1
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. Mol Psychiatry 2025:10.1038/s41380-025-03026-9. [PMID: 40316677 DOI: 10.1038/s41380-025-03026-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs. This is observed only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, we observe CP-AMPAR upregulation in D1 MSN (but not D2 MSN) and the effect of exogenous RA application is occluded in these D1 MSN. Instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes elevated cue-induced cocaine seeking back to non-incubated levels. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- National Center for Wellness and Recovery, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
| |
Collapse
|
2
|
Wattad S, Bryant G, Shmuel M, Smith HL, Yaka R, Thornton C. Cocaine Differentially Affects Mitochondrial Function Depending on Exposure Time. Int J Mol Sci 2025; 26:2131. [PMID: 40076756 PMCID: PMC11899979 DOI: 10.3390/ijms26052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Cocaine use is a rising global concern, and increased use is accompanied by a significant increase in people entering treatment for the first time. However, there are still no complete therapies, and preclinical tools are necessary to both understand the action of cocaine and mitigate for its effects. Cocaine exposure rapidly impacts cellular and mitochondrial health, leading to oxidative stress. This study evaluated the effects of acute, repeated, and chronic cocaine exposure on C17.2 neural precursor cells. A single exposure to high concentrations of cocaine caused rapid cell death, with lower concentrations increasing markers of oxidative stress and mitochondrial dysfunction within 4 h of exposure. Alterations in cellular bioenergetics and mitochondrial fusion and fission gene expression (OPA1, DRP1) were also observed, which returned to baseline by 24 h after insult. Repeated exposure over 3 days reduced cell proliferation and spare mitochondrial respiratory capacity, suggesting compromised cellular resilience. Interestingly, chronic exposure over 4 weeks led to cellular adaptation and restoring mitochondrial bioenergetics and ATP production while mitigating for oxidative stress. These findings highlight the time-dependent cellular effects of cocaine, with initial toxicity and mitochondrial impairment transitioning to adaptive responses under chronic exposure.
Collapse
Affiliation(s)
- Sahar Wattad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (M.S.)
| | - Gabriella Bryant
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Miriam Shmuel
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (M.S.)
| | - Hannah L. Smith
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (M.S.)
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
3
|
Wolf ME. Targeting Neuroplasticity in Substance Use Disorders: Implications for Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:259-280. [PMID: 39374445 PMCID: PMC11864087 DOI: 10.1146/annurev-pharmtox-061724-080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models. A relationship between cocaine seeking and potentiated AMPAR transmission in nucleus accumbens is indicated by both models. In particular, an atypical subpopulation-Ca2+-permeable or CP-AMPARs-mediates cue-induced seeking that persists even after long periods of abstinence, modeling the persistent vulnerability to relapse that represents a major challenge in treating substance use disorder. We review strategies to reverse CP-AMPAR plasticity; strategies targeting other components of excitatory synapses, including dysregulated glutamate uptake and release; and behavioral interventions that can be augmented by harnessing synaptic plasticity.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
| |
Collapse
|
4
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
5
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
6
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
7
|
Du C, Park K, Hua Y, Liu Y, Volkow ND, Pan Y. Astrocytes modulate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. Mol Psychiatry 2024; 29:820-834. [PMID: 38238549 PMCID: PMC11784220 DOI: 10.1038/s41380-023-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which modulate neurovascular coupling-a process that regulates cerebral hemodynamics in response to neuronal activation. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects has been challenging, partially due to limitations of neuroimaging techniques able to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities (reflected by the intracellular calcium changes in neurons Ca2+N and astrocytes Ca2+A, respectively) alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2+A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during a cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases, but it also attenuated the neuronal Ca2+N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone and consequently blood flow, at baseline and for modulating the vasoconstricting and neuronal activation responses to cocaine in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kichon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20857, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
8
|
Nicolas C, Ju A, Wu Y, Eldirdiri H, Delcasso S, Couderc Y, Fornari C, Mitra A, Supiot L, Vérité A, Masson M, Rodriguez-Rozada S, Jacky D, Wiegert JS, Beyeler A. Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nat Commun 2023; 14:5073. [PMID: 37604802 PMCID: PMC10442438 DOI: 10.1038/s41467-023-40517-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Responses of the insular cortex (IC) and amygdala to stimuli of positive and negative valence are altered in patients with anxiety disorders. However, neural coding of both anxiety and valence by IC neurons remains unknown. Using fiber photometry recordings in mice, we uncover a selective increase of activity in IC projection neurons of the anterior (aIC), but not posterior (pIC) section, when animals are exploring anxiogenic spaces, and this activity is proportional to the level of anxiety of mice. Neurons in aIC also respond to stimuli of positive and negative valence, and the strength of response to strong negative stimuli is proportional to mice levels of anxiety. Using ex vivo electrophysiology, we characterized the IC connection to the basolateral amygdala (BLA), and employed projection-specific optogenetics to reveal anxiogenic properties of aIC-BLA neurons. Finally, we identified that aIC-BLA neurons are activated in anxiogenic spaces, as well as in response to aversive stimuli, and that both activities are positively correlated. Altogether, we identified a common neurobiological substrate linking negative valence with anxiety-related information and behaviors, which provides a starting point to understand how alterations of these neural populations contribute to psychiatric disorders.
Collapse
Affiliation(s)
- C Nicolas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - A Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Y Wu
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - H Eldirdiri
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - S Delcasso
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Y Couderc
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - C Fornari
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - A Mitra
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - L Supiot
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - A Vérité
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - M Masson
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - S Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Jacky
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - J S Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
9
|
Pan Y, Du C, Park K, Hua Y, Volkow N. Astrocytes mediate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2626090. [PMID: 36993330 PMCID: PMC10055529 DOI: 10.21203/rs.3.rs-2626090/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which are involved in neurovascular coupling process that modulates cerebral hemodynamics in response to neuronal activity. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects is challenging, partially due to limitations of neuroimaging techniques to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2 + A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases but also attenuated the neuronal Ca2+ N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone of blood flow at baseline and for mediating the vasoconstricting responses to cocaine as well as its neuronal activation in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
| | | | | | | | - Nora Volkow
- National Institute on Drug Abuse National Institutes of Health
| |
Collapse
|
10
|
Liu Y, Hua Y, Park K, Volkow ND, Pan Y, Du C. Cocaine's cerebrovascular vasoconstriction is associated with astrocytic Ca 2+ increase in mice. Commun Biol 2022; 5:936. [PMID: 36097038 PMCID: PMC9468035 DOI: 10.1038/s42003-022-03877-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human and animal studies have reported widespread reductions in cerebral blood flow associated with chronic cocaine exposures. However, the molecular and cellular mechanisms underlying cerebral blood flow reductions are not well understood. Here, by combining a multimodal imaging platform with a genetically encoded calcium indicator, we simultaneously measured the effects of acute cocaine on neuronal and astrocytic activity, tissue oxygenation, hemodynamics and vascular diameter changes in the mouse cerebral cortex. Our results showed that cocaine constricted blood vessels (measured by vessel diameter Φ changes), decreasing cerebral total blood volume (HbT) and temporally reducing tissue oxygenation. Cellular imaging showed that the mean astrocytic Ca2+ dependent fluorescence [Formula: see text] increase in response to cocaine was weaker but longer lasting than the mean neuronal Ca2+ dependent fluorescence [Formula: see text] changes. Interestingly, while cocaine-induced [Formula: see text] increase was temporally correlated with tissue oxygenation change, the [Formula: see text] elevation after cocaine was in temporal correspondence with the long-lasting decrease in arterial blood volumes. To determine whether the temporal association between astrocytic activation and cocaine induced vasoconstriction reflected a causal association we inhibited astrocytic Ca2+ using GFAP-DREADD(Gi). Inhibition of astrocytes attenuated the vasoconstriction resulting from cocaine, providing evidence that astrocytes play a critical role in cocaine's vasoconstrictive effects in the brain. These results indicate that neurons and astrocytes play different roles in mediating neurovascular coupling in response to cocaine. Our findings implicate neuronal activation as the main driver of the short-lasting reduction in tissue oxygenation and astrocyte long-lasting activation as the driver of the persistent vasoconstriction with cocaine. Understanding the cellular and vascular interaction induced by cocaine will be helpful for future putative treatments to reduce cerebrovascular pathology from cocaine use.
Collapse
Affiliation(s)
- Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, 20852, USA.
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
11
|
Spelta LEW, Real CC, Buchpiguel CA, de Paula Faria D, Marcourakis T. [ 18 F]FDG brain uptake of C57Bl/6 male mice is affected by locomotor activity after cocaine use: A small animal positron emission tomography study. J Neurosci Res 2022; 100:1876-1889. [PMID: 35779255 DOI: 10.1002/jnr.25102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022]
Abstract
We verified if cocaine-induced peripheral activation might disrupt [18 F]FDG brain uptake after a cocaine challenge and suggested an optimal protocol to measure cocaine-induced brain metabolic alterations in mice. C57Bl/6 male mice were injected with [18 F]FDG and randomly separated into three groups. Groups 1 and 2 were kept conscious after [18 F]FDG administration and after 5 min received saline or cocaine (20 mg/kg). The animals in group 1 (n = 5) were then evaluated in the open field for 30 min and those from group 2 (n = 6) were kept alone in a home cage for the same period. Forty-five minutes after [18 F]FDG administration, images were acquired for 30 min. Group 3 (n = 6) was kept anesthetized and image acquisition started immediately after tracer injection, for 75 min. Saline (Day 1) or cocaine (Day 2) was injected 5 min after starting acquisition. Another set of animals (n = 5) were treated with cocaine every other day for 10 days or saline (n = 6) and were scanned with the dynamic protocol to verify its efficacy. [18 F]FDG uptake increased after cocaine administration when compared to baseline only in animals kept under anesthesia. No brain effect of cocaine was observed in animals submitted to the open field or kept in the home cage. The use of anesthesia is essential to visualize cocaine-induced changes in brain metabolism by [18 F]FDG PET, providing an interesting preclinical approach to investigate naïve subjects and enabling a bidirectional translational science approach for better understanding of cocaine use disorder.
Collapse
Affiliation(s)
- Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Freyssin A, Rioux Bilan A, Fauconneau B, Galineau L, Serrière S, Tauber C, Perrin F, Guillard J, Chalon S, Page G. Trans ε-Viniferin Decreases Amyloid Deposits With Greater Efficiency Than Resveratrol in an Alzheimer's Mouse Model. Front Neurosci 2022; 15:803927. [PMID: 35069106 PMCID: PMC8770934 DOI: 10.3389/fnins.2021.803927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In a previous study, we showed that viniferin decreased amyloid deposits and reduced neuroinflammation in APPswePS1dE9 transgenic mice between 3 and 6 months of age. In the present study, wild type and APPswePS1dE9 transgenic mice were treated from 7 to 11 or from 3 to 12 months by a weekly intraperitoneal injection of either 20 mg/kg viniferin or resveratrol or their vehicle, the polyethylene glycol 200 (PEG 200). The cognitive status of the mice was evaluated by the Morris water maze test. Then, amyloid burden and neuroinflammation were quantified by western-blot, Enzyme-Linked ImmunoSorbent Assay (ELISA), immunofluorescence, and in vivo micro-Positon Emission Tomography (PET) imaging. Viniferin decreased hippocampal amyloid load and deposits with greater efficiency than resveratrol, and both treatments partially prevented the cognitive decline. Furthermore, a significant decrease in brain uptake of the TSPO PET tracer [18F]DPA-714 was observed with viniferin compared to resveratrol. Expression of GFAP, IBA1, and IL-1β were decreased by viniferin but PEG 200, which was very recently shown to be a neuroinflammatory inducer, masked the neuroprotective power of viniferin.
Collapse
Affiliation(s)
- Aline Freyssin
- EA3808 Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France
| | - Agnès Rioux Bilan
- EA3808 Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France
| | - Bernard Fauconneau
- EA3808 Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France
| | - Laurent Galineau
- UMR 1253, iBrain, Inserm, Faculty of Medicine, Université de Tours, Tours, France
| | - Sophie Serrière
- UMR 1253, iBrain, Inserm, Faculty of Medicine, Université de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Inserm, Faculty of Medicine, Université de Tours, Tours, France
| | - Flavie Perrin
- UMR CNRS 7285 IC2MP, Team 5 Organic Synthesis, University of Poitiers, Poitiers, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Organic Synthesis, University of Poitiers, Poitiers, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Faculty of Medicine, Université de Tours, Tours, France
| | - Guylène Page
- EA3808 Neurovascular Unit and Cognitive Disorders, University of Poitiers, Poitiers, France
| |
Collapse
|
13
|
Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Lu H, Bossert JM, Shaham Y, Yang Y. Orbitofrontal cortex and dorsal striatum functional connectivity predicts incubation of opioid craving after voluntary abstinence. Proc Natl Acad Sci U S A 2021; 118:e2106624118. [PMID: 34675078 PMCID: PMC8639358 DOI: 10.1073/pnas.2106624118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
We recently introduced a rat model of incubation of opioid craving after voluntary abstinence induced by negative consequences of drug seeking. Here, we used resting-state functional MRI to determine whether longitudinal functional connectivity changes in orbitofrontal cortex (OFC) circuits predict incubation of opioid craving after voluntary abstinence. We trained rats to self-administer for 14 d either intravenous oxycodone or palatable food. After 3 d, we introduced an electric barrier for 12 d that caused cessation of reward self-administration. We tested the rats for oxycodone or food seeking under extinction conditions immediately after self-administration training (early abstinence) and after electric barrier exposure (late abstinence). We imaged their brains before self-administration and during early and late abstinence. We analyzed changes in OFC functional connectivity induced by reward self-administration and electric barrier-induced abstinence. Oxycodone seeking was greater during late than early abstinence (incubation of oxycodone craving). Oxycodone self-administration experience increased OFC functional connectivity with dorsal striatum and related circuits that was positively correlated with incubated oxycodone seeking. In contrast, electric barrier-induced abstinence decreased OFC functional connectivity with dorsal striatum and related circuits that was negatively correlated with incubated oxycodone seeking. Food seeking was greater during early than late abstinence (abatement of food craving). Food self-administration experience and electric barrier-induced abstinence decreased or maintained functional connectivity in these circuits that were not correlated with abated food seeking. Opposing functional connectivity changes in OFC with dorsal striatum and related circuits induced by opioid self-administration versus voluntary abstinence predicted individual differences in incubation of opioid craving.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
- Center for Social and Affective Neuroscience, Linköping University, Linköping 581 83, Sweden
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Aniruddha Shekara
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Ying Duan
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Sarah V Applebey
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224;
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| |
Collapse
|
14
|
Covelo A, Eraso-Pichot A, Fernández-Moncada I, Serrat R, Marsicano G. CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology 2021; 195:108678. [PMID: 34157362 DOI: 10.1016/j.neuropharm.2021.108678] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) is involved in a variety of brain functions, mainly through the activation of the type-1 cannabinoid receptors (CB1R). CB1R are highly expressed throughout the brain at different structural, cellular and subcellular locations and its activity and expression levels have a direct impact in synaptic activity and behavior. In the last few decades, astrocytes have arisen as active players of brain physiology through their participation in the tripartite synapse and through their metabolic interaction with neurons. Here, we discuss some of the mechanisms by which astroglial CB1R at different subcellular locations, regulate astrocyte calcium signals and have an impact on gliotransmission and metabolic regulation. In addition, we discuss evidence pointing at astrocytes as potential important sources of endocannabinoid synthesis and release. Thus, we summarize recent findings that add further complexity and establish that the ECS is a fundamental effector of astrocyte functions in the brain. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Ana Covelo
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Abel Eraso-Pichot
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Ignacio Fernández-Moncada
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France
| | - Román Serrat
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, 33077, Bordeaux, France
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, 33077, France.
| |
Collapse
|
15
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
16
|
Sanchez-Hernandez A, Nicolas C, Gil-Miravet I, Guarque-Chabrera J, Solinas M, Miquel M. Time-dependent regulation of perineuronal nets in the cerebellar cortex during abstinence of cocaine-self administration. Psychopharmacology (Berl) 2021; 238:1059-1068. [PMID: 33388819 DOI: 10.1007/s00213-020-05752-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The probability of structural remodeling in brain circuits may be modulated by molecules of perineuronal nets (PNNs) that restrict neuronal plasticity to stabilize circuits. Animal research demonstrates that addictive drugs can remodel PNNs in different brain regions, including the cerebellum. OBJECTIVE This study aimed to investigate the effects of short versus extended access to cocaine self-administration on PNN expression around Golgi interneurons in the cerebellar cortex after different periods of abstinence. METHODS After 1 week of training (2 h/day), Sprague-Dawley rats self-administered cocaine daily for 20 days under short (ShA) or extended (LgA) access. PNN expression in the cerebellum was assessed after 1 day, 7 days, and 28 days of forced abstinence. PNNs were immunolabeled using Wisteria floribunda agglutinin (WFA) and captured by confocal microscopy. RESULTS WFA intensity increased in PNN-bearing Golgi neurons over the abstinence period and a higher proportion of more intense PNNs were formed throughout the first month of abstinence. After the first 24 h of cocaine abstinence, however, we found a reduction in WFA intensity in the cerebellar cortex of rats with ShA to cocaine as compared to naïve animals. When comparing with naïve rats, LgA rats showed consistent PNN upregulation at 28 days of cocaine abstinence. CONCLUSIONS Our results suggest that cocaine self-administration produces modifications in PNN that enhance conditions for synaptic plasticity in the cerebellar cortex. These modifications are revealed shortly after the cessation of drug intake but PNNs become more intense during protracted abstinence in the LgA group, pointing to the stabilization of drug-induced synaptic changes. These findings indicate that extended access to cocaine self-administration dynamically regulates conditions for plasticity in the cerebellum during abstinence.
Collapse
Affiliation(s)
- Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Celine Nicolas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marcello Solinas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
17
|
Shifts in the neurobiological mechanisms motivating cocaine use with the development of an addiction-like phenotype in male rats. Psychopharmacology (Berl) 2021; 238:811-823. [PMID: 33241478 PMCID: PMC8290931 DOI: 10.1007/s00213-020-05732-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE The development of addiction is accompanied by a shift in the mechanisms motivating cocaine use from nucleus accumbens (NAc) dopamine D1 receptor (D1R) signaling to glutamate AMPA-kainate receptor (AMPA-R) signaling. OBJECTIVE Here, we determined whether similar shifts occur for NAc-D2R signaling and following systemic manipulation of D1R, D2R, and AMPA-R signaling. METHODS Male rats were given short-access (20 infusions/day) or extended-access to cocaine (24 h/day, 96 infusions/day, 10 days). Motivation for cocaine was assessed following 14 days of abstinence using a progressive-ratio schedule. Once responding stabilized, the effects of NAc-D2R antagonism (eticlopride; 0-10.0 μg/side) and systemic D1R (SCH-23390; 0-1.0 mg/kg), D2R (eticlopride; 0-0.1 mg/kg), and AMPA-R (CNQX; 0-1.5 mg/kg) antagonism, and NAc-dopamine-R gene expression (Drd1/2/3) were examined. RESULTS Motivation for cocaine was markedly higher in the extended- versus short-access group confirming the development of an addiction-like phenotype in the extended-access group. NAc-infused eticlopride decreased motivation for cocaine in both the short- and extended-access groups although low doses (0.1-0.3 μg) were more effective in the short-access group and high doses (3-10 μg/side) tended to be more effective in the extended-access group. Systemic administration of eticlopride (0.1 mg/kg) was more effective in the extended-access group, and systemic administration of CNQX was effective in the extended- but not short-access group. NAc-Drd2 expression was decreased in both the short- and extended-access groups. CONCLUSION These findings indicate that in contrast to NAc-D1R, D2R remain critical for motivating cocaine use with the development of an addiction-like phenotype. These findings also indicate that shifts in the mechanisms motivating cocaine use impact the response to both site-specific and systemic pharmacological treatment.
Collapse
|
18
|
Nicolucci C, Pais ML, Santos AC, Ribeiro FM, Encarnação PMCC, Silva ALM, Castro IF, Correia PMM, Veloso JFCA, Reis J, Lopes MZ, Botelho MF, Pereira FC, Priolli DG. Single Low Dose of Cocaine-Structural Brain Injury Without Metabolic and Behavioral Changes. Front Neurosci 2021; 14:589897. [PMID: 33584173 PMCID: PMC7874143 DOI: 10.3389/fnins.2020.589897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic cocaine use has been shown to lead to neurotoxicity in rodents and humans, being associated with high morbidity and mortality rates. However, recreational use, which may lead to addictive behavior, is often neglected. This occurs, in part, due to the belief that exposure to low doses of cocaine comes with no brain damage risk. Cocaine addicts have shown glucose metabolism changes related to dopamine brain activity and reduced volume of striatal gray matter. This work aims to evaluate the morphological brain changes underlying metabolic and locomotor behavioral outcome, in response to a single low dose of cocaine in a pre-clinical study. In this context, a Balb-c mouse model has been chosen, and animals were injected with a single dose of cocaine (0.5 mg/kg). Control animals were injected with saline. A behavioral test, positron emission tomography (PET) imaging, and anatomopathological studies were conducted with this low dose of cocaine, to study functional, metabolic, and morphological brain changes, respectively. Animals exposed to this cocaine dose showed similar open field activity and brain metabolic activity as compared with controls. However, histological analysis showed alterations in the prefrontal cortex and hippocampus of mice exposed to cocaine. For the first time, it has been demonstrated that a single low dose of cocaine, which can cause no locomotor behavioral and brain metabolic changes, can induce structural damage. These brain changes must always be considered regardless of the dosage used. It is essential to alert the population even against the consumption of low doses of cocaine.
Collapse
Affiliation(s)
- Camilla Nicolucci
- Multidisciplinary Research Laboratory, São Francisco University Post-graduation Stricto Sensu Programme, Bragança Paulista, Brazil
| | - Mariana Lapo Pais
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - A C Santos
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Fabiana M Ribeiro
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Pedro M C C Encarnação
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Ana L M Silva
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal.,Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - I F Castro
- Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - Pedro M M Correia
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal.,Radiation Imaging Technologies Lda, Ílhavo, Portugal
| | - João F C A Veloso
- Department of Physics, Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Aveiro, Aveiro, Portugal
| | - Julie Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Marina Z Lopes
- Multidisciplinary Research Laboratory, São Francisco University Scientific Initiation Programme, Bragança Paulista, Brazil
| | - Maria F Botelho
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| | - Denise G Priolli
- Multidisciplinary Research Laboratory, São Francisco University Post-graduation Stricto Sensu Programme, Bragança Paulista, Brazil
| |
Collapse
|
19
|
Murray CH, Christian DT, Milovanovic M, Loweth JA, Hwang EK, Caccamise AJ, Funke JR, Wolf ME. mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. Neuropharmacology 2021; 186:108452. [PMID: 33444640 DOI: 10.1016/j.neuropharm.2021.108452] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Aaron J Caccamise
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Salin A, Lardeux V, Solinas M, Belujon P. Protracted Abstinence From Extended Cocaine Self-Administration Is Associated With Hypodopaminergic Activity in the VTA but Not in the SNc. Int J Neuropsychopharmacol 2020; 24:499-504. [PMID: 33305794 PMCID: PMC8278795 DOI: 10.1093/ijnp/pyaa096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The chronic relapsing nature of cocaine addiction suggests that chronic cocaine exposure produces persistent neuroadaptations that may be temporally and regionally dynamic in brain areas such as the dopaminergic (DA) system. We have previously shown altered metabolism of DA-target structures, the ventral and dorsal striatum, between early and late abstinence. However, specific changes within the midbrain DA system were not investigated. Here, we investigated potential time- and region-specific changes of activity in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) in rats that had extended or limited access to cocaine and later underwent a period of abstinence. We found that DA activity is decreased only in the VTA in rats with extended access to cocaine, with no changes in SNc DA activity. These changes in VTA DA activity may participate in the negative emotional state and the incubation of drug seeking that occur during abstinence from cocaine.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France,Correspondence: Pauline Belujon, PhD, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Université de Poitiers, Pôle Biologie Santé, Bâtiment B36,1, rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France (; )
| |
Collapse
|
21
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
22
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
23
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
24
|
Michopoulos V. Enduring scars of cocaine. Sci Transl Med 2017; 9:9/397/eaan8201. [PMID: 28679659 DOI: 10.1126/scitranslmed.aan8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-lasting metabolic changes within the brain upon abstinence from cocaine self-administration may increase risk for relapse.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry & Behavioral Sciences, Emory University, Yerkes National Primate Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Cannella N, Cosa-Linan A, Roscher M, Takahashi TT, Vogler N, Wängler B, Spanagel R. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior. Front Psychiatry 2017; 8:218. [PMID: 29163237 PMCID: PMC5671955 DOI: 10.3389/fpsyt.2017.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior.
Collapse
Affiliation(s)
- Nazzareno Cannella
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Alejandro Cosa-Linan
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Mareike Roscher
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Tatiane T Takahashi
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Nils Vogler
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|