1
|
Volpi N, Galeotti F, Gatto F. High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids. Nat Protoc 2025; 20:843-860. [PMID: 39543382 DOI: 10.1038/s41596-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
3
|
Kale R, Chaturvedi D, Dandekar P, Jain R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1133-1149. [PMID: 38314866 DOI: 10.1039/d3ay00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.
Collapse
Affiliation(s)
- Rohit Kale
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
4
|
Gatto F, Bratulic S, Jonasch E, Limeta A, Maccari F, Galeotti F, Volpi N, Lundstam S, Nielsen J, Stierner U. Plasma and Urine Free Glycosaminoglycans as Monitoring and Predictive Biomarkers in Metastatic Renal Cell Carcinoma: A Prospective Cohort Study. JCO Precis Oncol 2023; 7:e2200361. [PMID: 36848607 DOI: 10.1200/po.22.00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
PURPOSE No liquid biomarkers are approved in metastatic renal cell carcinoma (mRCC) despite the need to predict and monitor response noninvasively to tailor treatment choices. Urine and plasma free glycosaminoglycan profiles (GAGomes) are promising metabolic biomarkers in mRCC. The objective of this study was to explore if GAGomes could predict and monitor response in mRCC. PATIENTS AND METHODS We enrolled a single-center prospective cohort of patients with mRCC elected for first-line therapy (ClinicalTrials.gov identifier: NCT02732665) plus three retrospective cohorts (ClinicalTrials.gov identifiers: NCT00715442 and NCT00126594) for external validation. Response was dichotomized as progressive disease (PD) versus non-PD every 8-12 weeks. GAGomes were measured at treatment start, after 6-8 weeks, and every third month in a blinded laboratory. We correlated GAGomes with response and developed scores to classify PD versus non-PD, which were used to predict response at treatment start or after 6-8 weeks. RESULTS Fifty patients with mRCC were prospectively included, and all received tyrosine kinase inhibitors (TKIs). PD correlated with alterations in 40% of GAGome features. We developed plasma, urine, and combined glycosaminoglycan progression scores that monitored PD at each response evaluation visit with the area under the receiving operating characteristic curve (AUC) of 0.93, 0.97, and 0.98, respectively. For internal validation, the scores predicted PD at treatment start with the AUC of 0.66, 0.68, and 0.74 and after 6-8 weeks with the AUC of 0.76, 0.66, and 0.75. For external validation, 70 patients with mRCC were retrospectively included and all received TKI-containing regimens. The plasma score predicted PD at treatment start with the AUC of 0.90 and at 6-8 weeks with the AUC of 0.89. The pooled sensitivity and specificity were 58% and 79% at treatment start. Limitations include the exploratory study design. CONCLUSION GAGomes changed in association with mRCC response to TKIs and may provide biologic insights into mRCC mechanisms of response.
Collapse
Affiliation(s)
- Francesco Gatto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Sinisa Bratulic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eric Jonasch
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, MD Anderson Cancer Center of the University of Texas, Houston, TX
| | - Angelo Limeta
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sven Lundstam
- Department of Urology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen, Denmark
| | - Ulrika Stierner
- Department of Oncology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Entchev E, Antonelli S, Mauro V, Cimbolini N, Jantzen I, Roussey A, Germain JM, Zhang H, Luccarrini JM, Lacombe O, Young SP, Feraille L, Tallandier M. MPS VI associated ocular phenotypes in an MPS VI murine model and the therapeutic effects of odiparcil treatment. Mol Genet Metab 2022; 135:143-153. [PMID: 34417096 DOI: 10.1016/j.ymgme.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023]
Abstract
Maroteaux - Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is a lysosomal storage disease resulting from insufficient enzymatic activity for degradation of the specific glycosaminoglycans (GAG) chondroitin sulphate (CS) and dermatan sulphate (DS). Among the most pronounced MPS VI clinical manifestations caused by cellular accumulation of excess CS and DS are eye disorders, in particular those that affect the cornea. Ocular manifestations are not treated by the current standard of care, enzyme replacement therapy (ERT), leaving patients with a significant unmet need. Using in vitro and in vivo models, we previously demonstrated the potential of the β-D-xyloside, odiparcil, as an oral GAG clearance therapy for MPS VI. Here, we characterized the eye phenotypes in MPS VI arylsulfatase B deficient mice (Arsb-) and studied the effects of odiparcil treatment in early and established disease models. Severe levels of opacification and GAG accumulation were detected in the eyes of MPS VI Arsb- mice. Histological examination of MPS VI Arsb- eyes showed an aggregate of corneal phenotypes, including reduction in the corneal epithelium thickness and number of epithelial cell layers, and morphological malformations in the stroma. In addition, colloidal iron staining showed specifically GAG accumulation in the cornea. Orally administered odiparcil markedly reduced GAG accumulation in the eyes of MPS VI Arsb- mice in both disease models and restored the corneal morphology (epithelial layers and stromal structure). In the early disease model of MPS VI, odiparcil partially reduced corneal opacity area, but did not affect opacity area in the established model. Analysis of GAG types accumulating in the MPS VI Arsb- eyes demonstrated major contribution of DS and CS, with some increase in heparan sulphate (HS) as well and all were reduced with odiparcil treatment. Taken together, we further reveal the potential of odiparcil to be an effective therapy for eye phenotypes associated with MPS VI disease.
Collapse
Affiliation(s)
| | - Sophie Antonelli
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | - Virginie Mauro
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | - Nicolas Cimbolini
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | | | | | | | - Haoyue Zhang
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
| | | | | | - Sarah P Young
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke School of Medicine, Durham, NC, USA
| | - Laurence Feraille
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | | |
Collapse
|
6
|
|
7
|
Tamburro D, Bratulic S, Abou Shameh S, Soni NK, Bacconi A, Maccari F, Galeotti F, Mattsson K, Volpi N, Nielsen J, Gatto F. Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122761. [PMID: 34052753 DOI: 10.1016/j.jchromb.2021.122761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans (GAGs) are long linear sulfated polysaccharides implicated in processes linked to disease development such as mucopolysaccharidosis, respiratory failure, cancer, and viral infections, thereby serving as potential biomarkers. A successful clinical translation of GAGs as biomarkers depends on the availability of standardized GAG measurements. However, owing to the analytical complexity associated with the quantification of GAG concentration and structural composition, a standardized method to simultaneously measure multiple GAGs is missing. In this study, we sought to characterize the analytical performance of a ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-MS/MS)-based kit for the quantification of 17 free GAG disaccharides. The kit showed acceptable linearity, selectivity and specificity, accuracy and precision, and analyte stability in the absolute quantification of 15 disaccharides. In native human samples, here using urine as a reference matrix, the analytical performance of the kit was acceptable for the quantification of CS disaccharides. Intra- and inter-laboratory tests performed in an external laboratory demonstrated robust reproducibility of GAG measurements showing that the kit was acceptably standardized. In conclusion, these results indicated that the UHPLC-MS/MS kit was standardized for the simultaneous measurement of free GAG disaccharides allowing for comparability of measurements and enabling translational research.
Collapse
Affiliation(s)
| | - Sinisa Bratulic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Nikul K Soni
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; BioInnovation Institute, DK 2200 Copenhagen, Denmark
| | - Francesco Gatto
- Elypta AB, 171 65 Solna, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Song Y, Zhang F, Linhardt RJ. Analysis of the Glycosaminoglycan Chains of Proteoglycans. J Histochem Cytochem 2021; 69:121-135. [PMID: 32623943 PMCID: PMC7841699 DOI: 10.1369/0022155420937154] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG-ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.
Collapse
Affiliation(s)
- Yuefan Song
- National R & D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, P.R. China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
9
|
Pepi LE, Sanderson P, Stickney M, Amster IJ. Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review. Mol Cell Proteomics 2021; 20:100025. [PMID: 32938749 PMCID: PMC8724624 DOI: 10.1074/mcp.r120.002267] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | | | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
10
|
GAG-DB, the New Interface of the Three-Dimensional Landscape of Glycosaminoglycans. Biomolecules 2020; 10:biom10121660. [PMID: 33322545 PMCID: PMC7763844 DOI: 10.3390/biom10121660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides. GAG-DB is a curated database that classifies the three-dimensional features of the six mammalian GAGs (chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, hyaluronan, and keratan sulfate) and their oligosaccharides complexed with proteins. The entries are structures of GAG and GAG-protein complexes determined by X-ray single-crystal diffraction methods, X-ray fiber diffractometry, solution NMR spectroscopy, and scattering data often associated with molecular modeling. We designed the database architecture and the navigation tools to query the database with the Protein Data Bank (PDB), UniProtKB, and GlyTouCan (universal glycan repository) identifiers. Special attention was devoted to the description of the bound glycan ligands using simple graphical representation and numerical format for cross-referencing to other databases in glycoscience and functional data. GAG-DB provides detailed information on GAGs, their bound protein ligands, and features their interactions using several open access applications. Binding covers interactions between monosaccharides and protein monosaccharide units and the evaluation of quaternary structure. GAG-DB is freely available.
Collapse
|
11
|
Rooney PR, Kannala VK, Kotla NG, Benito A, Dupin D, Loinaz I, Quinlan LR, Rochev Y, Pandit A. A high molecular weight hyaluronic acid biphasic dispersion as potential therapeutics for interstitial cystitis. J Biomed Mater Res B Appl Biomater 2020; 109:864-876. [PMID: 33103826 PMCID: PMC8246519 DOI: 10.1002/jbm.b.34751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/12/2020] [Accepted: 10/17/2020] [Indexed: 01/13/2023]
Abstract
Interstitial cystitis (IC) is a progressive bladder disease characterized by increased urothelial permeability, inflammation of the bladder with abdominal pain. While there is no consensus on the etiology of the disease, it was believed that restoring the barrier between urinary solutes and (GAG) urothelium would interrupt the progression of this disease. Currently, several treatment options include intravesical delivery of hyaluronic acid (HA) and/or chondroitin sulfate solutions, through a catheter to restore the urothelial barrier, but have shown limited success in preclinical, clinical trials. Herein we report for the first time successful engineering and characterization of biphasic system developed by combining cross‐linked hyaluronic acid and naïve HA solution to decrease inflammation and permeability in an in vitro model of interstitial cystitis. The cross‐linking of HA was performed by 4‐arm‐polyethyeleneamine chemistry. The HA formulations were tested for their viscoelastic properties and the effects on cell metabolism, inflammatory markers, and permeability. Our study demonstrates the therapeutic effects of different ratios of the biphasic system and reports their ability to increase the barrier effect by decreasing the permeability and alteration of cell metabolism with respect to relative controls. Restoring the barrier by using biphasic system of HA therapy may be a promising approach to IC.
Collapse
Affiliation(s)
- Peadar R Rooney
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Vijaya Krishna Kannala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Benito
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Leo R Quinlan
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Chen CG, Gubbiotti MA, Kapoor A, Han X, Yu Y, Linhardt RJ, Iozzo RV. Autophagic degradation of HAS2 in endothelial cells: A novel mechanism to regulate angiogenesis. Matrix Biol 2020; 90:1-19. [PMID: 32084457 DOI: 10.1016/j.matbio.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Hyaluronan plays a key role in regulating inflammation and tumor angiogenesis. Of the three transmembrane hyaluronan synthases, HAS2 is the main pro-angiogenic enzyme responsible for excessive hyaluronan production. We discovered that HAS2 was degraded in vascular endothelial cells via autophagy evoked by nutrient deprivation, mTOR inhibition, or pro-autophagic proteoglycan fragments endorepellin and endostatin. Using live-cell and super-resolution confocal microscopy, we found that protracted autophagy evoked a dynamic interaction between HAS2 and ATG9A, a key transmembrane autophagic protein. This regulatory axis of HAS2 degradation occurred in various cell types and species and in vivo upon nutrient deprivation. Inhibiting in vivo autophagic flux via chloroquine showed increased levels of HAS2 in the heart and aorta. Functionally, autophagic induction via endorepellin or mTOR inhibition markedly suppressed extracellular hyaluronan production in vascular endothelial cells and inhibited ex vivo angiogenic sprouting. Thus, we propose autophagy as a novel catabolic mechanism regulating hyaluronan production in endothelial cells and demonstrate a new link between autophagy and angiogenesis that could lead to potential therapeutic modalities for angiogenesis.
Collapse
Affiliation(s)
- Carolyn G Chen
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria A Gubbiotti
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yanglei Yu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Dhahri M, Sioud S, Dridi R, Hassine M, Boughattas NA, Almulhim F, Al Talla Z, Jaremko M, Emwas AHM. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS OMEGA 2020; 5:14786-14795. [PMID: 32596616 PMCID: PMC7315596 DOI: 10.1021/acsomega.0c01724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Bioactive compounds for drug discovery are increasingly extracted and purified from natural sources including marine organisms. Heparin is a therapeutic agent that has been used for several decades as an anticoagulant. However, heparin is known to cause many undesirable complications such as thrombocytopenia and risk of hemorrhage. Hence, there is a need to find alternatives to current widely used anticoagulant drugs. Here, we extract a sulfated polysaccharide from sea hare, that is, Bursatella leachii viscera, by enzymatic digestion. Several analytical approaches including elemental analysis, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-performance liquid chromatography-mass spectrometry analysis show that B. leachii polysaccharides have chemical structures similar to glycosaminoglycans. We explore the anticoagulant activity of the B. leachii extract using the activated partial thromboplastin time and the thrombin time. Our results demonstrate that the extracted sulfated polysaccharide has heparin-like anticoagulant activity, thus showing great promise as an alternative anticoagulant therapy.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department,
Faculty of Science Yanbu, Taibah University, 46423 Yanbu El-Bahr, Saudi Arabia
| | - Salim Sioud
- Analytical Core Lab, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Rihab Dridi
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Mohsen Hassine
- Hematology Department, Fattouma Bourguiba University Hospital, 5000 Monastir, Tunisia
| | - Naceur A. Boughattas
- Laboratory of Pharmacology,
Faculty of Medicine of Monastir, University
of Monastir, 5000 Monastir, Tunisia
| | - Fatimah Almulhim
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Zeyad Al Talla
- ANPERC, King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| | - Mariusz Jaremko
- Biological and Environmental Science and
Engineering (BESE), King Abdullah University
of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdul-Hamid M. Emwas
- Core Labs, King
Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi
| |
Collapse
|
14
|
Yu Y, Bruzdoski K, Kostousov V, Hensch L, Hui SK, Siddiqui F, Farooqui A, Kouta A, Zhang F, Fareed J, Teruya J, Linhardt RJ. Structural characterization of a clinically described heparin-like substance in plasma causing bleeding. Carbohydr Polym 2020; 244:116443. [PMID: 32536393 DOI: 10.1016/j.carbpol.2020.116443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023]
Abstract
Heparin-like substances (HLS) have been described in various clinical situations, including in settings of liver disease associated with infection, transplant, and metastasis. HLS are generally attributed to circulating glycosaminoglycans. Initial results for this patient showed coagulopathy due to liver disease without HLS. Two weeks after liver transplantation, a 10 year-old female with liver failure patient began to bleed from catheter insertion sites, mouth, and nares and HLS was suspected. The patient subsequently died and these clinical samples resulted in the isolation of a single heparan sulfate (HS) present at high concentrations in the plasma. Analysis of this HS showed it had an intermediate between heparin and HS with low antithrombin-mediated anticoagulant activity. We speculate that this 10-year old patient might have a platelet function defect influenced by this unusual HS. Endothelial defects not measurable by our methods might have also contributed to the observed bleeding complications.
Collapse
Affiliation(s)
- Yanlei Yu
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Karen Bruzdoski
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Vadim Kostousov
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Lisa Hensch
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Shiu-Ki Hui
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Amber Farooqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ahmed Kouta
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jun Teruya
- Division of Transfusion Medicine & Coagulation, Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
16
|
Gardinier TC, Kohle FF, Peerless JS, Ma K, Turker MZ, Hinckley JA, Yingling YG, Wiesner U. High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles. ACS NANO 2019; 13:1795-1804. [PMID: 30629425 PMCID: PMC6395521 DOI: 10.1021/acsnano.8b07876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In contrast to small-molar-mass compounds, detailed structural investigations of inorganic core-organic ligand shell hybrid nanoparticles remain challenging. The assessment of batch-reaction-induced heterogeneities of surface chemical properties and their correlation with particle size has been a particularly long-standing issue. Applying a combination of high-performance liquid chromatography (HPLC) and gel permeation chromatography (GPC) to ultra-small (<10 nm diameter) poly(ethylene glycol)-coated (PEGylated) fluorescent core-shell silica nanoparticles, we elucidate here previously unknown surface heterogeneities resulting from varying dye conjugation to nanoparticle silica cores and surfaces. Heterogeneities are predominantly governed by dye charge, as corroborated by molecular dynamics simulations. We demonstrate that this insight enables the development of synthesis protocols to achieve PEGylated and targeting ligand-functionalized PEGylated silica nanoparticles with dramatically improved surface chemical homogeneity, as evidenced by single-peak HPLC chromatograms. Because surface chemical properties are key to all nanoparticle interactions, we expect these methods and fundamental insights to become relevant to a number of systems for applications, including bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Thomas C. Gardinier
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James S. Peerless
- Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Kai Ma
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Melik Z. Turker
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joshua A. Hinckley
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yaroslava G. Yingling
- Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ulrich Wiesner
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Corresponding Author: Department of Materials Science and Engineering, Cornell University, 330 Bard Hall, Ithaca, NY 14853, USA. Fax: 607-255-2365
| |
Collapse
|
17
|
A mutant-cell library for systematic analysis of heparan sulfate structure-function relationships. Nat Methods 2018; 15:889-899. [PMID: 30377379 PMCID: PMC6214364 DOI: 10.1038/s41592-018-0189-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.
Collapse
|
18
|
Gu Y, Wu X, Liu H, Pan Q, Chen Y. Photoswitchable Heparinase III for Enzymatic Preparation of Low Molecular Weight Heparin. Org Lett 2017; 20:48-51. [DOI: 10.1021/acs.orglett.7b03340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| |
Collapse
|
19
|
Gu Y, Lu M, Wang Z, Wu X, Chen Y. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus. Chemistry 2017; 23:2548-2551. [DOI: 10.1002/chem.201605929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Zongqiang Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| |
Collapse
|
20
|
Ricard-Blum S, Lisacek F. Glycosaminoglycanomics: where we are. Glycoconj J 2016; 34:339-349. [PMID: 27900575 DOI: 10.1007/s10719-016-9747-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
Abstract
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS - Université Lyon 1, INSA Lyon, CPE Lyon, 69622, Villeurbanne Cedex, France.
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Computer Science Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis. Anal Bioanal Chem 2016; 409:1257-1269. [DOI: 10.1007/s00216-016-0052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
22
|
Gatto F, Volpi N, Nilsson H, Nookaew I, Maruzzo M, Roma A, Johansson M, Stierner U, Lundstam S, Basso U, Nielsen J. Glycosaminoglycan Profiling in Patients’ Plasma and Urine Predicts the Occurrence of Metastatic Clear Cell Renal Cell Carcinoma. Cell Rep 2016; 15:1822-36. [DOI: 10.1016/j.celrep.2016.04.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
|
23
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
24
|
Volpi N, Coppa GV, Zampini L, Maccari F, Galeotti F, Garavelli L, Galeazzi T, Padella L, Santoro L, Gabrielli O. Plasmatic and urinary glycosaminoglycan profile in a patient affected by multiple sulfatase deficiency. ACTA ACUST UNITED AC 2015; 53:e157-60. [DOI: 10.1515/cclm-2014-0997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 11/15/2022]
|
25
|
Isolation of a pure octadecasaccharide with antithrombin activity from an ultra-low-molecular-weight heparin. Anal Biochem 2014; 453:7-15. [DOI: 10.1016/j.ab.2014.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/23/2022]
|
26
|
Zhang Q, Li H, Feng X, Liu BF, Liu X. Purification of derivatized oligosaccharides by solid phase extraction for glycomic analysis. PLoS One 2014; 9:e94232. [PMID: 24705408 PMCID: PMC3976416 DOI: 10.1371/journal.pone.0094232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis.
Collapse
Affiliation(s)
- Qiwei Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Henghui Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XJF); (XL)
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics–Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XJF); (XL)
| |
Collapse
|
27
|
Wang Z, Li D, Sun X, Bai X, Jin L, Chi L. Liquid chromatography–diode array detection–mass spectrometry for compositional analysis of low molecular weight heparins. Anal Biochem 2014; 451:35-41. [DOI: 10.1016/j.ab.2014.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
28
|
Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone–labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc 2014; 9:541-58. [DOI: 10.1038/nprot.2014.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development 2013; 140:3892-902. [PMID: 23946439 DOI: 10.1242/dev.096388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.
Collapse
Affiliation(s)
- Judith M Neugebauer
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
30
|
Hsieh CC, Guo JY, Hung SU, Chen R, Nie Z, Chang HC, Wu CC. Quantitative Analysis of Oligosaccharides Derived from Sulfated Glycosaminoglycans by Nanodiamond-Based Affinity Purification and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2013; 85:4342-9. [DOI: 10.1021/ac3034097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chih-Chien Hsieh
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
- Institute
of Atomic and Molecular
Sciences, Academia Sinica, Taipei 106,
Taiwan
| | - Jiun You Guo
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan
| | - Shain-Un Hung
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan
| | - Rui Chen
- Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China and Beijing National Laboratory for Molecular Sciences,
Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China and Beijing National Laboratory for Molecular Sciences,
Beijing 100190, China
| | - Huan-Cheng Chang
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
- Institute
of Atomic and Molecular
Sciences, Academia Sinica, Taipei 106,
Taiwan
| | - Chih-Che Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 545, Taiwan
| |
Collapse
|
31
|
On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization. Carbohydr Polym 2013; 96:503-9. [PMID: 23768593 DOI: 10.1016/j.carbpol.2013.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 11/21/2022]
Abstract
Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and identification of the resulting non-sulfated oligosaccharide products of oxidative depolymerization was established. Hyaluronan oligosaccharides were analyzed using ion-pairing reversed phase high performance liquid chromatography coupled with tandem electrospray mass spectrometry. The sequence of saturated hyaluronan oligosaccharides having even- and odd-numbers of saccharide units, afforded through oxidative depolymerization, were identified. This study represents a simple, effective 'fingerprinting' protocol for detecting the damage done to hyaluronan by oxidative radicals. This study should help reveal the potential biological outcome of reactive-oxygen radical-mediated depolymerization of hyaluronan.
Collapse
|
32
|
Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations. J Pharm Biomed Anal 2012; 67-68:144-7. [PMID: 22534509 DOI: 10.1016/j.jpba.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
|
33
|
Zhao X, Yang B, Datta P, Gasmili L, Zhang F, Linhardt RJ. Cell-Based Microscale Isolation of Glycoaminoglycans for Glycomics Study. J Carbohydr Chem 2012; 31:420-435. [PMID: 24068855 DOI: 10.1080/07328303.2012.658126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glycomics research requires the isolation of glycans from cells for structural characterization and functional studies of the glycans. A method for cell-based microscale isolation and quantification of highly sulfated, moderately sulfated, and nonsulfated glycosaminoglycans (GAGs) was developed using Chinese hamster ovary (CHO) cells. This microscale isolation relies on a mini-strong anion exchange spin column eluted stepwise with different concentrations of sodium chloride solution. Hyaluronic acid, chondroitin sulfate, and heparin were used to optimize the isolation of the endogenous glycosaminoglycans in CHO cells. This method can also be used to determine the presence of nonsulfated GAGs including heparosan, hyaluronic acid, and nonsulfated chondroitin.
Collapse
Affiliation(s)
- Xue Zhao
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong, 266003, P.R. China ; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Proteoglycans (PGs) are among the most structurally complex biomacromolecules in nature. They are present in all animal cells and frequently exert their critical biological functions through interactions with protein ligands and receptors. PGs are comprised of a core protein to which one or multiple, heterogeneous, and polydisperse glycosaminoglycan (GAG) chains are attached. Proteins, including the protein core of PGs, are now routinely sequenced either directly using proteomics or indirectly using molecular biology through their encoding DNA. The sequencing of the GAG component of PGs poses a considerably more difficult challenge because of the relatively underdeveloped state of glycomics and because the control of their biosynthesis in the endoplasmic reticulum and the Golgi is poorly understood and not believed to be template driven. Recently, the GAG chain of the simplest PG has been suggested to have a defined sequence based on its top-down Fourier transform mass spectral sequencing. This review examines the advances made over the past decade in the sequencing of GAG chains and the challenges the field face in sequencing complex PGs having critical biological functions in developmental biology and pathogenesis.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Mellisa Ly
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
- Department of Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| |
Collapse
|
35
|
Chang Y, Yang B, Zhao X, Linhardt RJ. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal Biochem 2012; 427:91-8. [PMID: 22609076 DOI: 10.1016/j.ab.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
A quantitative and highly sensitive method for the analysis of glycosaminoglycan (GAG)-derived disaccharides that relies on capillary electrophoresis (CE) with laser-induced fluorescence detection is presented. This method enables complete separation of 17 GAG-derived disaccharides in a single run. Unsaturated disaccharides were derivatized with 2-aminoacridone to improve sensitivity. The limit of detection was at the attomole level and approximately 100-fold more sensitive than traditional CE-ultraviolet detection. A CE separation timetable was developed to achieve complete resolution and shorten analysis time. The relative standard deviations of migration time and peak areas at both low and high concentrations of unsaturated disaccharides are all less than 2.7 and 3.2%, respectively, demonstrating that this is a reproducible method. This analysis was successfully applied to cultured Chinese hamster ovary cell samples for determination of GAG disaccharides. The current method simplifies GAG extraction steps and reduces inaccuracy in calculating ratios of heparin/heparan sulfate to chondroitin sulfate/dermatan sulfate resulting from the separate analyses of a single sample.
Collapse
Affiliation(s)
- Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
36
|
Yang B, Chang Y, Weyers AM, Sterner E, Linhardt RJ. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2012; 1225:91-8. [PMID: 22236563 PMCID: PMC3268819 DOI: 10.1016/j.chroma.2011.12.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
Glycosaminoglycans are a family of polysaccharides widely distributed in all eukaryotic cells. These polyanionic, linear chain polysaccharides are composed of repeating disaccharide units that are often differentially substituted with sulfo groups. The diversity of glycosaminoglycan structures in cells, tissues and among different organisms reflect their functional an evolutionary importance. Glycosaminoglycan composition and structure also changes in development, aging and in disease progression, making their accurate and reliable analysis a critical, albeit, challenging endeavor. Quantitative disaccharide compositional analysis is one of the primary ways to characterize glycosaminoglycan composition and structure and has a direct relationship with glycosaminoglycan biological functions. In this study, glycosaminoglycan disaccharides, prepared from heparan sulfate/heparin, chondroitin sulfate/dermatan sulfate and neutral hyaluronic acid using multiple polysaccharide lyases, were fluorescently labeled with 2-aminoacridone, fractionated into 17 well-resolved components by reverse-phase ultra-performance liquid chromatography, and analyzed by electrospray ionization mass spectrometry. This analysis was successfully applied to cell, tissue, and biological fluid samples for the picomole level detection of glycosaminoglycan composition and structure.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Heparin is a member of the heparan sulphate family of glycosaminoglycans, a linear polysaccharide with a complex sequence resulting from the action of post-polymerisation enzymes on a regular repeating disaccharide background. Its overall conformation is rod-like in solution as well as in the solid state, but the conformational fluctuations of iduronate residues give rise to considerable internal motion and variation in local three-dimensional structure. Structure/function relationships and their relation to sequence are still the subject of argument, but new methodologies to tackle the subject are emerging. Heparin as a therapeutic agent and as the object of research may be characterised by numerous physico-chemical techniques. These include chromatographic methods for measurement of molecular weight; a variety of spectroscopic techniques; separation methods for whole polysaccharides, as well as for oligo- and monosaccharides; and mass spectrometric methods for mapping and sequence analysis. The impetus provided by the discovery of heparin contamination with oversulphated chondroitin sulphate has been influential in bringing combinations of many old and new techniques into use to ensure that heparin is sufficiently consistent and pure to be used safely. Synthetic and semi-synthetic heparins are in development and may become reality in the relatively near future.
Collapse
Affiliation(s)
- Barbara Mulloy
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| |
Collapse
|
38
|
Takegawa Y, Araki K, Fujitani N, Furukawa JI, Sugiyama H, Sakai H, Shinohara Y. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography. Anal Chem 2011; 83:9443-9. [PMID: 22044073 DOI: 10.1021/ac2021079] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).
Collapse
Affiliation(s)
- Yasuhiro Takegawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Recent advances in the analysis of carbohydrates for biomedical use. J Pharm Biomed Anal 2011; 55:702-27. [DOI: 10.1016/j.jpba.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023]
|
40
|
Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 2011; 415:59-66. [PMID: 21530482 DOI: 10.1016/j.ab.2011.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
Abstract
A high-resolution method for the separation and analysis of disaccharides prepared from heparin and heparan sulfate (HS) using heparin lyases is described. Ultra-performance liquid chromatography in a reverse-phase ion-pairing mode efficiently separates eight heparin/HS disaccharides. The disaccharides can then be detected and quantified using electrospray ionization mass spectrometry. This method is particularly useful in the analysis of small amounts of biological samples, including cells, tissues, and biological fluids, because it provides high sensitivity without being subject to interference from proteins, peptides, and other sample impurities.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Restaino OF, Cimini D, De Rosa M, Catapano A, De Rosa M, Schiraldi C. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb Cell Fact 2011; 10:10. [PMID: 21324163 PMCID: PMC3050683 DOI: 10.1186/1475-2859-10-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/16/2011] [Indexed: 11/16/2022] Open
Abstract
Background The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production. Results The inhibitory effect of acetate on the bacterial cells growth and K4 CPS production was studied in shake flask conditions, while a new approach, that combined the optimization of the feeding profiles, the improvement of aeration conditions and the use of a microfiltration bioreactor, was investigated in three different types of fermentation processes. High polysaccharide concentrations (4.73 ± 0.2 g·L-1), with corresponding average yields (0.13 ± 0.006 gK4 CPS·gcdw-1), were obtained; the increase of K4 CPS titre, compared to batch and fed-batch results, was of 16-fold and 3.3-fold respectively, while average yield was almost 3.5 and 1.4 fold higher. Conclusion The increase of capsular polysaccharide titre confirmed the validity of the proposed fermentation strategy and opened the way to the use of the microfiltration bioreactor for the biotechnological production of chondroitin.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Via de Crecchio 7, 80138, Naples, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
HSs (heparan sulfates) are a complex family of cell-surface and matrix polysaccharides that have diverse biological functions, underpinned by structurally diverse patterns of backbone chain modification, especially by sulfate groups. These variant structures represent a molecular code, the 'heparanome', that confers the ability to interact selectively with a wide interactome of proteins, the 'heparactome', and thereby influence a network of cellular events. It is becoming increasingly apparent that understanding the structure-activity relationships of these enigmatic molecules requires the development of a holistic systems biology view of their structure and interactions. In the present paper, I describe some of the new tools available to realize this strategy, and discuss the future potential for the combined application of glycomics and other '-omics' approaches to define the molecular code of the heparanome.
Collapse
|
43
|
Abstract
The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS.
Collapse
Affiliation(s)
- Gregory O. Staples
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| |
Collapse
|
44
|
Yang B, Solakyildirim K, Chang Y, Linhardt RJ. Hyphenated techniques for the analysis of heparin and heparan sulfate. Anal Bioanal Chem 2011; 399:541-57. [PMID: 20853165 PMCID: PMC3235348 DOI: 10.1007/s00216-010-4117-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022]
Abstract
The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kemal Solakyildirim
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
45
|
Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence (BODIPY) detection. Nat Protoc 2010; 5:1983-92. [DOI: 10.1038/nprot.2010.145] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Beni S, Limtiaco JFK, Larive CK. Analysis and characterization of heparin impurities. Anal Bioanal Chem 2010; 399:527-39. [PMID: 20814668 PMCID: PMC3015169 DOI: 10.1007/s00216-010-4121-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations. Schematic illustrating the process for heparin impurity characterization ![]()
Collapse
Affiliation(s)
- Szabolcs Beni
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
47
|
Xiao Z, Zhao W, Yang B, Zhang Z, Guan H, Linhardt RJ. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages. Glycobiology 2010; 21:13-22. [PMID: 20729345 DOI: 10.1093/glycob/cwq123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine intestinal mucosa heparin was partially depolymerized by recombinant heparinase 1 (heparin lyase 1, originating from Flavobacterium heparinum and expressed in Escherichia coli) and then fractionated, leading to the isolation of 22 homogeneous oligosaccharides with sizes ranging from disaccharide to hexadecasaccharide. The purity of these oligosaccharides was determined by gel electrophoresis, strong anion exchange and reversed-phase ion-pairing high-performance liquid chromatography. The molecular mass of oligosaccharides was determined using electrospray ionization-mass spectrometry and their structures were elucidated using one- and two-dimensional nuclear magnetic resonance spectroscopy at 600 MHz. Five of the characterized oligosaccharides represent new compounds. The most prominent oligosaccharide comprises the common repeating unit of heparin, ΔUA2S-[-GlcNS6S-IdoA2S-](n)-GlcNS6S, where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, GlcN is 2-deoxy-2-amino-d-glucopyranose, IdoA is l-idopyranosyluronic acid, S is sulfate and n = 0-7. A second prominent heparin oligosaccharide motif corresponds to ΔUA2S-[GlcNS6S-IdoA2S](n)-GlcNS6S-IdoA-GlcNAc6S-GlcA-GlcNS3S6S (where n = 0-5 and GlcA is d-glucopyranosyluronic acid), a fragment of the antithrombin III binding site in heparin. The prominence of this second set of oligosaccharides and the absence of intact antithrombin III binding sites suggest that the -GlcNS3S6S-IdoA2S- linkage is particularly susceptible to heparinase 1.
Collapse
Affiliation(s)
- Zhongping Xiao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drug and Food, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|