1
|
Morris LS, Beltrán JM, Murrough JW, Morel C. Cross-species dissection of the modular role of the ventral tegmental area in depressive disorders. Neuroscience 2025; 569:248-266. [PMID: 39914519 PMCID: PMC11885014 DOI: 10.1016/j.neuroscience.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Depressive disorders, including major depressive disorder (MDD), represent one of the most prevalent set of disorders worldwide. MDD is characterized by a range of cognitive, behavioral, and neurobiological changes that contribute to the vast array of symptom profiles that make this disorder particularly difficult to treat. A multitude of established evidence suggests a role for the dopamine system, stemming in part from the ventral tegmental area (VTA), in mediating symptoms and behavioral changes that underlie depression. Developments in cutting-edge technologies in pre-clinical models of depressive phenotypes, such as retrograde tracing, electrophysiological recordings, immunohistochemistry, and molecular profiling, have allowed a deeper characterization of singular VTA neuron molecular, physiological, and projection properties. These developments have highlighted that the VTA is not a homogenous cell population but instead comprises vast cellular diversity that underscores its modular role across various functions related to reward processing, aversion, salience processing, learning and motivation. In this review, we begin by introducing the various cell types and brain regions that comprise the VTA circuitry. Then, we introduce the role of the VTA in reward processing as it compares to aversion processing. Next, we characterize distinct neural pathways within the VTA circuitry to understand the effects of chronic social and non-social stress and tie together how these neurobiological changes manifest into specific behavioral phenotypes. Finally, we relate these preclinical findings to clinical findings to parse the heterogeneity of depressive phenotypes and explain the efficacy of recent novel pharmacological interventions that may target the VTA in MDD.
Collapse
Affiliation(s)
- L S Morris
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Experimental Psychology, University of Oxford, UK.
| | - J M Beltrán
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States
| | - J W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York NY United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States; VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center Bronx NY United States
| | - C Morel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York NY United States.
| |
Collapse
|
2
|
Osugo M, Wall MB, Selvaggi P, Zahid U, Finelli V, Chapman GE, Whitehurst T, Onwordi EC, Statton B, McCutcheon RA, Murray RM, Marques TR, Mehta MA, Howes OD. Striatal dopamine D2/D3 receptor regulation of human reward processing and behaviour. Nat Commun 2025; 16:1852. [PMID: 39984436 PMCID: PMC11845780 DOI: 10.1038/s41467-025-56663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
Signalling at dopamine D2/D3 receptors is thought to underlie motivated behaviour, pleasure experiences and emotional expression based on animal studies, but it is unclear if this is the case in humans or how this relates to neural processing of reward stimuli. Using a randomised, double-blind, placebo-controlled, crossover neuroimaging study, we show in healthy humans that sustained dopamine D2/D3 receptor antagonism for 7 days results in negative symptoms (impairments in motivated behaviour, hedonic experience, verbal and emotional expression) and that this is related to blunted striatal response to reward stimuli. In contrast, 7 days of partial D2/D3 agonism does not disrupt reward signalling, motivated behaviour or hedonic experience. Both D2/D3 antagonism and partial agonism induce motor impairments, which are not related to striatal reward response. These findings identify a central role for D2/D3 signalling and reward processing in the mechanism underlying motivated behaviour and emotional responses in humans, with implications for understanding neuropsychiatric disorders such as schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Martin Osugo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Matthew B Wall
- Perceptive, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Valeria Finelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - George E Chapman
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
- North London NHS Foundation Trust, London, UK
| | - Thomas Whitehurst
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- East London NHS Foundation Trust, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- East London NHS Foundation Trust, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Ben Statton
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Raz G, Davidovitch S, Halevi M, Zuckerman M, Ben‐Haim Y, Koryto Y, Steinberg T, Leitner Y, Rotstein MS. Impact of movie and video game elements on tic manifestation in children. Eur J Neurol 2024; 31:e16120. [PMID: 37946628 PMCID: PMC11235664 DOI: 10.1111/ene.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND PURPOSE Children in developed countries spend a significant portion of their waking hours engaging with audiovisual content and video games. The impact of media consumption on children's health and well-being has been widely studied, including its effects on tic disorders. Previous studies have shown that tic frequency can both increase and decrease during activities like gaming and television watching, resulting in mixed findings. METHODS To better understand the impact of audiovisual media on tics, we conducted a fine-grained tic manifestation analysis. We focused on the effects of the impact of a movie scene with suspensful elements and a video game designed to heighten anticipation, thought to stimulate phasic and striatal dopamine release. We closely monitored tic frequency throuhghout these experiences based on moment-to-moment tic annotation. The study included 20 participants (19 males aged 7-16) diagnosed with tic disorders (Yale Global Tic Severity Scale≥8), and we tested the replicability of our findings with an independent group of 36 children (15 females, aged 7-15) with tic disorders. RESULTS During film viewing, we observed significant synchronization in the temporal tic patterns of various individuals despite diversity in their tic profiles. Furthermore, employing a video game developed for our study, we found that tic frequency increases during anticipation of a pending reward. This finding was replicated in a second experiment with an independent cohort. CONCLUSIONS Our results indicate that tic frequency is affected by media elements in the short-term, and call for further investigation of the long-term impacts of exposure to such tic triggers.
Collapse
Affiliation(s)
- Gal Raz
- Steve Tisch School of Film and Television, Faculty of the ArtsTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Sagol Brain Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Shiri Davidovitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Mor Halevi
- Sagol Brain Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Maya Zuckerman
- David and Yolanda Katz Faculty of the ArtsTel Aviv UniversityTel AvivIsrael
| | - Yael Ben‐Haim
- School of Psychological SciencesTel Aviv UniversityTel AvivIsrael
| | - Yuval Koryto
- Sagol Brain Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Tamar Steinberg
- Matta and Harry Freund Neuropsychiatric Tourette Clinic, Department of Child and Adolescent PsychiatrySchneider Children's Medical Center of IsraelPetach TikvaIsrael
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Yael Leitner
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Child Development Institute, Dana‐Dwek Children's HospitalTel Aviv Medical CenterTel AvivIsrael
- Pediatric Neurology Unit, Dana‐Dwek Children's HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Michael S. Rotstein
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Child Development Institute, Dana‐Dwek Children's HospitalTel Aviv Medical CenterTel AvivIsrael
- Pediatric Neurology Unit, Dana‐Dwek Children's HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
4
|
Calabro FJ, Montez DF, Larsen B, Laymon CM, Foran W, Hallquist MN, Price JC, Luna B. Striatal dopamine supports reward expectation and learning: A simultaneous PET/fMRI study. Neuroimage 2023; 267:119831. [PMID: 36586541 PMCID: PMC9983071 DOI: 10.1016/j.neuroimage.2022.119831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Converging evidence from both human neuroimaging and animal studies has supported a model of mesolimbic processing underlying reward learning behaviors, based on the computation of reward prediction errors. However, competing evidence supports human dopamine signaling in the basal ganglia as also contributing to the generation of higher order learning heuristics. Here, we present data from a large (N = 81, 18-30yo), multi-modal neuroimaging study using simultaneously acquired task fMRI, affording temporal resolution of reward system function, and PET imaging with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures showed ventral striatum involvement for signaling rewards. However, greater DA release was uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal within the best fitting reinforcement learning model. This DA response was associated with BOLD activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic signaling interacts with a network of cortical regions to generate task-optimal learning strategies, rather than representing reward outcomes in isolation.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David F Montez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N Hallquist
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Zeng J, Yan J, Cao H, Su Y, Song Y, Luo Y, Yang X. Neural substrates of reward anticipation and outcome in schizophrenia: a meta-analysis of fMRI findings in the monetary incentive delay task. Transl Psychiatry 2022; 12:448. [PMID: 36244990 PMCID: PMC9573872 DOI: 10.1038/s41398-022-02201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Dysfunction of the mesocorticolimbic dopaminergic reward system is a core feature of schizophrenia (SZ), yet its precise contributions to different stages of reward processing and their relevance to disease symptomology are not fully understood. We performed a coordinate-based meta-analysis, using the monetary incentive delay task, to identify which brain regions are implicated in different reward phases in functional magnetic resonance imaging in SZ. A total of 17 studies (368 SZ and 428 controls) were included in the reward anticipation, and 10 studies (229 SZ and 281 controls) were included in the reward outcome. Our meta-analysis revealed that during anticipation, patients showed hypoactivation in the striatum, anterior cingulate cortex, median cingulate cortex (MCC), amygdala, precentral gyrus, and superior temporal gyrus compared with controls. Striatum hypoactivation was negatively associated with negative symptoms and positively associated with the proportion of second-generation antipsychotic users (percentage of SGA users). During outcome, patients displayed hyperactivation in the striatum, insula, amygdala, hippocampus, parahippocampal gyrus, cerebellum, postcentral gyrus, and MCC, and hypoactivation in the dorsolateral prefrontal cortex (DLPFC) and medial prefrontal cortex (mPFC). Hypoactivity of mPFC during outcome was negatively associated with positive symptoms. Moderator analysis showed that the percentage of SGA users was a significant moderator of the association between symptom severity and brain activity in both the anticipation and outcome stages. Our findings identified the neural substrates for different reward phases in SZ and may help explain the neuropathological mechanisms underlying reward processing deficits in the disorder.
Collapse
Affiliation(s)
- Jianguang Zeng
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Jiangnan Yan
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Hengyi Cao
- grid.250903.d0000 0000 9566 0634Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY USA ,grid.440243.50000 0004 0453 5950Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY USA
| | - Yueyue Su
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Yuan Song
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Ya Luo
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
7
|
Brietzke C, Cesario JCS, Hettinga FJ, Pires FO. The reward for placebos: mechanisms underpinning placebo-induced effects on motor performance. Eur J Appl Physiol 2022; 122:2321-2329. [PMID: 36006479 DOI: 10.1007/s00421-022-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Different from the most popular thinking, the placebo effect is not a purely psychological phenomenon. A body of knowledge from multidisciplinary fields has shown that the expectation of a potential benefit when receiving a treatment induces a cascade of neurochemical-electrophysiological alterations in brain reward areas, including motor-related ones. Alterations in the dopamine, opioid, and glutamate metabolism are the neural representation converting reward-derived declarative forms into an attractive and wanted behavior, thereby changing the activation in reward subcortical and cortical structures involved in motor planning, motor execution, and emotional-cognitive attributes of decision-making. We propose that the expectation of receiving a treatment that is beneficial to motor performance triggers a cascade of activations in brain reward areas that travels from motor planning and motor command areas, passing through corticospinal pathways until driving the skeletal muscles, therefore facilitating the motor performance. Although alternative explanations cannot be totally ruled out, this mechanistic route is robust in explaining the results of placebo-induced effects on motor performance and could lead to novel insights and applications in the exercise sciences. Factors such as sex differences in reward-related mechanisms and aversion-induced nocebo effects should also be addressed.
Collapse
Affiliation(s)
- Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil
| | - Julio Cesar Silva Cesario
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Flavio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil. .,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil. .,Rehabilitation Sciences Program, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
9
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
10
|
Rubio JM, Kane JM. The pharmacological treatment of schizophrenia: How far have we come? PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e13. [PMID: 38868633 PMCID: PMC11114354 DOI: 10.1002/pcn5.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2024]
Abstract
Schizophrenia is a chronic and often severe mental disorder for which antipsychotic drugs are the cornerstone of treatment. Although the essential mechanism of action of these drugs has not changed much since they were first discovered in the 1950s, there have been numerous advances in the context in which these drugs are prescribed, as well as in the considerations for their optimal use. In this review, we summarize five selected issues in which the psychopharmacological treatment of schizophrenia has most evolved. Namely, these are the shift of outcomes of interest from symptoms to recovery, the development of stratified approaches to select the most appropriate treatment for each individual, the recognition of treatment nonadherence as a critical factor determining outcomes, the recommendations for maintenance treatment, and, finally, the promise of new antipsychotic compounds that innovate in their mechanisms of action, improving efficacy/safety profiles. Finally, we discuss how some of these advances have already delivered to improved outcomes in the real world, whereas others have demonstrated efficacy under optimal circumstances yet have not been translated into better outcomes in the community. Thus, the road ahead includes both identifying novel treatments that engage the psychopathology of the illness and improve the efficacy/tolerability profile of currently available agents, as well as developing interventions that mitigate the barriers for the use of novel interventions, some of them already existing, in the real world.
Collapse
Affiliation(s)
- Jose M. Rubio
- Donald and Barbara Zucker School of Medicine at Hofstra—Northwell, Feinstein Institutes of Medical Research—Institute of Behavioral ScienceZucker Hillside Hospital—Northwell HealthGlen OaksNYUnited States
| | - John M. Kane
- Donald and Barbara Zucker School of Medicine at Hofstra—Northwell, Feinstein Institutes of Medical Research—Institute of Behavioral ScienceZucker Hillside Hospital—Northwell HealthGlen OaksNYUnited States
| |
Collapse
|
11
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
12
|
Sato D, Narita M, Hamada Y, Mori T, Tanaka K, Tamura H, Yamanaka A, Matsui R, Watanabe D, Suda Y, Senba E, Watanabe M, Navratilova E, Porreca F, Kuzumaki N, Narita M. Relief of neuropathic pain by cell-specific manipulation of nucleus accumbens dopamine D1- and D2-receptor-expressing neurons. Mol Brain 2022; 15:10. [PMID: 34991655 PMCID: PMC8740378 DOI: 10.1186/s13041-021-00896-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that the mesolimbic dopaminergic network plays a role in the modulation of pain. As chronic pain conditions are associated with hypodopaminergic tone in the nucleus accumbens (NAc), we evaluated the effects of increasing signaling at dopamine D1/D2-expressing neurons in the NAc neurons in a model of neuropathic pain induced by partial ligation of sciatic nerve. Bilateral microinjection of either the selective D1-receptor (Gs-coupled) agonist Chloro-APB or the selective D2-receptor (Gi-coupled) agonist quinpirole into the NAc partially reversed nerve injury-induced thermal allodynia. Either optical stimulation of D1-receptor-expressing neurons or optical suppression of D2-receptor-expressing neurons in both the inner and outer substructures of the NAc also transiently, but significantly, restored nerve injury-induced allodynia. Under neuropathic pain-like condition, specific facilitation of terminals of D1-receptor-expressing NAc neurons projecting to the VTA revealed a feedforward-like antinociceptive circuit. Additionally, functional suppression of cholinergic interneurons that negatively and positively control the activity of D1- and D2-receptor-expressing neurons, respectively, also transiently elicited anti-allodynic effects in nerve injured animals. These findings suggest that comprehensive activation of D1-receptor-expressing neurons and integrated suppression of D2-receptor-expressing neurons in the NAc may lead to a significant relief of neuropathic pain.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Hideki Tamura
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-0063, Tokyo, Japan.,Laboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-0063, Tokyo, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Graduate school of Medicine, Kyoto University, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate school of Medicine, Kyoto University, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki-City, 567-0801, Osaka, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera,Wakayama City, 641-8509, Wakayama, Japan
| | - Moe Watanabe
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, 1501 N. Campbell Avenue, 85724, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, 1501 N. Campbell Avenue, 85724, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, 1501 N. Campbell Avenue, 85724, Tucson, AZ, USA
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, 104-0045, Tokyo, Japan.
| |
Collapse
|
13
|
Abstract
Suicide is a leading cause of death, and presently, there is no definitive clinical indicator of future suicide behaviors. Anhedonia, a transdiagnostic symptom reflecting diminished ability to experience pleasure, has recently emerged as a risk factor for suicidal thoughts and behaviors (STBs). This overview, therefore, has the following aims. First, prior research relating anhedonia to STBs will be reviewed, with a particular focus on clarifying whether anhedonia is more closely associated with suicidal thoughts versus behaviors. Second, the National Institute of Mental Health's Research Domain Criteria Positive Valence Systems provide a useful heuristic to probe anhedonia across different units of analysis, including clinical symptoms, behaviors, neural mechanisms, and molecular targets. Accordingly, anhedonia-related constructs linked to STBs will be detailed as well as promising next steps for future research. Third, although anhedonia is not directly addressed in leading suicide theories, this review will provide potential inroads to explore anhedonia within diathesis-stress and interpersonal suicide frameworks. Last, novel approaches to treat anhedonia as a means of reducing STBs will be examined.
Collapse
Affiliation(s)
- Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Division of Clinical Developmental Neuroscience, Sackler Institute, New York, NY, USA.
| | - David Pagliaccio
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | |
Collapse
|
14
|
Harju-Seppänen J, Irizar H, Bramon E, Blakemore SJ, Mason L, Bell V. Reward Processing in Children With Psychotic-Like Experiences. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab054. [PMID: 35036918 PMCID: PMC8756103 DOI: 10.1093/schizbullopen/sgab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alterations to striatal reward pathways have been identified in individuals with psychosis. They are hypothesized to be a key mechanism that generate psychotic symptoms through the production of aberrant attribution of motivational salience and are proposed to result from accumulated childhood adversity and genetic risk, making the striatal system hyper-responsive to stress. However, few studies have examined whether children with psychotic-like experiences (PLEs) also exhibit these alterations, limiting our understanding of how differences in reward processing relate to hallucinations and delusional ideation in childhood. Consequently, we examined whether PLEs and PLE-related distress were associated with reward-related activation in the nucleus accumbens (NAcc). The sample consisted of children (N = 6718) from the Adolescent Brain Cognitive Development (ABCD) study aged 9-10 years who had participated in the Monetary Incentive Delay (MID) task in functional MRI. We used robust mixed-effects linear regression models to investigate the relationship between PLEs and NAcc activation during the reward anticipation and reward outcome stages of the MID task. Analyses were adjusted for gender, household income, ethnicity, depressive symptoms, movement in the scanner, pubertal development, scanner ID, subject and family ID. There was no reliable association between PLEs and alterations to anticipation- or outcome-related striatal reward processing. We discuss the implications for developmental models of psychosis and suggest a developmental delay model of how PLEs may arise at this stage of development.
Collapse
Affiliation(s)
- Jasmine Harju-Seppänen
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Haritz Irizar
- Division of Psychiatry, University College London, London, UK
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
| | | | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Trust Centre for Human Neuroimaging, University College London, London, UK
| | - Vaughan Bell
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Frydecka D, Misiak B, Piotrowski P, Bielawski T, Pawlak E, Kłosińska E, Krefft M, Al Noaimy K, Rymaszewska J, Moustafa AA, Drapała J. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci 2021; 12:brainsci12010007. [PMID: 35053751 PMCID: PMC8774082 DOI: 10.3390/brainsci12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Schizophrenia spectrum disorders (SZ) are characterized by impairments in probabilistic reinforcement learning (RL), which is associated with dopaminergic circuitry encompassing the prefrontal cortex and basal ganglia. However, there are no studies examining dopaminergic genes with respect to probabilistic RL in SZ. Thus, the aim of our study was to examine the impact of dopaminergic genes on performance assessed by the Probabilistic Selection Task (PST) in patients with SZ in comparison to healthy control (HC) subjects. In our study, we included 138 SZ patients and 188 HC participants. Genetic analysis was performed with respect to the following genetic polymorphisms: rs4680 in COMT, rs907094 in DARP-32, rs2734839, rs936461, rs1800497, and rs6277 in DRD2, rs747302 and rs1800955 in DRD4 and rs28363170 and rs2975226 in DAT1 genes. The probabilistic RL task was completed by 59 SZ patients and 95 HC subjects. SZ patients performed significantly worse in acquiring reinforcement contingencies during the task in comparison to HCs. We found no significant association between genetic polymorphisms and RL among SZ patients; however, among HC participants with respect to the DAT1 rs28363170 polymorphism, individuals with 10-allele repeat genotypes performed better in comparison to 9-allele repeat carriers. The present study indicates the relevance of the DAT1 rs28363170 polymorphism in RL in HC participants.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
- Correspondence:
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (B.M.); (P.P.)
| | - Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Edyta Pawlak
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigel Street 12, 53-114 Wroclaw, Poland;
| | - Ewa Kłosińska
- Day-Care Psychiatric Unit, University Clinical Hospital, Pasteur Street 10, 50-367 Wroclaw, Poland;
| | - Maja Krefft
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Kamila Al Noaimy
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland; (T.B.); (M.K.); (K.A.N.); (J.R.)
| | - Ahmed A. Moustafa
- School of Psychology, Marcs Institute for Brain and Behaviour, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| | - Jarosław Drapała
- Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wrocław, Poland;
| |
Collapse
|
16
|
Chellappa SL, Aeschbach D. Sleep and anxiety: From mechanisms to interventions. Sleep Med Rev 2021; 61:101583. [PMID: 34979437 DOI: 10.1016/j.smrv.2021.101583] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Anxiety is the most common mental health problem worldwide. Epidemiological studies show that sleep disturbances, particularly insomnia, affect ∼50% of individuals with anxiety, and that insufficient sleep can instigate or further exacerbate it. This review outlines brain mechanisms underlying sleep and anxiety, by addressing recent human functional/structural imaging studies on brain networks underlying the anxiogenic impact of sleep loss, and the beneficial effect of sleep on these brain networks. We discuss recent developments from human molecular imaging studies that highlight the role of specific brain neurotransmitter mechanisms, such as the adenosinergic receptor system, on anxiety, arousal, and sleep. This review further discusses frontline sleep interventions aimed at enhancing sleep in individuals experiencing anxiety, such as nonbenzodiazepines/antidepressants, lifestyle and sleep interventions and cognitive behavioral therapy for insomnia. Notwithstanding therapeutic success, up to ∼30% of individuals with anxiety can be nonresponsive to frontline treatments. Thus, we address novel non-invasive brain stimulation techniques that can enhance electroencephalographic slow waves, and might help alleviate sleep and anxiety symptoms. Collectively, these findings contribute to an emerging biological framework that elucidates the interrelationship between sleep and anxiety, and highlight the prospect of slow wave sleep as a potential therapeutic target for reducing anxiety.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany; Division of Sleep Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|
17
|
Woody ML, Panny B, Degutis M, Griffo A, Price RB. Resting state functional connectivity subtypes predict discrete patterns of cognitive-affective functioning across levels of analysis among patients with treatment-resistant depression. Behav Res Ther 2021; 146:103960. [PMID: 34488187 PMCID: PMC8653528 DOI: 10.1016/j.brat.2021.103960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023]
Abstract
Resting state functional connectivity (RSFC) in ventral affective (VAN), default mode (DMN) and cognitive control (CCN) networks may partially underlie heterogeneity in depression. The current study used data-driven parsing of RSFC to identify subgroups of patients with treatment-resistant depression (TRD; n = 70) and determine if subgroups generalized to transdiagnostic measures of cognitive-affective functioning relevant to depression (indexed across self-report, behavioral, and molecular levels of analysis). RSFC paths within key networks were characterized using Subgroup-Group Iterative Multiple Model Estimation. Three connectivity-based subgroups emerged: Subgroup A, the largest subset and containing the fewest pathways; Subgroup B, containing unique bidirectional VAN/DMN negative feedback; and Subgroup C, containing the most pathways. Compared to other subgroups, subgroup B was characterized by lower self-reported positive affect and subgroup C by higher self-reported positive affect, greater variability in induced positive affect, worse response inhibition, and reduced striatal tissue iron concentration. RSFC-based categorization revealed three TRD subtypes associated with discrete aberrations in transdiagnostic cognitive-affective functioning that were largely unified across levels of analysis and were maintained after accounting for the variability captured by a disorder-specific measure of depressive symptoms. Findings advance understanding of transdiagnostic brain-behavior heterogeneity in TRD and may inform novel treatment targets for this population.
Collapse
Affiliation(s)
- Mary L Woody
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA.
| | - Benjamin Panny
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Michelle Degutis
- Heinz College of Information Systems and Public Policy, Carnegie Mellon University, USA
| | - Angela Griffo
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Rebecca B Price
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Psychology, University of Pittsburgh, USA
| |
Collapse
|
18
|
Tournier N, Comtat C, Lebon V, Gennisson JL. Challenges and Perspectives of the Hybridization of PET with Functional MRI or Ultrasound for Neuroimaging. Neuroscience 2021; 474:80-93. [DOI: 10.1016/j.neuroscience.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
19
|
Ho D, Verdejo-Garcia A. Interactive influences of food, contexts and neurocognitive systems on addictive eating. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110295. [PMID: 33657421 DOI: 10.1016/j.pnpbp.2021.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Compulsive eating is a common symptom of different conditions, including obesity, binge eating disorder and bulimia. One hypothesis is that contemporary food products promote compulsive eating via addiction-like mechanisms. However, what is the addictive substance in food, and what is the phenotypic overlap between obesity / eating disorders and addictions are questions that remain unresolved. In this review, we applied a multilevel framework of addiction, which encompasses the 'drug' (certain foods), the person's mindset, and the context, to improve understanding of compulsive eating. Specifically, we reviewed evidence on the addictive properties of specific foods, the neurocognitive systems that control dietary choices, and their interaction with physical, emotional and social contexts. We focused on different target groups to illustrate distinct aspects of the proposed framework: the impact of food and contextual factors were examined across a continuum, with most studies conducted on healthy participants and subclinical populations, whereas the review of neurocognitive aspects focused on clinical groups in which the alterations linked to addictive and compulsive eating are particularly visible. The reviewed evidence suggest that macronutrient composition and level of processing are associated with the addictive properties of food; there are overlapping neuroadaptations in reward and decision-making circuits across compulsive eating conditions; and there are physical and social contexts that fuel compulsive eating by exploiting reward mechanisms and their interaction with emotions. We conclude that a biopsychosocial model that integrates food, neurobiology and context can provide a better understanding of compulsive eating manifestations in a transdiagnostic framework.
Collapse
Affiliation(s)
- Daniel Ho
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
21
|
A network of phosphatidylinositol (4,5)-bisphosphate (PIP 2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster. Mol Psychiatry 2021; 26:4417-4430. [PMID: 31796894 PMCID: PMC7266731 DOI: 10.1038/s41380-019-0620-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022]
Abstract
Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.
Collapse
|
22
|
Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Torres-Sanchez S, Garcia-Partida JA, Lamanna-Rama N, Romero-Miranda A, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. A Characterization of the Effects of Minocycline Treatment During Adolescence on Structural, Metabolic, and Oxidative Stress Parameters in a Maternal Immune Stimulation Model of Neurodevelopmental Brain Disorders. Int J Neuropsychopharmacol 2021; 24:734-748. [PMID: 34165516 PMCID: PMC8453277 DOI: 10.1093/ijnp/pyab036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.
Collapse
Affiliation(s)
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Sonia Torres-Sanchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - José Antonio Garcia-Partida
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain,Correspondence: Manuel Desco, PhD, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46. E-28007 Madrid, Spain ()
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| |
Collapse
|
23
|
Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. Handb Exp Pharmacol 2021; 271:97-112. [PMID: 34136961 DOI: 10.1007/164_2021_499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.
Collapse
|
24
|
Ragu Varman D, Subler MA, Windle JJ, Jayanthi LD, Ramamoorthy S. Novelty-induced hyperactivity and suppressed cocaine induced locomotor activation in mice lacking threonine 53 phosphorylation of dopamine transporter. Behav Brain Res 2021; 408:113267. [PMID: 33794225 DOI: 10.1016/j.bbr.2021.113267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) transporter (DAT) is dynamically regulated by several protein kinases and the Thr53 phosphorylation of DAT (pT53-DAT) is documented in heterologous cell models and in rat brain. However, the role of endogenous pT53-DAT in living animals has never been addressed. Here we generated and studied the pT53-lacking DAT mouse model (DAT-Ala53) by CRISPR/Cas9 technology. DAT-Ala53 mice showed normal growth, body weight, body temperature, grip strength, and sucrose preference while pT53-DAT was completely absent. However, DAT-Ala53 mice showed hyperlocomotion, pronounced vertical exploratory behavior, and stereotypy in a novel environment compared to wild-type littermates (WT). DAT-Ala53 mice displayed unaltered levels of monoamines, glutamate, and GABA in the striatum compared to WT. There were also no significant differences between DAT-Ala53 mice and WT in tyrosine hydroxylase (TH) and phospho-TH levels, or in total and surface DAT levels, or in DA-transport kinetic parameters Vmax and Km. Immunohistochemical and colocalization analyses of TH and DAT in caudate-putamen and nucleus accumbens revealed no significant differences between DAT-Ala53 and WT mice. Interestingly, cocaine's potency to inhibit striatal DA transport and cocaine-induced locomotor activation were significantly reduced in the DAT-Ala53 mice. Also, ERK1/2 inhibitors completely failed to inhibit striatal DA uptake in DAT-Ala53 mice. Collectively, our findings reveal that the mice lacking pT53-DAT display novelty-induced hyperactive phenotype despite having normal transporter protein expression, DA-transport kinetics and DA-linked markers. The results also reveal that the lack of endogenous pT53-DAT renders DAT resistant to ERK1/2 inhibition and also less susceptible to cocaine inhibition and cocaine-evoked locomotor stimulation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
25
|
Klyuzhin IS, Bevington CWJ, Cheng JC(K, Sossi V. Detection of transient neurotransmitter response using personalized neural networks. ACTA ACUST UNITED AC 2020; 65:235004. [DOI: 10.1088/1361-6560/abc230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Yang S, Boudier-Revéret M, Choo YJ, Chang MC. Association between Chronic Pain and Alterations in the Mesolimbic Dopaminergic System. Brain Sci 2020; 10:701. [PMID: 33023226 PMCID: PMC7600461 DOI: 10.3390/brainsci10100701] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (pain lasting for >3 months) decreases patient quality of life and even occupational abilities. It can be controlled by treatment, but often persists even after management. To properly control pain, its underlying mechanisms must be determined. This review outlines the role of the mesolimbic dopaminergic system in chronic pain. The mesolimbic system, a neural circuit, delivers dopamine from the ventral tegmental area to neural structures such as the nucleus accumbens, prefrontal cortex, anterior cingulate cortex, and amygdala. It controls executive, affective, and motivational functions. Chronic pain patients suffer from low dopamine production and delivery in this system. The volumes of structures constituting the mesolimbic system are known to be decreased in such patients. Studies on administration of dopaminergic drugs to control chronic pain, with a focus on increasing low dopamine levels in the mesolimbic system, show that it is effective in patients with Parkinson's disease, restless legs syndrome, fibromyalgia, dry mouth syndrome, lumbar radicular pain, and chronic back pain. However, very few studies have confirmed these effects, and dopaminergic drugs are not commonly used to treat the various diseases causing chronic pain. Thus, further studies are required to determine the effectiveness of such treatment for chronic pain.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman’s University Seoul Hospital, Ewha Woman’s University School of Medicine, Seoul 07804, Korea;
| | - Mathieu Boudier-Revéret
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2W 1T8, Canada;
| | - Yoo Jin Choo
- Production R&D Division Advanced Interdisciplinary Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
27
|
du Plessis S, Bekker M, Buckle C, Vink M, Seedat S, Bardien S, Carr J, Abrahams S. Association Between a Variable Number Tandem Repeat Polymorphism Within the DAT1 Gene and the Mesolimbic Pathway in Parkinson's Disease. Front Neurol 2020; 11:982. [PMID: 32982958 PMCID: PMC7493621 DOI: 10.3389/fneur.2020.00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/28/2020] [Indexed: 01/23/2023] Open
Abstract
The loss of ventral striatal dopaminergic neurons in Parkinson's disease (PD) predicts an impact on the reward system. The ventrostriatal system is involved in motivational processing and its dysfunction may be related to non-motor symptoms such as depression and apathy. We previously documented that patients with PD had blunted Blood Oxygen Level Dependent functional magnetic resonance imaging (BOLD fMRI) reward task related activity during both reward anticipation (i.e., in the ventral striatum) and reward outcome (i.e., in the orbitofrontal cortex). Evidence for the modulation of brain function by dopaminergic genes in PD is limited. Genes implicated in dopamine transmission, such as the dopamine transporter gene (DAT1) may influence the clinical heterogeneity seen in PD, including reward processing. This study therefore sought to determine whether genetic differences in the DAT gene are associated with brain activity associated with response to reward in PD patients and controls. A sample of PD cases on treatment (n = 15) and non-PD controls (n = 30) from an ethnic group unique to South Africa were genotyped. We found a three-way interaction between GENOTYPE × BOLD fMRI REWARD × DIAGNOSIS [F(1, 40) = 4.666, p = 0.037, partial η2 = 0.104]. PD patients with the DAT1 homozygous 10/10 repeat genotype showed a relative decrease in orbitofrontal cortex reward outcome related activity compared to the patient group who did not have this repeat. PD patients with other genotypes showed an expected increase in orbitofrontal cortex reward outcome related activity compared to controls. Given the small sample size of the PD group with the 10/10 repeat, these results should be considered preliminary. Nevertheless, these preliminary findings highlight the potential modulation of dopamine transporter polymorphisms on orbitofrontal reward system activity in PD and highlight the need for further studies.
Collapse
Affiliation(s)
- Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Minke Bekker
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chanelle Buckle
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Matthijs Vink
- Departments of Developmental and Experimental Psychology, Utrecht University, Utrecht, Netherlands
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Soraya Bardien
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jonathan Carr
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Neurology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
28
|
Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, Arakawa R, Okubo Y. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. Psychiatry Clin Neurosci 2020; 74:424-430. [PMID: 32363761 DOI: 10.1111/pcn.13020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
AIM Dysfunction of dopaminergic neurons in the central nervous system is considered to be related to major depressive disorder (MDD). Especially, MDD in geriatric patients is characterized by anhedonia, which is assumed to be associated with reduced dopamine neurotransmission in the reward system. Dopamine transporter (DAT) is considered to reflect the function of the dopamine nerve system. However, previous DAT imaging studies using single photon emission computed tomography or positron emission tomography (PET) have shown inconsistent results. The radioligand [18 F]FE-PE2I for PET enables more precise evaluation of DAT availability. Hence, we aimed to evaluate the DAT availability in geriatric patients with MDD using [18 F]FE-PE2I. METHODS Eleven geriatric patients with severe MDD and 27 healthy controls underwent PET with [18 F]FE-PE2I, which has high affinity and selectivity for DAT. Binding potentials (BPND ) in the striatum (caudate and putamen), nucleus accumbens (NAc), and substantia nigra were calculated. BPND values were compared between MDD patients and healthy controls. RESULTS MDD patients showed significantly lower DAT BPND in the NAc (P = 0.009), and there was a trend of lower BPND in the putamen (P = 0.032) compared to controls. CONCLUSION We found low DAT in the NAc and putamen in geriatric patients with severe MDD, which could be related to dysregulation of the reward system.
Collapse
Affiliation(s)
- Hiroki Moriya
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mikael Tiger
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro Masuoka
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
29
|
Clinical, behavioral, and neural measures of reward processing correlate with escitalopram response in depression: a Canadian Biomarker Integration Network in Depression (CAN-BIND-1) Report. Neuropsychopharmacology 2020; 45:1390-1397. [PMID: 32349119 PMCID: PMC7297974 DOI: 10.1038/s41386-020-0688-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anhedonia is thought to reflect deficits in reward processing that are associated with abnormal activity in mesocorticolimbic brain regions. It is expressed clinically as a deficit in the interest or pleasure in daily activities. More severe anhedonia in major depressive disorder (MDD) is a negative predictor of antidepressant response. It is unknown, however, whether the pathophysiology of anhedonia represents a viable avenue for identifying biological markers of antidepressant treatment response. Therefore, this study aimed to examine the relationships between reward processing and response to antidepressant treatment using clinical, behavioral, and functional neuroimaging measures. Eighty-seven participants in the first Canadian Biomarker Integration Network in Depression (CAN-BIND-1) protocol received 8 weeks of open-label escitalopram. Clinical correlates of reward processing were assessed at baseline using validated scales to measure anhedonia, and a monetary incentive delay (MID) task during functional neuroimaging was completed at baseline and after 2 weeks of treatment. Response to escitalopram was associated with significantly lower self-reported deficits in reward processing at baseline. Activity during the reward anticipation, but not the reward consumption, phase of the MID task was correlated with clinical response to escitalopram at week 8. Early (baseline to week 2) increases in frontostriatal connectivity during reward anticipation significantly correlated with reduction in depressive symptoms after 8 weeks of treatment. Escitalopram response is associated with clinical and neuroimaging correlates of reward processing. These results represent an important contribution towards identifying and integrating biological, behavioral, and clinical correlates of treatment response. ClinicalTrials.gov: NCT01655706.
Collapse
|
30
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To give an update on recent imaging studies probing positron emission tomography (PET) as a tool for improving biomarker-guided diagnosis of neuropsychiatric disorders. RECENT FINDINGS Several studies confirmed the value of imaging of regional neuronal activity and imaging of dopaminergic, serotonergic, and other neuroreceptor function in the diagnostic process of neuropsychiatric disorders, particularly schizophrenia, depression/bipolar disorder, substance use disorders, obsessive compulsive disorders (OCD), and attention-deficit/hyperactivity disorder. Additionally, imaging brain microglial activation using translocator protein 18 kDa (TSPO) radiotracer allows for unique in-vivo insights into pathophysiological neuroinflammatory changes underlying schizophrenia, affective disorders, and OCD. SUMMARY The role of PET imaging in the biomarker-guided diagnostic process of neuropsychiatric disorders has been increasingly acknowledged in recent years. Future prospective studies are needed to define the value of PET imaging for diagnosis, treatment decisions, and prognosis in neuropsychiatric disorders.
Collapse
|
32
|
Calabro FJ, Murty VP, Jalbrzikowski M, Tervo-Clemmens B, Luna B. Development of Hippocampal-Prefrontal Cortex Interactions through Adolescence. Cereb Cortex 2020; 30:1548-1558. [PMID: 31670797 PMCID: PMC7132933 DOI: 10.1093/cercor/bhz186] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022] Open
Abstract
Significant improvements in cognitive control occur from childhood through adolescence, supported by the maturation of prefrontal systems. However, less is known about the neural basis of refinements in cognitive control proceeding from adolescence to adulthood. Accumulating evidence indicates that integration between hippocampus (HPC) and prefrontal cortex (PFC) supports flexible cognition and has a protracted neural maturation. Using a longitudinal design (487 scans), we characterized developmental changes from 8 to 32 years of age in HPC-PFC functional connectivity at rest and its associations with cognitive development. Results indicated significant increases in functional connectivity between HPC and ventromedial PFC (vmPFC), but not dorsolateral PFC. Importantly, HPC-vmPFC connectivity exclusively predicted performance on the Stockings of Cambridge task, which probes problem solving and future planning. These data provide evidence that maturation of high-level cognition into adulthood is supported by increased functional integration across the HPC and vmPFC through adolescence.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Dubol M, Trichard C, Leroy C, Granger B, Tzavara ET, Martinot JL, Artiges E. Lower midbrain dopamine transporter availability in depressed patients: Report from high-resolution PET imaging. J Affect Disord 2020; 262:273-277. [PMID: 31732277 DOI: 10.1016/j.jad.2019.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND A reduced presynaptic dopamine neurotransmission has long been implicated in major depressive disorder (MDD). However, molecular imaging studies that assessed the dopamine transporter (DAT) availability have led to inconsistent results, partly due to methodological considerations, and to exclusive focus on the striatum, precluding findings in extra-striatal regions. METHODS Herein, we leveraged our database of high-resolution Positron Emission Tomography (PET) images acquired with a highly selective radiotracer, [11C]PE2I, to assess striatal and extra-striatal DAT availability in eight patients treated for depression compared to twenty-four healthy controls. RESULTS Statistical parametric mapping and voxel-based analyses of PET images detected a significant lower DAT availability in depressed patients within the superior part of the midbrain (right, pFWE = 0.002; left, pFWE = 0.006), a region including the ventral tegmental area and the substantia nigra from where the mesocorticolimbic and nigrostriatal dopamine pathways originate. A similar difference was found in the right dorsal putamen (pFWE = 0.012). LIMITATIONS The statistical power was limited to detect only large effects, due to the size of the patients' sample. CONCLUSIONS The findings support the hypothesis that a reduced presynaptic dopamine function plays a role in the pathophysiology of depression, and that extra-striatal dopamine function should be further investigated.
Collapse
Affiliation(s)
- Manon Dubol
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France
| | - Christian Trichard
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France; EPS Barthelemy Durand, Etampes, France
| | - Claire Leroy
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France; IMIV, U1023 Inserm/CEA/Université Paris-Sud and ERL 9218 CNRS, Université Paris-Saclay, CEA/SHFJ, Orsay, France
| | - Bernard Granger
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France; AP-HP, Psychiatry Department, Tarnier Hospital, Groupe Hospitalier: Hôpitaux Universitaires Paris Centre, Paris, France
| | - Eleni T Tzavara
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France; AP-HP, Psychiatry Department, Tarnier Hospital, Groupe Hospitalier: Hôpitaux Universitaires Paris Centre, Paris, France; INSERM U1130 Research Unit, CNRS UMR 8246, UPMC UM CR18, Paris, France
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France
| | - Eric Artiges
- INSERM, Research Unit 1000 "Neuroimaging and Psychiatry", Paris Saclay University, Paris Descartes University, DIGITEO Labs, Gif sur Yvette, France; Groupe Hospitalier Nord Essonne, Psychiatry Department 91G16, Orsay, France.
| |
Collapse
|
34
|
Goldsmith DR, Rapaport MH. Inflammation and Negative Symptoms of Schizophrenia: Implications for Reward Processing and Motivational Deficits. Front Psychiatry 2020; 11:46. [PMID: 32153436 PMCID: PMC7044128 DOI: 10.3389/fpsyt.2020.00046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Negative symptoms of schizophrenia are debilitating and chronic in nature, are difficult to treat, and contribute to poor functional outcomes. Motivational deficits are a core negative symptom and may involve alterations in reward processing, which involve subcortical regions such as the basal ganglia. More specifically, dopamine-rich regions like the ventral striatum, have been implicated in these reward-processing deficits. Inflammation is one mechanism that may underlie negative symptoms, and specifically motivational deficits, via the effects of inflammatory cytokines on the basal ganglia. Previous work has demonstrated that inflammatory stimuli decrease neural activity in the ventral striatum and decrease connectivity in reward-relevant neural circuitry. The immune system has been shown to be involved in the pathophysiology of schizophrenia, and inflammatory cytokines have been shown to be altered in patients with the disorder. This paper reviews the literature on associations between inflammatory markers and negative symptoms of schizophrenia as well as the role of anti-inflammatory drugs to target negative symptoms. We also review the literature on the role of inflammation and reward processing deficits in both healthy controls and individuals with depression. We use the literature on inflammation and depression as a basis for a model that explores potential mechanisms responsible for inflammation modulating certain aspects of negative symptoms in patients with schizophrenia. This approach may offer novel targets to treat these symptoms of the disorder that are significant barriers to functional recovery and do not respond well to available antipsychotic medications.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark Hyman Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Arlicot N, Vercouillie J, Malherbe C, Bidault R, Gissot V, Maia S, Barantin L, Cottier JP, Deloye JB, Guilloteau D, Ribeiro MJ. PET imaging of Dopamine Transporter with [18F]LBT-999: initial evaluation in healthy volunteers. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2019; 66:148-155. [PMID: 31496203 DOI: 10.23736/s1824-4785.19.03175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To evaluate in healthy human brain the distribution, uptake, and kinetics of [18F]LBT-999, a PET ligand targeting the dopamine transporter, to assess its ability to explore dopaminergic innervation, using a shorter protocol, more convenient for patients than currently with [123I]ioflupane. METHODS After intravenous injection of [18F]LBT-999, 8 healthy subjects (53-80y) underwent a dynamic PET-scan. Venous samples were concomitantly obtained for metabolites analysis. Time activity curves (TACs) were generated for several ROIs (caudate, putamen, occipital cortex, substantia nigra and cerebellum). Cerebellum was used as reference region to calculate binding potentials (BPND). RESULTS No adverse events or detectable pharmacological effects were reported. [18F]LBT-999 PET revealed a good cerebral distribution, with an intense and symmetric uptake in both putamen and caudate (BPND of 6.75±1.17 and 6.30±1.17, respectively), without other brain abnormal tracer accumulation. Regional TACs showed a plateau from the maximal uptake, 20min pi, to the end of the acquisition for both caudate and putamen, whereas uptake in substantia nigra decreased progressively. A faster clearance and lowest BPND values were observed in both cortex and cerebellum. Ratios to the cerebellum exhibit value of about 3 in substantia nigra, close to 10 for both caudate and putamen, and remained around the value of 1 in cortex. The parent fraction of [18F]LBT-999 in plasma was 80%, 60% and 45% at 15, 30 and 45 min pi, respectively. CONCLUSIONS These findings support the usefulness of [18F]LBT-999 for a quantitative clinical evaluation of presynaptic dopaminergic innervation.
Collapse
Affiliation(s)
- Nicolas Arlicot
- CHRU de Tours, Unité de Radiopharmacie, Tours, France - .,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,-INSERM CIC 1415, University Hospital, Tours, France -
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France
| | - Cécile Malherbe
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Rudy Bidault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Serge Maia
- CHRU de Tours, Unité de Radiopharmacie, Tours, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Jean-Philippe Cottier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU de Tours, Service de Neuroradiologie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France.,CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
| | - Maria-Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,-INSERM CIC 1415, University Hospital, Tours, France.,CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| |
Collapse
|
36
|
Wolke SA, Mehta MA, O'Daly O, Zelaya F, Zahreddine N, Keren H, O'Callaghan G, Young AH, Leibenluft E, Pine DS, Stringaris A. Modulation of anterior cingulate cortex reward and penalty signalling in medication-naive young-adult subjects with depressive symptoms following acute dose lurasidone. Psychol Med 2019; 49:1365-1377. [PMID: 30606271 PMCID: PMC6518385 DOI: 10.1017/s0033291718003306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Aberrations in reward and penalty processing are implicated in depression and putatively reflect altered dopamine signalling. This study exploits the advantages of a placebo-controlled design to examine how a novel D2 antagonist with adjunctive antidepressant properties modifies activity in the brain's reward network in depression. METHODS We recruited 43 medication-naïve subjects across the range of depression severity (Beck's Depression Inventory-II score range: 0-43), including healthy volunteers, as well as people meeting full-criteria for major depressive disorder. In a double-blind placebo-controlled cross-over design, all subjects received either placebo or lurasidone (20 mg) across two visits separated by 1 week. Functional magnetic resonance imaging with the Monetary Incentive Delay (MID) task assessed reward functions via neural responses during anticipation and receipt of gains and losses. Arterial spin labelling measured cerebral blood flow (CBF) at rest. RESULTS Lurasidone altered fronto-striatal activity during anticipation and outcome phases of the MID task. A significant three-way Medication-by-Depression severity-by-Outcome interaction emerged in the anterior cingulate cortex (ACC) after correction for multiple comparisons. Follow-up analyses revealed significantly higher ACC activation to losses in high- v. low depression participants in the placebo condition, with a normalisation by lurasidone. This effect could not be accounted for by shifts in resting CBF. CONCLUSIONS Lurasidone acutely normalises reward processing signals in individuals with depressive symptoms. Lurasidone's antidepressant effects may arise from reducing responses to penalty outcomes in individuals with depressive symptoms.
Collapse
Affiliation(s)
- Selina A. Wolke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Nada Zahreddine
- Department of Psychiatry, Saint-Joseph University, Beirut, Lebanon
| | - Hanna Keren
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Georgia O'Callaghan
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, MD, USA
| | - Argyris Stringaris
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| |
Collapse
|
37
|
Chalon S, Vercouillie J, Payoux P, Deloye JB, Malherbe C, Le Jeune F, Arlicot N, Salabert AS, Guilloteau D, Emond P, Ribeiro MJ. The Story of the Dopamine Transporter PET Tracer LBT-999: From Conception to Clinical Use. Front Med (Lausanne) 2019; 6:90. [PMID: 31131278 PMCID: PMC6509245 DOI: 10.3389/fmed.2019.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
The membrane dopamine transporter (DAT) is involved in a number of brain disorders and its exploration by positron emission tomography (PET) imaging is highly relevant for the early and differential diagnosis, follow-up and treatment assessment of these diseases. A number of carbon-11 and fluor-18 labeled tracers are to date available for this aim, the majority of them being derived from the chemical structure of cocaine. The development of such a tracer, from its conception to its use, is a long process, the expected result being to obtain the best radiopharmaceutical adapted for clinical protocols. In this context, the cocaine derivative (E)-N-(4-fluorobut-2-enyl)2β-carbomethoxy-3β-(4′-tolyl)nortropane, or LBT-999, has passed all the required stages of the development that makes it now a highly relevant imaging tool, particularly in the context of Parkinson's disease. This review describes the different steps of the development of LBT-999 which initially came from its non-fluorinated derivative (E)-N-(3-iodoprop-2-enyl)-2-carbomethoxy-3-(4-methylphenyl) nortropane, or PE2I, because of its high promising properties. [18F]LBT-999 has been extensively characterized in rodent and non-human primate models, in which it demonstrated its capability to explore in vivo the DAT localized at the dopaminergic nerve endings as well as at the mesencephalic cell bodies, in physiological conditions. In lesion-induced rat models of Parkinson's disease, [18F]LBT-999 was able to precisely quantify in vivo the dopaminergic neuron loss, and to assess the beneficial effects of therapeutic approaches such as pharmacological treatment and cell transplantation. Finally recent clinical data demonstrated the efficiency of [18F]LBT-999 in the diagnosis of Parkinson's disease.
Collapse
Affiliation(s)
- Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,University Hospital, Nuclear Medicine Unit, Toulouse, France
| | | | - Cécile Malherbe
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Florence Le Jeune
- University of Rennes 1, Rennes, France.,Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,University Hospital, Nuclear Medicine Unit, Toulouse, France
| | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU Tours, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU Tours, Tours, France
| | - Maria-Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| |
Collapse
|
38
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
39
|
van Leeuwen J, Vink M, Joëls M, Kahn R, Hermans E, Vinkers C. Increased responses of the reward circuitry to positive task feedback following acute stress in healthy controls but not in siblings of schizophrenia patients. Neuroimage 2019; 184:547-554. [DOI: 10.1016/j.neuroimage.2018.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
|
40
|
Myles D, Carter A, Yücel M. Cognitive neuroscience can support public health approaches to minimise the harm of 'losses disguised as wins' in multiline slot machines. Eur J Neurosci 2018; 50:2384-2391. [PMID: 30276920 DOI: 10.1111/ejn.14191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/03/2018] [Accepted: 09/20/2018] [Indexed: 11/26/2022]
Abstract
Video slot machines are associated with both accelerated transition into problematic forms of gambling, as well as psychosocial harm above and beyond other forms of gambling. A growing body of evidence is uncovering how key design features of multiline slot machines produce an inflated experience of reward, despite the fact that these features offer no overall financial benefit to the player. A pernicious example of this are 'losses disguised as wins' (LDWs), which occur when simultaneous bets placed on multiple lines result in a winning combination that returns an amount greater than zero, but less the total wager. These events are usually accompanied by the same celebratory sounds and animations that accompany true wins. We argue that LDWs may leverage neuropsychological phenomena that underlie reinforcement learning and contribute to extended or repetitive use and gambling-related harm. While other characteristics of slot machine gambling have been examined by cognitive neuroscientists, this feature has not yet received attention. Neuroscientific methods can be used to assess the impact of LDWs on the human reward system, to assess the claim that these events are a reinforcing and contributing factor in the development of harmful play. Positive findings would provide further persuasive evidence in support of strategies to minimise gambling harm through the regulation of machine design.
Collapse
Affiliation(s)
- Dan Myles
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| | - Adrian Carter
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, 770 Blackburn Rd, Clayton, Vic, 3800, Australia
| |
Collapse
|