1
|
Effect of Agrimonia eupatoria L. and Origanum vulgare L. Leaf, Flower, Stem, and Root Extracts on the Survival of Pseudomonas aeruginosa. Molecules 2023; 28:molecules28031019. [PMID: 36770686 PMCID: PMC9921178 DOI: 10.3390/molecules28031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.
Collapse
|
2
|
Direct Detection of Antibacterial-Producing Soil Isolates Utilizing a Novel High-Throughput Screening Assay. Microorganisms 2022; 10:microorganisms10112235. [DOI: 10.3390/microorganisms10112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The ever-increasing global threat of common infections developing resistance to current therapeutics is rapidly accelerating the onset of a primitive post-antibiotic era in medicine. The prevention of further antimicrobial resistance development is unlikely due to the continued misuse of antibiotics, augmented by the lack of discovery of novel antibiotics. Screening large libraries of synthetic compounds have yet to offer effective replacements for current antibiotics. Due to historical successes, discovery from large and diverse natural sources and, more specifically, environmental bacteria, may still yield novel alternative antibiotics. However, the process of antibiotic discovery from natural sources is laborious and time-consuming as a result of outdated methodologies. Therefore, we have developed a simple and rapid preliminary screening assay to identify antibacterial-producing bacteria from natural sources. In brief, the assay utilizes the presence or absence of luminescence in bioluminescent reporter bacteria and test bacterium co-cultures in a 96-well plate format to determine the absence or presence of antibacterial compound production. Our assay, called the bioluminescent simultaneous antagonism (BSLA) assay, can accurately distinguish between known antibacterial-producing and non-producing test bacteria. The BSLA assay was validated by screening 264 unknown soil isolates which resulted in the identification of 10 antibacterial-producing isolates, effectively decreasing the pool of isolates for downstream analysis by 96%. By design, the assay is simple and requires only general laboratory equipment; however, we have shown that the assay can be scaled to automated high-throughput screening systems. Taken together, the BSLA assay allows for the rapid pre-screening of unknown bacterial isolates which, when coupled with innovative downstream dereplication and identification technologies, can effectively fast-track antimicrobial discovery.
Collapse
|
3
|
Shi N, Wang H, Cui C, Afshar EA, Mehrabi F, Taher MA, Shojaei M, Hamidi AS, Dong Y. Survey of antibacterial activity and release kinetics of gold-decorated magnetic nanoparticles of Fe0 conjugated with sulfamethoxazole against Escherichia coli and Staphylococcus aureus. CHEMOSPHERE 2022; 305:135179. [PMID: 35660051 DOI: 10.1016/j.chemosphere.2022.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Drug delivery of antibiotics with magnetic nanoparticles improved by coating metals such as gold and silver has recently been studied. This work describe a simple method to synthesize modified magnetic nanoparticles which have high ability to modify the customary formulation of antibiotics such as sulfamethoxazole (SMX) and pursuant study of adsorption-desorption (release) of this drug. These synthesized nanoparticles were characterized by different methods, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and mapping, Fourier-transform infrared spectroscopy, X-ray diffraction, vibrating-sample magnetometry, thermogravimetric analysis and zeta potential test. Present assay showed a well correlation with the introduced carrier for the drug. Also the hypothesis were proved by some adsorption isotherm models and drug kinetics studies of carriers with different drug release kinetics models. This study confirmed the adsorption isotherm models and kinetics of drug sorbate are Temkin and Pseudo-First-Order Lagergren models, respectively; the kinetics of drug release from this carrier is based on Zero-Order model. The values of MIC in antibacterial test for pure SMX and SMX conjugated nanoparticles against Escherichia coli were calculated to be 14 and 2.5 μg/mL, respectively, and these values against Staphylococcus aureus were 24 and 1.25 μg/mL, respectively.
Collapse
Affiliation(s)
- Nan Shi
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| | - Haibin Wang
- School of Chemical Engineering and Technology North University of China, TaiYuan, China.
| | - Chengjun Cui
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| | | | - Fatemeh Mehrabi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ashraf Sadat Hamidi
- Department of Physics, Science and Research Branch, Islamic Azad University, Mazandaran, Iran
| | - Yu Dong
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| |
Collapse
|
4
|
Blumenthal I, Davis LR, Berman CM, Griswold KE. Nonclassical antagonism between human lysozyme and AMPs against Pseudomonas aeruginosa. FEBS Open Bio 2021; 11:705-713. [PMID: 33480189 PMCID: PMC7931236 DOI: 10.1002/2211-5463.13094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
Combinations of human lysozyme (hLYS) and antimicrobial peptides (AMPs) are known to exhibit either additive or synergistic activity, and as a result, they have therapeutic potential for persistent and antibiotic‐resistant infections. We examined hLYS activity against Pseudomonas aeruginosa when combined with six different AMPs. In contrast to prior reports, we discovered that some therapeutically relevant AMPs manifest striking antagonistic interactions with hLYS across particular concentration ranges. We further found that the synthetic AMP Tet009 can inhibit hLYS‐mediated bacterial lysis. To the best of our knowledge, these results represent the first observations of antagonism between hLYS and AMPs, and they advise that future development of lytic enzyme and AMP combination therapies considers the potential for antagonistic interactions.
Collapse
Affiliation(s)
- Ian Blumenthal
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Lydia R Davis
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Chet M Berman
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA.,Lyticon LLC, Lebanon, NH, USA
| |
Collapse
|
5
|
Longevity OMAC. Retracted: Hydrostatin-SN10 Ameliorates Pancreatitis-Induced Lung Injury by Affecting IL-6-Induced JAK2/STAT3-Associated Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8541783. [PMID: 33532036 PMCID: PMC7840228 DOI: 10.1155/2021/8541783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
[This retracts the article DOI: 10.1155/2019/9659757.].
Collapse
|
6
|
Porto WF, Irazazabal LN, Humblot V, Haney EF, Ribeiro SM, Hancock REW, Ladram A, Franco OL. EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochim Biophys Acta Gen Subj 2020; 1864:129633. [PMID: 32416198 DOI: 10.1016/j.bbagen.2020.129633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm. METHODS Antimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure. RESULTS Signal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide. CONCLUSION The strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents. GENERAL SIGNIFICANCE The process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Luz N Irazazabal
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Vincent Humblot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75252 Paris, France
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suzana M Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
7
|
Ruden S, Rieder A, Chis Ster I, Schwartz T, Mikut R, Hilpert K. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2019; 10:2740. [PMID: 31849888 PMCID: PMC6901909 DOI: 10.3389/fmicb.2019.02740] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
With the rise of various multidrug-resistant (MDR) pathogenic bacteria, worldwide health care is under pressure to respond. Conventional antibiotics are failing and the development of novel classes and alternative strategies is a major priority. Antimicrobial peptides (AMPs) cannot only kill MDR bacteria, but also can be used synergistically with conventional antibiotics. We selected 30 short AMPs from different origins and measured their synergy in combination with polymyxin B, piperacillin, ceftazidime, cefepime, meropenem, imipenem, tetracycline, erythromycin, kanamycin, tobramycin, amikacin, gentamycin, and ciprofloxacin. In total, 403 unique combinations were tested against an MDR Pseudomonas aeruginosa isolate (PA910). As a measure of the synergistic effects, fractional inhibitory concentrations (FICs) were determined using microdilution assays with FICs ranges between 0.25 and 2. A high number of combinations between peptides and polymyxin B, erythromycin, and tetracycline were found to be synergistic. Novel variants of indolicidin also showed a high frequency in synergist interaction. Single amino acid substitutions within the peptides can have a very strong effect on the ability to synergize, making it possible to optimize future drugs toward synergistic interaction.
Collapse
Affiliation(s)
- Serge Ruden
- Institute of Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Rieder
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kai Hilpert
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Infection and Immunity, St George's, University of London, London, United Kingdom.,Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
8
|
Oshiro KGN, Cândido ES, Chan LY, Torres MDT, Monges BED, Rodrigues SG, Porto WF, Ribeiro SM, Henriques ST, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL, Cardoso MH. Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with Extended Antibacterial Properties. J Med Chem 2019; 62:8140-8151. [DOI: 10.1021/acs.jmedchem.9b00915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Elizabete S. Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210170, Brazil
| | - Bruna E. D. Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - Silvia G. Rodrigues
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
| | - William F. Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Suzana M. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS 79825070, Brazil
| | - Sónia T. Henriques
- Faculty of Health, School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília 70910900, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790160, Brazil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Cândido ES, Cardoso MH, Chan LY, Torres MDT, Oshiro KGN, Porto WF, Ribeiro SM, Haney EF, Hancock REW, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL. Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential. ACS Infect Dis 2019; 5:1081-1086. [PMID: 31016969 DOI: 10.1021/acsinfecdis.9b00073] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms and associated infections represent one of the biggest challenges in the clinic, and as an alternative to counter bacterial infections, antimicrobial peptides have attracted great attention in the past decade. Here, ten short cationic antimicrobial peptides were generated through a sliding-window strategy on the basis of the 19-amino acid residue peptide, derived from a Pyrobaculum aerophilum ribosomal protein. PaDBS1R6F10 exhibited anti-infective potential as it decreased the bacterial burden in murine Pseudomonas aeruginosa cutaneous infections by more than 1000-fold. Adverse cytotoxic and hemolytic effects were not detected against mammalian cells. The peptide demonstrated structural plasticity in terms of its secondary structure in the different environments tested. PaDBS1R6F10 represents a promising antimicrobial agent against bacteria infections, without harming human cells.
Collapse
Affiliation(s)
- Elizabete S. Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, Distrito Federal 70790160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, Distrito Federal 70790160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal 70910900, Brazil
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States of America
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210170, Brazil
| | - Karen G. N. Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal 70910900, Brazil
| | - William F. Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
- Porto Reports, Brasília, Distrito Federal 70790160, Brazil
| | - Suzana M. Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States of America
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States of America
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, Distrito Federal 70790160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal 70910900, Brazil
| |
Collapse
|
10
|
Iyer R, Ye Z, Ferrari A, Duncan L, Tanudra MA, Tsao H, Wang T, Gao H, Brummel CL, Erwin AL. Evaluating LC-MS/MS To Measure Accumulation of Compounds within Bacteria. ACS Infect Dis 2018; 4:1336-1345. [PMID: 29961312 DOI: 10.1021/acsinfecdis.8b00083] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A general method for determining bacterial uptake of compounds independent of antibacterial activity would be a valuable tool in antibacterial drug discovery. LC-MS/MS assays have been described, but it has not been shown whether the data can be used directly to inform medicinal chemistry. We describe the evaluation of an LC-MS/MS assay measuring association of compounds with bacteria, using a set of over a hundred compounds (inhibitors of NAD-dependent DNA ligase, LigA) for which in vitro potency and antibacterial activity had been determined. All compounds were active against an efflux-deficient strain of Escherichia coli with reduced LigA activity ( E. coli ligA251 Δ tolC). Testing a single compound concentration and incubation time, we found that, for equipotent compounds, LC-MS/MS values were not predictive of antibacterial activity. This indicates that measured bacteria-associated compound was not necessarily exposed to the target enzyme. Our data suggest that, while exclusion from bacteria is a major reason for poor antibacterial activity of potent compounds, the distribution of compound within the bacterial cell may also be a problem. The relative importance of these factors is likely to vary from one chemical series to another. Our observations provide directions for further study of this difficult issue.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Zhengqi Ye
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Annette Ferrari
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Leonard Duncan
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - M. Angela Tanudra
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Hong Tsao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Tiansheng Wang
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Hong Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Christopher L. Brummel
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Alice L. Erwin
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
11
|
Porto WF, Fensterseifer ICM, Ribeiro SM, Franco OL. Joker: An algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim Biophys Acta Gen Subj 2018; 1862:2043-2052. [PMID: 29928920 DOI: 10.1016/j.bbagen.2018.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/26/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Innovative alternatives to control bacterial infections are need due to bacterial resistance rise. Antimicrobial peptides (AMPs) have been considered as the new generation of antimicrobial agents. Based on the fact that AMPs are sequence-dependent, a linguistic model for designing AMPs was previously developed, considering AMPs as a formal language with a grammar (patterns or motifs) and a vocabulary (amino acids). Albeit promising, that model has been poorly exploited mainly because thousands of sequences need to be generated, and the outcome has high similarity to already known AMPs. Here we present Joker, an innovative algorithm that improves the application of the linguistic model for rational design of antimicrobial peptides. We modelled the AMPs as a card game, where Joker combines the cards in the hand (patterns) with the cards in the table (sequence templates), generating a few variants. Our algorithm is capable of improving existing AMPs or even creating new AMPs from inactive peptides. A standalone version of Joker is available for download at <http://github.com/williamfp7/Joker> and requires a Linux 32-bit machine.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Isabel C M Fensterseifer
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Suzana M Ribeiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
12
|
Abstract
Our limited understanding of the molecular basis for compound entry into and efflux out of Gram-negative bacteria is now recognized as a key bottleneck for the rational discovery of novel antibacterial compounds. Traditional, large-scale biochemical or target-agnostic phenotypic antibacterial screening efforts have, as a result, not been very fruitful. A main driver of this knowledge gap has been the historical lack of predictive cellular assays, tools, and models that provide structure-activity relationships to inform optimization of compound accumulation. A variety of recent approaches has recently been described to address this conundrum. This Perspective explores these approaches and considers ways in which their integration could successfully redirect antibacterial drug discovery efforts.
Collapse
Affiliation(s)
- Rubén Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
13
|
Pulido D, Prats-Ejarque G, Villalba C, Albacar M, Moussaoui M, Andreu D, Volkmer R, Torrent M, Boix E. Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. Eur J Med Chem 2018; 152:590-599. [DOI: 10.1016/j.ejmech.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 01/14/2023]
|
14
|
In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 2018; 9:1490. [PMID: 29662055 PMCID: PMC5902452 DOI: 10.1038/s41467-018-03746-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics. Antimicrobial peptides are considered promising alternatives to antibiotics. Here the authors developed a computational algorithm that starts with peptides naturally occurring in plants and optimizes this starting material to yield new variants which are highly distinct from the parent peptide.
Collapse
|
15
|
Oyama LB, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Privé F, Vallin HE, Wilkinson TJ, Golyshin PN, Golyshina OV, Mikut R, Hilpert K, Richards J, Wootton M, Edwards JE, Maresca M, Perrier J, Lundy FT, Luo Y, Zhou M, Hess M, Mantovani HC, Creevey CJ, Huws SA. The rumen microbiome: an underexplored resource for novel antimicrobial discovery. NPJ Biofilms Microbiomes 2017; 3:33. [PMID: 29214045 PMCID: PMC5711939 DOI: 10.1038/s41522-017-0042-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic application. Anti-microbial molecules made by microbes in the gut of ruminant animals could become new weapons against antibiotic-resistant infections. An international team of researchers led by Sharon Huws at Queen’s University Belfast, UK, identified three anti-microbial peptides in the rumen of animals such as cattle, sheep and goats. The peptides—short proteins—were highly active in laboratory trials against several clinically important drug-resistant infections. These included methicillin resistant Staphylococcus aureus (MRSA), a notorious cause of life-threatening infections, especially in patients with weakened immunity. There is growing interest in using peptides as alternatives to existing antibiotics. The findings, initiated by examining a ‘library’ of molecular data, suggest that the rumen is an under-explored resource that may harbor many medically useful antimicrobials. The possibilities should be investigated further, with promising molecules being tested in clinical conditions.
Collapse
Affiliation(s)
- Linda B Oyama
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Susan E Girdwood
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Alan R Cookson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Florence Privé
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Hannah E Vallin
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Toby J Wilkinson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | | | | | - Ralf Mikut
- Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein, Leopoldshafen, Germany
| | - Kai Hilpert
- Institute of Infection and Immunity, St. George's University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Jennifer Richards
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW UK
| | - Joan E Edwards
- Wageningen University & Research, 6708 WE, Wageningen, Netherlands
| | - Marc Maresca
- Aix Marseille Université, CNRS, Central Marseille, iSm2, Marseille, France
| | - Josette Perrier
- Aix Marseille Université, CNRS, Central Marseille, iSm2, Marseille, France
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL UK
| | - Yu Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL UK
| | - Mei Zhou
- School of Pharmacy, Queens's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Matthias Hess
- UC Davis, College of Agricultural and Environmental Sciences, California, 95616 USA
| | - Hilario C Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, 36570-900 Brazil
| | - Christopher J Creevey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DA UK
| | - Sharon A Huws
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL UK
| |
Collapse
|
16
|
Chen J, Picard RA, Wang D, Nugen SR. Lyophilized Engineered Phages for Escherichia coli Detection in Food Matrices. ACS Sens 2017; 2:1573-1577. [PMID: 29043791 DOI: 10.1021/acssensors.7b00561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ease of use, low cost, and convenient transport are the key requirements for a commercial bacteria detection kit designed for resource-limited settings. Here, we report the colorimetric detection of Escherichia coli (E. coli) in food samples using freeze-dried engineered bacteriophages (phages). In this approach, we have engineered T7 phages to carry the lacZ operon driven by T7 promoter to overexpress reporter enzymes. The engineered phages were freeze-dried in a water-soluble polymer for storage and transportation. When used for the detection of E. coli cells, the intracellular enzyme [β-galactosidase (β-gal)] was overexpressed and released into the surrounding media, providing an enzyme-amplified colorimetric signal. Using this strategy, we were able to detect E. coli cells at the concentration of 102 CFU mL-1 in food samples without the need for sophisticated instruments or skilled operators.
Collapse
Affiliation(s)
- Juhong Chen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Rachael A. Picard
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Danhui Wang
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Sam R. Nugen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
18
|
Peng R. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:305-312. [PMID: 28059472 DOI: 10.1002/bmb.21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017.
Collapse
Affiliation(s)
- Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
19
|
Vasilchenko AS, Rogozhin EA, Valyshev AV. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced byEnterococcus faeciumICIS 8 and Characterization of Its Mode of Action. Microb Drug Resist 2017; 23:447-456. [DOI: 10.1089/mdr.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexey S. Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
- Orenburg State University, Orenburg, Russian Federation
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Gause Institute of New Antibiotics, Moscow, Russian Federation
| | - Alexander V. Valyshev
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
| |
Collapse
|
20
|
A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 2017; 7:1506. [PMID: 28473710 PMCID: PMC5431435 DOI: 10.1038/s41598-017-01698-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/22/2023] Open
Abstract
Infection of bone is a severe complication due to the variety of bacteria causing it, their resistance against classical antibiotics, the formation of a biofilm and the difficulty to eradicate it. Antimicrobial peptides (AMPs) are naturally occurring peptides and promising candidates for treatment of joint infections. This study aimed to analyze the effect of short artificial peptides derived from an optimized library regarding (1) antimicrobial effect on different bacterial species, (2) efficacy on biofilms, and (3) effect on osteoblast‑like cells. Culturing the AMP-modifications with Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus (including clinical isolates of MRSA and MSSA) and Staphylococcus epidermidis identified one candidate that was most effective against all bacteria. This AMP was also able to reduce biofilm as demonstrated by FISH and microcalorimetry. Osteoblast viability and differentiation were not negatively affected by the AMP. A cation concentration comparable to that physiologically occurring in blood had almost no negative effect on AMP activity and even with 10% serum bacterial growth was inhibited. Bacteria internalized into osteoblasts were reduced by the AMP. Taken together the results demonstrate a high antimicrobial activity of the AMP even against bacteria incorporated in a biofilm or internalized into cells without harming human osteoblasts.
Collapse
|
21
|
López-Pérez PM, Grimsey E, Bourne L, Mikut R, Hilpert K. Screening and Optimizing Antimicrobial Peptides by Using SPOT-Synthesis. Front Chem 2017; 5:25. [PMID: 28447030 PMCID: PMC5388751 DOI: 10.3389/fchem.2017.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Peptide arrays on cellulose are a powerful tool to investigate peptide interactions with a number of different molecules, for examples antibodies, receptors or enzymes. Such peptide arrays can also be used to study interactions with whole cells. In this review, we focus on the interaction of small antimicrobial peptides with bacteria. Antimicrobial peptides (AMPs) can kill multidrug-resistant (MDR) human pathogenic bacteria and therefore could be next generation antibiotics targeting MDR bacteria. We describe the screen and the result of different optimization strategies of peptides cleaved from the membrane. In addition, screening of antibacterial activity of peptides that are tethered to the surface is discussed. Surface-active peptides can be used to protect surfaces from bacterial infections, for example implants.
Collapse
Affiliation(s)
| | - Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Luc Bourne
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science (IAI)Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- TiKa Diagnostics LtdLondon, UK
- Institute for Infection and Immunity, St. George's University of LondonLondon, UK
| |
Collapse
|
22
|
Ramesh RK, Chottanahalli SPK, Madegowda NM, Rai VR, Ananda S. Electrochemical synthesis of hierarchal flower-like hierarchical In2O3/ZnO nanocatalyst for textile industry effluent treatment, photo-voltaic, OH scavenging and anti-bacterial studies. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Vasilchenko AS, Rogozhin EA, Vasilchenko AV, Kartashova OL, Sycheva MV. Novel haemoglobin-derived antimicrobial peptides from chicken (Gallus gallus) blood: purification, structural aspects and biological activity. J Appl Microbiol 2016; 121:1546-1557. [PMID: 27583823 DOI: 10.1111/jam.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022]
Abstract
AIM To purify and characterize antimicrobial peptides derived from the acid extract of Gallus gallus blood cells. METHODS AND RESULTS Two polypeptides (i.e. CHb-1 and CHb-2) with antibacterial activity were detected in the acidic extract of blood cells from chicken (G. gallus). The isolated peptides that possessed a potent antibacterial activity were purified using a two-step chromatography procedure that involved solid-phase extraction of a total protein/peptide extract followed by thin fractionation by reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses of the purified peptides were similar and were 4824·4 and 4825·2 Da, which have been measured by matrix-assisted laser desorption/ionization mass spectrometry (MALDI TOF MS). Their amino acid sequences were determined by Edman degradation and showed that the peptides were fully identical to the two fragments of G. gallus α-haemoglobin localized into different subunits (A and D respectively). The peptides were active in micromolar concentrations against Gram-negative Escherichia coli K12 TG1. Using the 1-N-phenylnaphthylamine, the FITC-dextran labelled probes and the live/dead staining allowed to show the hemocidin mode of action and estimate the pore size. CONCLUSION In this study, for the first time, α-haemoglobin from chicken (G. gallus) has been investigated as a donor of the two high homologous native peptide fragments that possess potent antibacterial activity in vitro. These are membrane-active peptides and their mechanism of action against E. coli involves a toroidal pore formation. SIGNIFICANCE AND IMPACT OF THE STUDY The obtained results expand the perception of the role of haemoglobin in a living system, describing it as a source of multifunction substances. Additionally, the data presented in this paper may contribute to the development of new, cost-effective, antimicrobial agents.
Collapse
Affiliation(s)
- A S Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, RAS, Orenburg, Russia
| | - E A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Gause Institute of New Antibiotics, Moscow, Russia
| | | | - O L Kartashova
- Institute of Cellular and Intracellular Symbiosis, RAS, Orenburg, Russia
| | - M V Sycheva
- Institute of Cellular and Intracellular Symbiosis, RAS, Orenburg, Russia.,Orenburg State Agrarian University, Orenburg, Russia
| |
Collapse
|
24
|
Wang Y, Yang YJ, Chen YN, Zhao HY, Zhang S. Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 134:215-223. [PMID: 27480745 DOI: 10.1016/j.cmpb.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/16/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Antibacterial peptides (ABPs) are essential components of host defense against microbial infections present in all domains of life. The AMPs incorporating unnatural amino acids (uABPs) exhibit several advantages over naturally occurring AMPs based on factors such as bioavailability, metabolic stability and overall toxicity. METHODS Computer-aided modeling and in vitro susceptibility test were combined to rationally design short uABPs with potent antimicrobial activity. In the procedure, peptide characterization and machine learning modeling were used to develop statistical regression predictors, which were then employed to guide the molecular design and structural optimization of uABPs, to which a number of commercially available unnatural amino acids were introduced. RESULTS An improved uABP population was obtained, from which several promising candidates were successfully prepared and their antibacterial potencies against three bacterial strains Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli were measured using broth microdilution assay. Consequently, four uABPs with hybrid structure property were determined to have high potency against the tested strains with minimum inhibitory concentration (MIC) of <50 µg/ml. CONCLUSIONS Molecular dynamics (MD) simulations revealed that the designed uABPs are amphipathic helix in solution but they would largely unfold when spontaneously embedding into an artificial lipid bilayer that mimics microbial membrane.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, The First People's Hospital of Jining, Jining 272011, China
| | - Yong-Jian Yang
- Department of Anesthesiology, The Central Hospital of Jinan, Shandong University, Jinan 250013, China
| | - Ya-Na Chen
- Department of Obstetrics, The Central Hospital of Jinan, Shandong University, Jinan 250013, China
| | - Hong-Yu Zhao
- Department of Hematology, The Central Hospital of Jinan, Shandong University, Jinan 250013, China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan 250011, China.
| |
Collapse
|
25
|
Xiong M, Chen M, Zhang J. Rational Evolution of Antimicrobial Peptides Containing Unnatural Amino Acids to Combat Burn Wound Infections. Chem Biol Drug Des 2016; 88:404-10. [PMID: 27062533 DOI: 10.1111/cbdd.12768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Meng Xiong
- Department of Burn and Plastic Surgery; Zhongda Hospital Southeast University; Nanjing 210009 China
| | - Ming Chen
- Department of Burn and Plastic Surgery; Zhongda Hospital Southeast University; Nanjing 210009 China
| | - Jue Zhang
- Department of Burn and Plastic Surgery; Zhongda Hospital Southeast University; Nanjing 210009 China
| |
Collapse
|
26
|
Vašková L, Nosková L, Bláhová B, Wimmerová M, Dřevínek P, Kubíčková B, Stiborová M, Hodek P. Evaluation of anti-PAIIL lectin hen yolk antibody as an agent inhibiting Pseudomonas aeruginosa adherence to epithelial cells. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Deiss F, Yang Y, Matochko WL, Derda R. Heat-enhanced peptide synthesis on Teflon-patterned paper. Org Biomol Chem 2016; 14:5148-56. [DOI: 10.1039/c6ob00898d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp.
Collapse
Affiliation(s)
- Frédérique Deiss
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Yang Yang
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Wadim L. Matochko
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Ratmir Derda
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
28
|
Mikut R, Ruden S, Reischl M, Breitling F, Volkmer R, Hilpert K. Improving short antimicrobial peptides despite elusive rules for activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1024-33. [PMID: 26687790 DOI: 10.1016/j.bbamem.2015.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Antimicrobial peptides (AMPs) can effectively kill a broad range of life threatening multidrug-resistant bacteria, a serious threat to public health worldwide. However, despite great hopes novel drugs based on AMPs are still rare. To accelerate drug development we studied different approaches to improve the antibacterial activity of short antimicrobial peptides. Short antimicrobial peptides seem to be ideal drug candidates since they can be synthesized quickly and easily, modified and optimized. In addition, manufacturing a short peptide drug will be more cost efficient than long and structured ones. In contrast to longer and structured peptides short AMPs seem hard to design and predict. Here, we designed, synthesized and screened five different peptide libraries, each consisting of 600 9-mer peptides, against Pseudomonas aeruginosa. Each library is presenting a different approach to investigate effectiveness of an optimization strategy. The data for the 3000 peptides were analyzed using models based on fuzzy logic bioinformatics and plausible descriptors. The rate of active or superior active peptides was improved from 31.0% in a semi-random library from a previous study to 97.8% in the best new designed library. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Serge Ruden
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces and Institute of Biological Interfaces 2, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Markus Reischl
- Karlsruhe Institute of Technology (KIT), Institute for Applied Computer Science, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Frank Breitling
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Rudolf Volkmer
- Institute of Medical Immunology, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Schumannstr. 20-21, 10117 Berlin, Germany
| | - Kai Hilpert
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces and Institute of Biological Interfaces 2, P.O. Box 3640, 76021 Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, P.O. Box 3640, 76021 Karlsruhe, Germany; Institute of Infection and Immunity, St. George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom.
| |
Collapse
|
29
|
Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv 2015; 33:1547-71. [DOI: 10.1016/j.biotechadv.2015.07.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
|
30
|
Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 60:544-53. [PMID: 26552982 DOI: 10.1128/aac.01650-15] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.
Collapse
|
31
|
McClintock MK, Kaznessis YN, Hackel BJ. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci. Biotechnol Bioeng 2015; 113:414-23. [PMID: 26191783 DOI: 10.1002/bit.25710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022]
Abstract
Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Maria K McClintock
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455.
| |
Collapse
|
32
|
Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus. Amino Acids 2015; 48:269-80. [PMID: 26334348 DOI: 10.1007/s00726-015-2082-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
The identification of lead molecules against multidrug-resistant bacteria ensuing the development of novel antimicrobial drugs is an urgent task. Proline-rich antimicrobial peptides are highly active in vitro and in vivo, but only against a few Gram-negative human pathogens, with rather weak activities against Pseudomonas aeruginosa and Staphylococcus aureus. This reduced level of efficacy could be related to inadequate uptake mechanisms or structural differences of the intracellular target proteins, i.e., the 70S ribosome or chaperone DnaK. Here we synthesized peptide arrays on cellulose membranes using cleavable linkers to release the free individual peptides for further antimicrobial tests. Thus, a library of singly substituted oncocin analogs was produced by replacing each residue by all other 19 canonical amino acids yielding a set of 361 individual peptides to be evaluated against a luminescent P. aeruginosa strain. Thirteen substitutions appeared promising and their improved antibacterial activities were confirmed for different bacteria after larger scale synthesis of these analogs. By combining two favorable substitutions into one peptide, we finally obtained an oncocin analog that was ten times more active against P. aeruginosa and even 100-fold more active against S. aureus than the original oncocin, providing minimal inhibitory concentrations of 4-8 and 0.5 µg/mL, respectively.
Collapse
|
33
|
Wang C, Venditti RA, Zhang K. Tailor-made functional surfaces based on cellulose-derived materials. Appl Microbiol Biotechnol 2015; 99:5791-9. [PMID: 26084889 DOI: 10.1007/s00253-015-6722-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/30/2023]
Abstract
As one of the most abundant natural materials in nature, cellulose has revealed enormous potential for the construction of functional materials thanks to its sustainability, non-toxicity, biocompatibility, and biodegradability. Among many fascinating applications, functional surfaces based on cellulose-derived materials have attracted increasing interest recently, as platforms for diagnostics, sensoring, robust catalysis, water treatment, ultrafiltration, and anti-microbial surfaces. This mini-review attempts to cover the general methodology for the fabrication of functional cellulose surface and a few popular applications including bioactive and non-adhesive (i.e., anti-fouling and anti-microbial) surfaces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | |
Collapse
|
34
|
Azmi S, Jiang K, Stiles M, Thundat T, Kaur K. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements. ACS COMBINATORIAL SCIENCE 2015; 17:156-63. [PMID: 25548942 DOI: 10.1021/co500079k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.
Collapse
Affiliation(s)
- Sarfuddin Azmi
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Keren Jiang
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | | - Thomas Thundat
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Chapman
University School of Pharmacy (CUSP), Harry and Diane Rinker Health
Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
35
|
In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 2014; 58:5342-9. [PMID: 24982064 DOI: 10.1128/aac.02823-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.
Collapse
|
36
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
37
|
Diehnelt CW. Peptide array based discovery of synthetic antimicrobial peptides. Front Microbiol 2013; 4:402. [PMID: 24399997 PMCID: PMC3872314 DOI: 10.3389/fmicb.2013.00402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chris W Diehnelt
- Center for Innovations in Medicine, The Biodesign Institute at Arizona State University Tempe, AZ, USA
| |
Collapse
|
38
|
Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother 2013; 57:2295-303. [PMID: 23478953 DOI: 10.1128/aac.00175-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of effective therapies for treating tuberculosis (TB) is a global health problem. While Mycobacterium tuberculosis is notoriously resistant to most available antibiotics, we identified synthetic short cationic antimicrobial peptides that were active at low micromolar concentrations (less than 10 μM). These small peptides (averaging 10 amino acids) had remarkably broad spectra of antimicrobial activities against both bacterial and fungal pathogens and an indication of low cytotoxicity. In addition, their antimicrobial activities displayed various degrees of species specificity that were not related to taxonomy. For example, Candida albicans and Staphylococcus aureus were the best surrogates to predict peptide activity against M. tuberculosis, while Mycobacterium smegmatis was a poor surrogate. Principle component analysis of activity spectrum profiles identified unique features associated with activity against M. tuberculosis that reflect their distinctive amino acid composition; active peptides were more hydrophobic and cationic, reflecting increased tryptophan with compensating decreases in valine and other uncharged amino acids and increased lysine. These studies provide foundations for development of cationic antimicrobial peptides as potential new therapeutic agents for TB treatment.
Collapse
|
39
|
Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Appl Environ Microbiol 2012; 78:4400-11. [PMID: 22492434 DOI: 10.1128/aem.07895-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg(2+) or Mn(2+)) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions.
Collapse
|
40
|
Frei R, Breitbach AS, Blackwell HE. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing. Chem Sci 2012. [PMID: 23198087 DOI: 10.1039/c2sc01089e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.
Collapse
Affiliation(s)
- Reto Frei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| | | | | |
Collapse
|
41
|
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 2011; 6:635-51. [PMID: 21707311 DOI: 10.2217/fmb.11.27] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years.
Collapse
Affiliation(s)
- Randal Eckert
- C3 Jian, Inc., 423 Hindry Ave, Unit D, Inglewood, CA 90301, USA.
| |
Collapse
|
42
|
Kurvet I, Ivask A, Bondarenko O, Sihtmäe M, Kahru A. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. SENSORS 2011; 11:7865-78. [PMID: 22164050 PMCID: PMC3231736 DOI: 10.3390/s110807865] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 12/13/2022]
Abstract
We show that in vitro toxicity assay based on inhibition of the bioluminescence of recombinant Escherichia coli encoding thermostable luciferase from Photorhabdus luminescens is a versatile alternative to Vibrio fischeri Microtox™ test. Performance of two luxCDABE-transformed E. coli MC1061 constructs (pDNlux) and (pSLlux) otherwise identical, but having 100-fold different background luminescence was compared with the performance of V. fischeri. The microplate luminometer and a kinetic Flash-Assay test format was used that differently from Microtox test is also applicable for high throughput analysis. Toxic effects (30-s till 30-min EC50) of four heavy metals (Zn, Cd, Hg, Cu) and three organic chemicals (aniline, 3,5-dichloroaniline and 3,5-dichlorophenol) were studied. Both E. coli strains had comparable sensitivity and the respective 30-min EC50 values highly correlated (log-log R2 = 0.99; p < 0.01) showing that the sensitivity of the recombinant bacteria towards chemicals analyzed did not depend on the bioluminescence level of the recombinant cells. The most toxic chemical for all used bacterial strains (E. coli, V. fischeri) was mercury whereas the lowest EC50 values for Hg (0.04–0.05 mg/L) and highest EC50 values for aniline (1,300–1,700 mg/L) were observed for E. coli strains. Despite of that, toxicity results obtained with both E. coli strains (pSLlux and pDNlux) significantly correlated with V. fischeri results (log-log R2 = 0.70/0.75; p < 0.05/0.01). The use of amino acids (0.25%) and glucose (0.05%)-supplemented M9 medium instead of leucine-supplemented saline significantly (p < 0.05) reduced the apparent toxicity of heavy metals to both E. coli strains up to three orders of magnitude, but had little or no complexing effect on organic compounds. Thus, P. luminescens luxCDABE-transformed E. coli strains can be successfully used for the acute toxicity screening of various types of organic chemicals and heavy metals and can replace V. fischeri in certain cases where the thermostability of luciferase >30 °C is crucial. The kinetic Flash Assay test format of the bioluminescence inhibition assay facilitates high throughput analysis. The assay medium, especially in case of testing heavy metals should be a compromise: optimal for the viability/luminescence of the recombinant test strain and of minimum complexing potential.
Collapse
Affiliation(s)
- Imbi Kurvet
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Food Processing, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Angela Ivask
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (A.K.); Tel.: +372-6-398-382 (A.I.); +372-6-398-373 (A.K.); Fax: +372-6-398-382 (A.I.); +372-6-398-382 (A.K.)
| | - Olesja Bondarenko
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Gene Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Department of Chemical Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Anne Kahru
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia; E-Mails: (I.K.); (O.B.); (M.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.I.); (A.K.); Tel.: +372-6-398-382 (A.I.); +372-6-398-373 (A.K.); Fax: +372-6-398-382 (A.I.); +372-6-398-382 (A.K.)
| |
Collapse
|
43
|
Miranda OR, Li X, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 2011; 133:9650-3. [PMID: 21627131 PMCID: PMC3120917 DOI: 10.1021/ja2021729] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and sensitive detection of pathogens is a key requirement for both environmental and clinical settings. We report here a colorimetric enzyme-nanoparticle conjugate system for detection of microbial contamination. In this approach, cationic gold nanoparticles (NPs) featuring quaternary amine headgroups are electrostatically bound to an enzyme [β-galactosidase (β-Gal)], inhibiting enzyme activity. Analyte bacteria bind to the NP, which releases the β-Gal and restores its activity, providing an enzyme-amplified colorimetric readout of the binding event. Using this strategy, we have been able to quantify bacteria at concentrations of 1 × 10(2) bacteria/mL in solution and 1 × 10(4) bacteria/mL in a field-friendly test strip format.
Collapse
Affiliation(s)
- Oscar R. Miranda
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Limary Garcia-Gonzalez
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931
| | - Zheng-Jiang Zhu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Bo Yan
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Uwe H. F. Bunz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
44
|
Roles of two Shewanella oneidensis MR-1 extracellular endonucleases. Appl Environ Microbiol 2011; 77:5342-51. [PMID: 21705528 DOI: 10.1128/aem.00643-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment.
Collapse
|
45
|
Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases. PLoS One 2011; 6:e20069. [PMID: 21603574 PMCID: PMC3095640 DOI: 10.1371/journal.pone.0020069] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022] Open
Abstract
Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp) activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid adaptation to a pathogen-directed inhibitor of RdRp activity.
Collapse
|
46
|
Crowley TE. Fluorescence-PCR assays and isolation of luminescent bacterial clones using an automated plate reader. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 39:126-132. [PMID: 21445904 DOI: 10.1002/bmb.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The genes responsible for luminescence in various species of the marine microorganism Photobacterium, have been used for many years as a tool by researchers and instructors. In particular, the lux operon of Photobacterium fischeri has been used by many instructors to teach recombinant DNA techniques. Two methods using an automated plate reader and multiwell plates were applied to a set of previously-published exercises. In these exercises that involve transfer of lux genes to Escherichia coli to create a luminescent phenotype, this technology was used to screen for Lux(+) colonies. It was found to be more convenient and more sensitive than the previously used method; that is, assaying bacterial plates by direct observation. Eight students synthesized four genomic libraries and isolated six Lux(+) clones. The fluorescent-detection feature of the plate reader was used to verify amplification of target sequence in polymerase chain reaction (PCR) reactions. Lux(+) E. coli colony lysates were examined. An exonuclease-activated, fluorescent DNA probe generated a signal on hybridization to an amplified portion of the luxA gene in each lysate tested. This method is suggested as a means of demonstrating the concept of real-time PCR without the expense of the specialized device typically used for this technique.
Collapse
Affiliation(s)
- Thomas E Crowley
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, California 92093, USA.
| |
Collapse
|
47
|
Karimov IF, Manukhov IV, Kotova VY, Omel’chenko DO, Deryabin DG. Peculiarities of luminescent response of Bacillus subtilis recombinant strain bearing cloned Vibro harveyi lux AB genes to the action of thermostable blood serum compounds. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s000368381009005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Screening for antifungal peptides and their modes of action in Aspergillus nidulans. Appl Environ Microbiol 2010; 76:7102-8. [PMID: 20833782 DOI: 10.1128/aem.01560-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many short cationic peptides have been identified as potent antimicrobial agents, but their modes of action are not well understood. Peptide synthesis on cellulose membranes has resulted in the generation of peptide libraries, while high-throughput assays have been developed to test their antibacterial activities. In this paper a microtiter plate-based screening method for fungi has been developed and used to test nine antibacterial peptides against the model fungus Aspergillus nidulans. Microscopical studies using sublethal peptide concentrations caused defects in polarized growth, including increased branch formation and depolarized hyphae. We characterized the mode of action for one of our target peptides, Sub5 (12 amino acids), which has already been shown to possess pharmacological potential as an antibacterial agent and is able to interact with ATP and ATP-dependent enzymes. The MIC for A. nidulans is 2 μg/ml, which is in the same range as the MICs reported for bacteria. Fluorescein isothiocyanate (FITC)-labeled Sub5 targeted the cytoplasmic membrane, particularly hyphal tips, and entered the cytoplasm after prolonged exposure, independent of endocytosis. Interestingly, Sub5 peptide treatment disturbed sterol-rich membrane domains, important for tip growth, at hyphal tips. A very similar peptide, FITC-P7, also accumulated on the cell membrane but did not have antibacterial or antifungal activity, suggesting that the cytoplasmic membrane is a first target for the Sub5 peptide; however, the antifungal activity seems to be correlated with the ability to enter the cytoplasm, where the peptides might act on other targets.
Collapse
|
49
|
Abstract
Developing new lead structures for drugs against multiresistant bacteria is an urgent need for modern medicine. Antimicrobial peptides are a class of drugs that can be used to discover such structures. In order to support development of this research, a fast, easy, and inexpensive method to synthesize peptides is necessary. The SPOT synthesis has the potential to produce the required peptide arrays, synthesizing up to 8,000 peptides, peptide mixtures, or other organic compounds on cellulose or other planar surfaces in a positionally addressable and multiple manner. Protocols for the preparation of cellulose membranes and the SPOT synthesis as well as cleavage of peptides from the support are described.
Collapse
Affiliation(s)
- Dirk F H Winkler
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Marques SM, Esteves da Silva JCG. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life 2009; 61:6-17. [PMID: 18949818 DOI: 10.1002/iub.134] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Luciferase is a general term for enzymes catalyzing visible light emission by living organisms (bioluminescence). The studies carried out with Photinus pyralis (firefly) luciferase allowed the discovery of the reaction leading to light production. It can be regarded as a two-step process: the first corresponds to the reaction of luciferase's substrate, luciferin (LH(2)), with ATP-Mg(2+) generating inorganic pyrophosphate and an intermediate luciferyl-adenylate (LH(2)-AMP); the second is the oxidation and decarboxylation of LH(2)-AMP to oxyluciferin, the light emitter, producing CO(2), AMP, and photons of yellow-green light (550- 570 nm). In a dark reaction LH(2)-AMP is oxidized to dehydroluciferyl-adenylate (L-AMP). Luciferase also shows acyl-coenzyme A synthetase activity, which leads to the formation of dehydroluciferyl-coenzyme A (L-CoA), luciferyl-coenzyme A (LH(2)-CoA), and fatty acyl-CoAs. Moreover luciferase catalyzes the synthesis of dinucleoside polyphosphates from nucleosides with at least a 3'-phosphate chain plus an intact terminal pyrophosphate moiety. The LH(2) stereospecificity is a particular feature of the bioluminescent reaction where each isomer, D-LH(2) or L-LH(2), has a specific function. Practical applications of the luciferase system, either in its native form or with engineered proteins, encloses the analytical assay of metabolites like ATP and molecular biology studies with luc as a reporter gene, including the most recent and increasing field of bioimaging.
Collapse
Affiliation(s)
- Simone M Marques
- Centro de Investigação em Química (CIQ-UP), Department of Chemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | | |
Collapse
|