known as the temporal binding window (TBW), which varies from person to person. A relatively wide TBW may increase the likelihood that stimuli originating from different environmental events are erroneously integrated and abnormally large TBW has been found in psychiatric disorders characterized by unusual perceptual experiences. Despite strong evidence of inter-individual differences in TBW, both within clinical and nonclinical populations, the neurobiological underpinnings of this variability remain unclear. We adopted an integrated strategy linking TBW to temporal dynamics in functional magnetic resonance imaging (fMRI)-resting-state activity and cortical excitation/inhibition (E/I) balance. E/I balance was indexed by glutamate/Gamma-AminoButyric Acid (GABA) concentrations and common variation in glutamate and GABA genes in a healthy sample. Stronger resting-state long-range temporal correlations, indicated by larger power law exponent (PLE), in the auditory cortex, robustly predicted narrower audio-tactile TBW, which was in turn associated with lower cognitive-perceptual schizotypy. Furthermore, PLE was highest and TBW narrowest for individuals with intermediate levels of E/I balance, with shifts towards either extreme resulting in reduced multisensory temporal precision and increased schizotypy, effectively forming a neural "tuning curve" for multisensory experience and schizophrenia risk. Our findings shed light on the neurobiological underpinnings of multisensory integration and its potentially clinically relevant inter-individual variability.
Collapse
Affiliation(s)
- Francesca Ferri
- Department of Psychology, University of Essex, Colchester, UK;,Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada;,These authors contributed equally to the article
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada;,These authors contributed equally to the article
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Marcello Costantini
- Department of Psychology, University of Essex, Colchester, UK;,Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Zirui Huang
- Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Richard A. E. Edden
- Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD;,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Marco D’Aurora
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON, Canada;,Departments of Psychiatry and of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Liborio Stuppia
- Department of Psychological, Humanities and Territorial Sciences, “G.d’Annunzio” University of Chieti, Chieti, Italy
| | - Gian Luca Romani
- Department of Neuroscience, Imaging and Clinical Science, “G.d’Annunzio” University of Chieti, and ITAB—Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Georg Northoff
- Institute of Mental Health Research, Brain and Mind Research Centre, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Yan W, Li L, Li G, Zhao S. Microcystin-LR induces changes in the GABA neurotransmitter system of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:170-176. [PMID: 28535436 DOI: 10.1016/j.aquatox.2017.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/21/2023]
Abstract
It has been reported that exposure to microcystins altered adult zebrafish swimming performance parameters, but the possible mechanisms of action remain unknown. Neuronal activity depends on the balance between the number of excitatory and inhibitory processes which are associated with neurotransmitters. In the present study, zebrafish embryos (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30μg/L (microcystin-LR) MCLR for 90day until reaching sexual maturity. To investigate the effects of MCLR on the neurotransmitter system, mRNA levels involved in amino acid g-aminobutyric acid (GABA) and glutamate metabolic pathways were tested using quantitative real-time PCR. Significant increase of GABAA receptor, alpha 1 (gabra1), glutamate decarboxylase (gad1b), glutaminase (glsa) and reduction of mRNA expression of GABA transporter (gat1) at transcriptional level were observed in the brain. Meanwhile, western blotting showed that the protein levels of gabra1, gad1b were induced by MCLR, whereas the expression of gat1 was decreased. In addition, MCLR induced severe damage to cerebrum ultrastructure, showing edematous and collapsed myelinated nerve fibers, distention of endoplasmic reticulum and swelling mitochondria. Our results suggested that MCLR showed neurotoxicity in zebrafish which might attribute to the disorder of GABA neurotransmitter pathway.
Collapse
Affiliation(s)
- Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review. Neurosci Biobehav Rev 2017; 77:369-387. [DOI: 10.1016/j.neubiorev.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
17
|
Lett TA, Waller L, Tost H, Veer IM, Nazeri A, Erk S, Brandl EJ, Charlet K, Beck A, Vollstädt-Klein S, Jorde A, Kiefer F, Heinz A, Meyer-Lindenberg A, Chakravarty MM, Walter H. Cortical surface-based threshold-free cluster enhancement and cortexwise mediation. Hum Brain Mapp 2017; 38:2795-2807. [PMID: 28317230 DOI: 10.1002/hbm.23563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/28/2017] [Indexed: 12/27/2022] Open
Abstract
Threshold-free cluster enhancement (TFCE) is a sensitive means to incorporate spatial neighborhood information in neuroimaging studies without using arbitrary thresholds. The majority of methods have applied TFCE to voxelwise data. The need to understand the relationship among multiple variables and imaging modalities has become critical. We propose a new method of applying TFCE to vertexwise statistical images as well as cortexwise (either voxel- or vertexwise) mediation analysis. Here we present TFCE_mediation, a toolbox that can be used for cortexwise multiple regression analysis with TFCE, and additionally cortexwise mediation using TFCE. The toolbox is open source and publicly available (https://github.com/trislett/TFCE_mediation). We validated TFCE_mediation in healthy controls from two independent multimodal neuroimaging samples (N = 199 and N = 183). We found a consistent structure-function relationship between surface area and the first independent component (IC1) of the N-back task, that white matter fractional anisotropy is strongly associated with IC1 N-back, and that our voxel-based results are essentially identical to FSL randomise using TFCE (all PFWE <0.05). Using cortexwise mediation, we showed that the relationship between white matter FA and IC1 N-back is mediated by surface area in the right superior frontal cortex (PFWE < 0.05). We also demonstrated that the same mediation model is present using vertexwise mediation (PFWE < 0.05). In conclusion, cortexwise analysis with TFCE provides an effective analysis of multimodal neuroimaging data. Furthermore, cortexwise mediation analysis may identify or explain a mechanism that underlies an observed relationship among a predictor, intermediary, and dependent variables in which one of these variables is assessed at a whole-brain scale. Hum Brain Mapp 38:2795-2807, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tristram A Lett
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Lea Waller
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Heike Tost
- Department of Psychiatry, University of Heidelberg, Heidelberg, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Arash Nazeri
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Katrin Charlet
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry, University of Heidelberg, Heidelberg, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Hospital Mental Health University Institute, Verdun, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| |
Collapse
|
18
|
Du X, Kochunov P, Summerfelt A, Chiappelli J, Choa FS, Hong LE. The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimul 2016; 10:283-290. [PMID: 27867023 DOI: 10.1016/j.brs.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. OBJECTIVE/HYPOTHESIS We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. METHODS We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. RESULTS Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r = -0.68, p = 0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r = -0.54, p = 0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients. CONCLUSION This study demonstrated the importance of structural circuitry integrity in inhibitory signaling in schizophrenia, and encouraged modeling the I-E dysfunction in schizophrenia from a circuitry perspective.
Collapse
Affiliation(s)
- Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fow-Sen Choa
- The Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
The effects of a genome-wide supported variant in the CACNA1C gene on cortical morphology in schizophrenia patients and healthy subjects. Sci Rep 2016; 6:34298. [PMID: 27683010 PMCID: PMC5041147 DOI: 10.1038/srep34298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a highly heritable disorder with multiple susceptibility genes. Previously, we identified CACNA1C rs2007044 as a new risk locus for schizophrenia, with the minor allele G as risk allele. This association was recently validated by a powerful genome-wide association study. However, the underlying neural mechanisms remain unclear. Therefore, we tested whether the risk allele has an influence on cortical surface area and thickness in a sample of schizophrenia patients and healthy controls. We found significant genotype by diagnosis interactions on cortical surface area, but not thickness, in the right dorsolateral prefrontal cortex and the left superior parietal cortex, both of which are key components of the central executive network. Moreover, the surface areas of both regions were inversely correlated with PANSS negative scores in AA homogeneous patients but not in G-carriers. This is the first study to describe the influence of the new genome-wide supported schizophrenia risk variant on cortical morphology. Our data revealed a significant genetic effect of cortical surface area in pivotal brain regions, which have been implicated in the pathophysiology of schizophrenia, possibly via their involvement in cognitive functions. These results yield new insights into the potential neural mechanisms linking CACNA1C to the risk of schizophrenia.
Collapse
|
20
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
21
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|