1
|
Bravo-Vázquez LA, Castro-Pacheco AM, Pérez-Vargas R, Velázquez-Jiménez JF, Paul S. The Emerging Applications of Artificial MicroRNA-Mediated Gene Silencing in Plant Biotechnology. Noncoding RNA 2025; 11:19. [PMID: 40126343 PMCID: PMC11932238 DOI: 10.3390/ncrna11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Improving crop yield potential is crucial to meet the increasing demands of a rapidly expanding global population in an ever-changing and challenging environment. Therefore, different technological approaches have been proposed over the last decades to accelerate plant breeding. Among them, artificial microRNAs (amiRNAs) represent an innovative tool with remarkable potential to assist plant improvement. MicroRNAs (miRNAs) are a group of endogenous, small (20-24 nucleotides), non-coding RNA molecules that play a crucial role in gene regulation. They are associated with most biological processes of a plant, including reproduction, development, cell differentiation, biotic and abiotic stress responses, metabolism, and plant architecture. In this context, amiRNAs are synthetic molecules engineered to mimic the structure and function of endogenous miRNAs, allowing for the targeted silencing of specific nucleic acids. The current review explores the diverse applications of amiRNAs in plant biology and agriculture, such as the management of infectious agents and pests, the engineering of plant metabolism, and the enhancement of plant resilience to abiotic stress. Moreover, we address future perspectives on plant amiRNA-based gene silencing strategies, highlighting the need for further research to fully comprehend the potential of this technology and to translate its scope toward the widespread adoption of amiRNA-based strategies for plant breeding.
Collapse
Affiliation(s)
| | | | | | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| |
Collapse
|
2
|
Zhang P, Yu F, Zhu X, Zhao J, Zhang K. MATE transporter DTX44 is involved in regulating flowering time in Arabidopsis. PHYSIOLOGIA PLANTARUM 2025; 177:e70238. [PMID: 40251924 DOI: 10.1111/ppl.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
The precise timing of flowering is crucial for the transition from vegetative to reproductive phases and is regulated by both endogenous and exogenous signals. Here, we demonstrate that DTX44, a member of the multidrug and toxic compound extrusion (MATE) transporter family, plays a role in facilitating flowering in Arabidopsis thaliana. Overexpressing of DTX44 resulted in early flowering, while a dtx44 mutant exhibited delayed flowering. The early-flowering phenotype induced by DTX44 overexpression was repressed by the ft (FLOWERING LOCUS T) mutant. In contrast, the delayed flowering phenotype of dtx44 mutants was suppressed by the flc (FLOWERING LOCUS C) mutant. Subcellular localization analysis of GFP-DTX44 in the Arabidopsis protoplasts and Nicotiana benthamiana leaves suggests that DTX44 localizes to the endoplasmic reticulum. GUS staining of the DTX44pro:DTX44-GUS transgenic plants indicated that the DTX44 gene is widely expressed in the shoots and roots. The grafting experiments between the dtx44 mutant or DTX44 overexpression lines and wild type suggested that DTX44 expression in the shoots and roots contribute to flowering time. RNA-seq analysis of dtx44 mutant and wild-type seedlings suggests that DTX44 is involved in the biosynthesis or signaling of multiple hormones in response to abiotic stresses. In summary, our study reveals the biological function of the MATE transporter DTX44 in Arabidopsis flowering. The substrate of DTX44 remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Fang Yu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xiaoxian Zhu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Ge J, Lang X, Ji J, Qu C, Qiao H, Zhong J, Luo D, Hu J, Chen H, Wang S, Wang T, Li S, Li W, Zheng P, Xu J, Du H. Integration of biological and information technologies to enhance plant autoluminescence. THE PLANT CELL 2024; 36:4703-4715. [PMID: 39167833 PMCID: PMC11530770 DOI: 10.1093/plcell/koae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.
Collapse
Affiliation(s)
- Jieyu Ge
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuye Lang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Qu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Qiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingling Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Daren Luo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shun Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tiange Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shiquan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Peng Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
5
|
Rutowicz K, Lüthi J, de Groot R, Holtackers R, Yakimovich Y, Pazmiño DM, Gandrillon O, Pelkmans L, Baroux C. Multiscale chromatin dynamics and high entropy in plant iPSC ancestors. J Cell Sci 2024; 137:jcs261703. [PMID: 38738286 PMCID: PMC11234377 DOI: 10.1242/jcs.261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Joel Lüthi
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Reinoud de Groot
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - René Holtackers
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Yauhen Yakimovich
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Diana M. Pazmiño
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, University of Lyon, ENS de Lyon,69342 Lyon, France
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Célia Baroux
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
6
|
Shi X, Yang T, Ren M, Fu J, Bai J, Cui H. AT-hook motif nuclear localized transcription factors function redundantly in promoting root growth through modulation of redox homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:199-217. [PMID: 39136690 DOI: 10.1111/tpj.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 09/27/2024]
Abstract
Maintaining an optimal redox status is essential for plant growth and development, particularly when the plants are under stress. AT-hook motif nuclear localized (AHL) proteins are evolutionarily conserved transcription factors in plants. Much of our understanding about this gene family has been derived from studies on clade A members. To elucidate the functions of clade B genes, we first analyzed their spatial expression patterns using transgenic plants expressing a nuclear localized GFP under the control of their promoter sequences. AHL1, 2, 6, 7, and 10 were further functionally characterized owing to their high expression in the root apical meristem. Through mutant analyses and transgenic studies, we showed that these genes have the ability to promote root growth. Using yeast one-hybrid and dual luciferase assays, we demonstrated that AHL1, 2, 6, 7, and 10 are transcription regulators and this activity is required for their roles in root growth. Although mutants for these genes did not showed obvious defects in root growth, transgenic plants expressing their fusion proteins with the SRDX repressor motif exhibited a short-root phenotype. Through transcriptome analysis, histochemical staining and molecular genetics experiments, we found that AHL10 maintains redox homeostasis via direct regulation of glutathione transferase (GST) genes. When the transcript level of GSTF2, a top-ranked target of AHL10, was reduced by RNAi, the short-root phenotype in the AHL10-SRDX expressing plant was largely rescued. These results together suggest that AHL genes function redundantly in promoting root growth through direct regulation of redox homeostasis.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengfei Ren
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Fu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Cui
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| |
Collapse
|
7
|
Liang Z, Zhu T, Yu Y, Wu C, Huang Y, Hao Y, Song X, Fu W, Yuan L, Cui Y, Huang S, Li C. PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation. Mol Cell 2024; 84:3438-3454.e8. [PMID: 39232583 DOI: 10.1016/j.molcel.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Spreading of H3K27me3 is crucial for the maintenance of mitotically inheritable Polycomb-mediated chromatin silencing in animals and plants. However, how Polycomb repressive complex 2 (PRC2) accesses unmodified nucleosomes in spreading regions for spreading H3K27me3 remains unclear. Here, we show in Arabidopsis thaliana that the chromatin remodeler PICKLE (PKL) plays a specialized role in H3K27me3 spreading to safeguard cell identity during differentiation. PKL specifically localizes to H3K27me3 spreading regions but not to nucleation sites and physically associates with PRC2. Loss of PKL disrupts the occupancy of the PRC2 catalytic subunit CLF in spreading regions and leads to aberrant dedifferentiation. Nucleosome density increase endowed by the ATPase function of PKL ensures that unmodified nucleosomes are accessible to PRC2 catalytic activity for H3K27me3 spreading. Our findings demonstrate that PKL-dependent nucleosome compaction is critical for PRC2-mediated H3K27me3 read-and-write function in H3K27me3 spreading, thus revealing a mechanism by which repressive chromatin domains are established and propagated.
Collapse
Affiliation(s)
- Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yisui Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Jiang W, Bush J, Sheen J. A Versatile and Efficient Plant Protoplast Platform for Genome Editing by Cas9 RNPs. Front Genome Ed 2022; 3:719190. [PMID: 35005700 PMCID: PMC8729822 DOI: 10.3389/fgeed.2021.719190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
The ultimate goal of technology development in genome editing is to enable precisely targeted genomic changes in any cells or organisms. Here we describe protoplast systems for precise and efficient DNA sequence changes with preassembled Cas9 ribonucleoprotein (RNP) complexes in Arabidopsis thaliana, Nicotiana benthamiana, Brassica rapa, and Camelina sativa. Cas9 RNP-mediated gene disruption with dual gRNAs could reach ∼90% indels in Arabidopsis protoplasts. To facilitate facile testing of any Cas9 RNP designs, we developed two GFP reporter genes, which led to sensitive detection of nonhomologous end joining (NHEJ) and homology-directed repair (HDR), with editing efficiency up to 85 and 50%, respectively. When co-transfected with an optimal single-stranded oligodeoxynucleotide (ssODN) donor, precise editing of the AtALS gene via HDR reached 7% by RNPs. Significantly, precise mutagenesis mediated by preassembled primer editor (PE) RNPs led to 50% GFP reporter gene recovery in protoplasts and up to 4.6% editing frequency for the specific AtPDS mutation in the genome. The rapid, versatile and efficient gene editing by CRISPR RNP variants in protoplasts provides a valuable platform for development, evaluation and optimization of new designs and tools in gene and genomic manipulation and is applicable in diverse plant species.
Collapse
Affiliation(s)
- Wenzhi Jiang
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jenifer Bush
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Liu Y, Xiong Y. Protoplast for Gene Functional Analysis in Arabidopsis. Methods Mol Biol 2022; 2464:29-47. [PMID: 35258823 DOI: 10.1007/978-1-0716-2164-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protoplast, a plant cell without cell wall, can be readily transfected by exogenous macromolecules (DNA, RNA, protein) and therefore offer a versatile single cell-based functional analysis system to rapidly assess these exogenous macromolecules' functions. Properly prepared Arabidopsis leaf mesophyll protoplasts exhibit similar responses as intact plants to diverse abiotic and biotic stress signals as well as different hormones and nutrients, based on well-established reporter and marker gene assays. The protoplast transient expression system has been proven to be a vital and reliable tool for elucidation of the activities of transcription factors and protein kinases, protein subcellular localization and trafficking, protein-protein interaction, and protein stabilities in various signal transduction pathways. Moreover, protoplast also offers a platform for single cell-based plant regeneration, gene silencing, and genome editing. Healthy protoplasts isolated from plant tissues and the high transfection efficiency are key steps for successful use of the protoplast transient expression system. In this chapter, we describe the detailed methods of the protoplast transient expression system in Arabidopsis, including plant material preparation, high-quality maxi-plasmid DNA extraction, non-stressed protoplast isolation, highly efficient PEG-calcium transfection of plasmid DNA, and protoplast culture and harvest. We also provide several examples of gene functional analysis using this protoplast transient expression system.
Collapse
Affiliation(s)
- Yanlin Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
11
|
Susila H, Jurić S, Liu L, Gawarecka K, Chung KS, Jin S, Kim SJ, Nasim Z, Youn G, Suh MC, Yu H, Ahn JH. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 2021; 373:1137-1142. [PMID: 34516842 DOI: 10.1126/science.abh4054] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Snježana Jurić
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.,Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Kyung Sook Chung
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Soo-Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
12
|
Xue J, Lu D, Wang S, Lu Z, Liu W, Wang X, Fang Z, He X. Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Sci Rep 2021; 11:14083. [PMID: 34238989 PMCID: PMC8266841 DOI: 10.1038/s41598-021-93532-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is one of the most precisely modulated developmental process and affects various agronomic traits of rice. Anti-senescence rice varieties are important for breeding application. However, little is known about the mechanisms underlying the metabolic regulatory process of leaf senescence in rice. In this study, we performed transcriptomic and metabolomic analyses of the flag leaves in Yuenong Simiao (YN) and YB, two indica rice cultivars that differ in terms of their leaf senescence. We found 8524 genes/204 metabolites were differentially expressed/accumulated in YN at 30 days after flowering (DAF) compared to 0 DAF, and 8799 genes/205 metabolites were differentially expressed in YB at 30 DAF compared to 0 DAF. Integrative analyses showed that a set of genes and metabolites involved in flavonoid pathway were significantly enriched. We identified that relative accumulation of PHENYLALANINE AMMONIA-LYASE (PAL), CINNAMATE 4-HYDROXYLASE (C4H), 4-COUMAROYL-COA LIGASE (4CL), CHALCONE SYNTHASE (CHS) and CHALCONE ISOMERASE (CHI) in YN30/0 was higher than that in YB30/0. Three flavonoid derivatives, including phloretin, luteolin and eriodictyol, showed lower abundances in YB than in YN at 30 DAF. We further revealed a MYB transcription factor, which is encoded by OsR498G0101613100 gene, could suppress the expression of CHI and CHS. Our results suggested a comprehensive analysis of leaf senescence in a view of transcriptome and metabolome and would contribute to exploring the molecular mechanism of leaf senescence in rice.
Collapse
Affiliation(s)
- Jiao Xue
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dongbai Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Shiguang Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhanhua Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiaofei Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Fang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiuying He
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
13
|
Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. PLANT CELL REPORTS 2020; 39:1565-1579. [PMID: 32860518 DOI: 10.1007/s00299-020-02584-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/20/2020] [Indexed: 05/25/2023]
Abstract
Expression of artificial microRNA targeting ATP binding domain of AC1 in transgenic tomato confers resistance to Tomato leaf curl disease without impacting the yield of tomato. Tomato curl leaf disease caused by Tomato leaf curl virus (ToLCV) is a key constraint to tomato cultivation worldwide. Engineering transgenic plants expressing artificial microRNAs (amiRNAs) against the AC1 gene of Tomato leaf curl New Delhi virus (ToLCNDV), which is important for virus replication and pathogenicity, would consequently confer virus resistance and reduce crop loss in the economically important crops. This study relates to an amiRNA developed on the sequence of Arabidopsis miRNA319a, targeting the ATP/GTP binding domain of AC1 gene of ToLCNDV. The AC1-amiR was found to regulate the abundance of AC1, providing an excellent strategy in providing defense against ToLCNDV. Transgenic lines over-expressing AC1-amiR, when challenged with ToLCNDV, showed reduced disease symptoms and high percentage resistance ranging between ∼ 40 and 80%. The yield of transgenic plants was significantly higher upon ToLCNDV infection as compared to the non-transgenic plants. Although the natural resistance resources against ToLCNDV are not available, this work streamlines a novel amiRNA-based mechanism that may have the potential to develop viral resistance strategies in tomato, apart from its normal symptom development properties as it is targeting the conserved region against which higher accumulation of small interfering RNAs (siRNA) occurred in a naturally tolerant tomato cultivar.
Collapse
Affiliation(s)
- Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Huang Y, Li T, Xu T, Tang Z, Guo J, Cai Y. Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22. PLANTA 2020; 252:88. [PMID: 33057902 DOI: 10.1007/s00425-020-03484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas campestris pv. campestris 8004 secretes several effector proteins that interfere with plant phosphorylation. Xanthomonas campestris pv. campestris (Xcc) can infect cruciferous plants and cause black rot. The strain Xcc8004 secretes effector proteins that interfere with plant cellular processes into host cells using a type III secretion (T3S) system. Several of the 24 predicted T3S effectors in the Xcc8004 genome have been implicated in the suppression of the Arabidopsis thaliana pattern-triggered immunity (PTI) response. We used an A. thaliana mesophyll protoplast-based assay to identify Xcc8004 T3S effectors that effectively interfere with PTI signalling induced by the bacterial peptide flg22. 11 of the 24 tested effector proteins (XopK, XopQ, HrpW, XopN, XopAC, XopD, XopZ1, XopAG, AvrBs2, XopL and XopX-1) inhibited expression of the flg22-inducible gene FRK1, and five effectors (XopK, XopG, XopQ, XopL and XopX-1) inhibited the expression of the flg22-inducible gene WRKY33. Therefore, there are 12 effector proteins that can inhibit the expression of relevant flg22-inducible genes. It was further investigated whether the 12 effector proteins affect the phosphorylation activation of mitogen-activated protein (MAP) kinases MPK3/MPK6, and four effector proteins (XopK, XopQ, XopZ1 and XopX-1) were found to markedly inhibit MPK3/MPK6 activation. Moreover, a subcellular localisation analysis revealed that the tested effectors were localised within various subcellular compartments. These results indicate that multiple T3S effectors in the Xcc8004 genome interfere with flg22-induced PTI signalling via various molecular mechanisms.
Collapse
Affiliation(s)
- Yan Huang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Tongqi Li
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ting Xu
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zizhong Tang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jingya Guo
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yi Cai
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
15
|
Yu X, Li B, Jang GJ, Jiang S, Jiang D, Jang JC, Wu SH, Shan L, He P. Orchestration of Processing Body Dynamics and mRNA Decay in Arabidopsis Immunity. Cell Rep 2020; 28:2194-2205.e6. [PMID: 31433992 DOI: 10.1016/j.celrep.2019.07.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 06/02/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Proper transcriptome reprogramming is critical for hosts to launch an effective defense response upon pathogen attack. How immune-related genes are regulated at the posttranscriptional level remains elusive. We demonstrate here that P-bodies, the non-membranous cytoplasmic ribonucleoprotein foci related to 5'-to-3' mRNA decay, are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns (MAMPs). The DCP1-DCP2 mRNA decapping complex, a hallmark of P-bodies, positively regulates plant MAMP-triggered responses and immunity against pathogenic bacteria. MAMP-activated MAP kinases directly phosphorylate DCP1 at the serine237 residue, which further stimulates its interaction with XRN4, an exonuclease executing 5'-to-3' degradation of decapped mRNA. Consequently, MAMP treatment potentiates DCP1-dependent mRNA decay on a specific group of MAMP-downregulated genes. Thus, the conserved 5'-to-3' mRNA decay elicited by the MAMP-activated MAP kinase cascade is an integral part of plant immunity. This mechanism ensures a rapid posttranscriptional downregulation of certain immune-related genes that may otherwise negatively impact immunity.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shan Jiang
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Daohong Jiang
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Yu Y, Liang Z, Song X, Fu W, Xu J, Lei Y, Yuan L, Ruan J, Chen C, Fu W, Cui Y, Huang S, Li C. BRAHMA-interacting proteins BRIP1 and BRIP2 are core subunits of Arabidopsis SWI/SNF complexes. NATURE PLANTS 2020; 6:996-1007. [PMID: 32747760 DOI: 10.1038/s41477-020-0734-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/29/2020] [Indexed: 05/22/2023]
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodelling complexes are multi-protein machineries that control gene expression by regulating chromatin structure in eukaryotes. However, the full subunit composition of SWI/SNF complexes in plants remains unclear. Here we report that in Arabidopsis thaliana, two homologous glioma tumour suppressor candidate region domain-containing proteins, named BRAHMA-interacting proteins 1 (BRIP1) and BRIP2, are core subunits of plant SWI/SNF complexes. brip1 brip2 double mutants exhibit developmental phenotypes and a transcriptome remarkably similar to those of BRAHMA (BRM) mutants. Genetic interaction tests indicated that BRIP1 and BRIP2 act together with BRM to regulate gene expression. Furthermore, BRIP1 and BRIP2 physically interact with BRM-containing SWI/SNF complexes and extensively co-localize with BRM on chromatin. Simultaneous mutation of BRIP1 and BRIP2 results in decreased BRM occupancy at almost all BRM target loci and substantially reduced abundance of the SWI/SNF assemblies. Together, our work identifies new core subunits of BRM-containing SWI/SNF complexes in plants and uncovers the essential role of these subunits in maintaining the abundance of SWI/SNF complexes in plants.
Collapse
Affiliation(s)
- Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chen Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Wenqun Fu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Cisneros AE, Carbonell A. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants. PLANTS 2020; 9:plants9060669. [PMID: 32466363 PMCID: PMC7356032 DOI: 10.3390/plants9060669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
Artificial small RNAs (art-sRNAs), such as artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are highly specific 21-nucleotide small RNAs designed to recognize and silence complementary target RNAs. Art-sRNAs are extensively used in gene function studies or for improving crops, particularly to protect plants against viruses. Typically, antiviral art-sRNAs are computationally designed to target one or multiple sites in viral RNAs with high specificity, and art-sRNA constructs are generated and introduced into plants that are subsequently challenged with the target virus(es). Numerous studies have reported the successful application of art-sRNAs to induce resistance against a large number of RNA and DNA viruses in model and crop species. However, the application of art-sRNAs as an antiviral tool has limitations, such as the difficulty to predict the efficacy of a particular art-sRNA or the emergence of virus variants with mutated target sites escaping to art-sRNA-mediated degradation. Here, we review the different classes, features, and uses of art-sRNA-based tools to induce antiviral resistance in plants. We also provide strategies for the rational design of antiviral art-sRNAs and discuss the latest advances in developing art-sRNA-based methodologies for enhanced resistance to plant viruses.
Collapse
|
18
|
Ma X, Claus LAN, Leslie ME, Tao K, Wu Z, Liu J, Yu X, Li B, Zhou J, Savatin DV, Peng J, Tyler BM, Heese A, Russinova E, He P, Shan L. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 2020; 581:199-203. [PMID: 32404997 PMCID: PMC7233372 DOI: 10.1038/s41586-020-2210-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2020] [Indexed: 11/09/2022]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens1-3. Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants4. The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Lucas A N Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michelle E Leslie
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, MO, USA.,Elemental Enzymes, St Louis, MO, USA
| | - Kai Tao
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Zhiping Wu
- Department of Structural Biology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Xiao Yu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Bo Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Jinggeng Zhou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Daniel V Savatin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Heese
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, MO, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA. .,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA. .,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice. Int J Mol Sci 2019; 20:ijms20225620. [PMID: 31717686 PMCID: PMC6888491 DOI: 10.3390/ijms20225620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Plant genome sequences are presently deciphered at a staggering speed, due to the rapid advancement of high-throughput sequencing technologies. However, functional genomics significantly lag behind due to technical obstacles related to functional redundancy and mutant lethality. Artificial microRNA (amiRNA) technology is a specific, reversible, and multiplex gene silencing tool that has been frequently used in generating constitutive or conditional mutants for gene functional interrogation. The routine approach to construct amiRNA precursors involves multiple polymerase chain reactions (PCRs) that can increase both time and labor expenses, as well as the chance to introduce sequence errors. Here, we report a simplified method to clone and express amiRNAs in Arabidopsis and rice based on the engineered Arabidopsis miR319a or rice miR528 precursor, which harbor restriction sites to facilitate one-step cloning of a single PCR product. Stem-loop reverse-transcriptase quantitative PCR (RT-qPCR) and functional assays validated that amiRNAs can be accurately processed from these modified precursors and work efficiently in plant protoplasts. In addition, Arabidopsis transgenic plants overexpressing the modified miR319a precursor or its derived amiRNA could exhibit strong gene silencing phenotypes, as expected. The simplified amiRNA cloning strategy will be broadly useful for functional genomic studies in Arabidopsis and rice, and maybe other dicotyledon and monocotyledon species as well.
Collapse
|
20
|
Liang C, Hao J, Li J, Baker B, Luo L. Artificial microRNA-mediated resistance to cucumber green mottle mosaic virus in Nicotiana benthamiana. PLANTA 2019; 250:1591-1601. [PMID: 31388829 DOI: 10.1007/s00425-019-03252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION We describe a Nicotiana benthamiana system for rapid identification of artificial microRNA (amiRNA) to control cucumber green mottle mosaic virus (CGMMV) disease. Although artificial miRNA technology has been used to control other viral diseases, it has not been applied to reduce severe cucumber green mottle mosaic virus (CGMMV) disease and crop loss in the economically important cucurbits. We used our system to identify three amiRNAs targeting CGMMV RNA (amiR1-CP, amiR4-MP and amiR6-Rep) and show that their expression reduces CGMMV replication and disease in virus-infected plants. This work streamlines the process of generating amiRNA virus-resistant crops and can be broadly applied to identify active antiviral amiRNAs against a broad spectrum of viruses to control disease in diverse crops.
Collapse
Affiliation(s)
- Chaoqiong Liang
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, 04469, USA
| | - Jianqiang Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- United States Department of Agriculture, Plant Gene Expression Center, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Laixin Luo
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Huang X, Xue J, Wang FZ, Li JF. Enhanced protoplast assay by transfecting PCR-assembled gene expression cassettes with telomeric repeats and thiophosphate modifications. Anal Biochem 2019; 569:39-45. [PMID: 30648548 DOI: 10.1016/j.ab.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 11/19/2022]
Abstract
Transient expression assays are invaluable complements to the stable transgenic assay for studying gene functions by providing desirable time and labor efficiencies and high-throughput potential or circumventing technical difficulties of stable transgenic expression. The protoplast transient expression system is one of the mainstream transient expression assays used in plant research. Here, we developed a PCR amplicon-mediated protoplast transient (PROMPT) assay by using overlapping PCR assembled gene expression cassettes for Arabidopsis protoplast transfection without the need for time- and labor-consuming plasmid construction. When 200 μl of Arabidopsis protoplasts were transfected with 1 μg of PCR amplicons or plasmid DNA, we detected substantially higher gene expression in the former. Moreover, we found that adding telomeric repeats and thiophosphate modifications to the 5' end of the nonsense strand through the reverse primer could further increase the PCR amplicon-mediated gene expression in protoplasts. Importantly, these improvements could also be applied to the protoplast assays in other dicot and monocot species including tobacco, rice and wheat. In addition, the subcellular localization of immune receptor FLS2 could be analyzed by PROMPT method. The PROMPT assay allows an accelerated and robust transient gene expression in protoplasts from diverse plant species.
Collapse
Affiliation(s)
- Xiangjuan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiao Xue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
22
|
Xia Z, Zhao Z, Jiao Z, Xu T, Wu Y, Zhou T, Fan Z. Virus-Derived Small Interfering RNAs Affect the Accumulations of Viral and Host Transcripts in Maize. Viruses 2018; 10:v10120664. [PMID: 30477197 PMCID: PMC6315483 DOI: 10.3390/v10120664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
RNA silencing is a conserved surveillance mechanism against invading viruses in plants, which involves the production of virus-derived small interfering RNAs (vsiRNAs) that play essential roles in the silencing of viral RNAs and/or specific host transcripts. However, how vsiRNAs function to target viral and/or host transcripts is poorly studied, especially in maize (Zea mays L.). In this study, a degradome library constructed from Sugarcane mosaic virus (SCMV)-inoculated maize plants was analyzed to identify the cleavage sites in viral and host transcripts mainly produced by vsiRNAs. The results showed that 42 maize transcripts were possibly cleaved by vsiRNAs, among which several were involved in chloroplast functions and in biotic and abiotic stresses. In addition, more than 3000 cleavage sites possibly produced by vsiRNAs were identified in positive-strand RNAs of SCMV, while there were only four cleavage sites in the negative-strand RNAs. To determine the roles of vsiRNAs in targeting viral RNAs, six vsiRNAs were expressed in maize protoplast based on artificial microRNAs (amiRNAs), of which four could efficiently inhibit the accumulations of SCMV RNAs. These results provide new insights into the genetic manipulation of maize with resistance against virus infection by using amiRNA as a more predictable and useful approach.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhenxing Zhao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Tengzhi Xu
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Zhang N, Zhang D, Chen SL, Gong BQ, Guo Y, Xu L, Zhang XN, Li JF. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen. PLANT PHYSIOLOGY 2018; 178:989-1001. [PMID: 30291175 PMCID: PMC6236610 DOI: 10.1104/pp.18.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/25/2018] [Indexed: 05/03/2023]
Abstract
Artificial microRNA (amiRNA) technology offers reversible and flexible gene inactivation and complements genome-editing technologies. However, obtaining transgenic plants with maximal gene silencing remains a major technical challenge in current amiRNA applications. Here, we incorporated an empirically determined feature of effective amiRNAs to the amiRNA design and in silico generated a database containing 533,429 gene-specific amiRNAs for silencing 27,136 genes in Arabidopsis (Arabidopsis thaliana), with a genome coverage of 98.87%. In both single-gene and multiple-gene silencing, we observed an overall improvement in performance by amiRNAs designed using our strategy in Arabidopsis protoplasts and transgenic plants. In addition, the endogenous tRNA-processing system was used to generate multiple amiRNAs from tRNA-pre-amiRNA tandem repeats for multiplex gene silencing. An intronic amiRNA-producing fluorescent reporter was explored as a visual screening strategy for transgenic Arabidopsis and rice (Oryza sativa) plants with maximal whole-plant or cell type-specific gene silencing. These improvements enable the amiRNA technology to be a functional gene knockout tool for basic and applied plant research.
Collapse
Affiliation(s)
- Nannan Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dandan Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Samuel L Chen
- Department of Biology, St. Bonaventure University, Allegany, New York 14778
| | - Ben-Qiang Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanjun Guo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lahong Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Ning Zhang
- Department of Biology, St. Bonaventure University, Allegany, New York 14778
| | - Jian-Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Luo Y, Qiu Y, Na R, Meerja F, Lu QS, Yang C, Tian L. A Golden Gate and Gateway double-compatible vector system for high throughput functional analysis of genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:117-126. [PMID: 29650149 DOI: 10.1016/j.plantsci.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
A major research topic nowadays is to study and understand the functions of the increasing number of predicted genes that have been discovered through the complete genome sequencing of many plant species. With the aim of developing tools for rapid and convenient gene function analysis, we have developed a set of "pGate" vectors based on the principle of Golden gate and Gateway cloning approaches. These vectors combine the positive aspects of both Golden gate and Gateway cloning strategies. pGate vectors can not only be used as Golden gate recipient vectors to assemble multiple DNA fragments in a pre-defined order, but they can also work as an entry vector to transfer the assembled DNA fragment(s) to a large number of already-existing, functionally diverse, Gateway compatible destination vectors without adding additional nucleotides during cloning. We show the pGate vectors are effective and convenient in several major aspects of gene function analyses, including BiFC (Bimolecular fluorescence complementation) to analyze protein-protein interaction, amiRNA (artificial microRNA) candidate screening and as assembly of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats, CRISPR-associated protein-9 nuclease) system elements together for genome editing. The pGate system is a practical and flexible tool which can facilitate plant gene function research.
Collapse
Affiliation(s)
- Yanjie Luo
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Yang Qiu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Farida Meerja
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada; Department of Biology, Western University, London, ON, N6A5B7, Canada
| | - Qing Shi Lu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V4T3, Canada.
| |
Collapse
|
25
|
Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF. A potent Cas9-derived gene activator for plant and mammalian cells. NATURE PLANTS 2017; 3:930-936. [PMID: 29158545 PMCID: PMC5894343 DOI: 10.1038/s41477-017-0046-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 05/19/2023]
Abstract
Overexpression of complementary DNA represents the most commonly used gain-of-function approach for interrogating gene functions and for manipulating biological traits. However, this approach is challenging and inefficient for multigene expression due to increased labour for cloning, limited vector capacity, requirement of multiple promoters and terminators, and variable transgene expression levels. Synthetic transcriptional activators provide a promising alternative strategy for gene activation by tethering an autonomous transcription activation domain (TAD) to an intended gene promoter at the endogenous genomic locus through a programmable DNA-binding module. Among the known custom DNA-binding modules, the nuclease-dead Streptococcus pyogenes Cas9 (dCas9) protein, which recognizes a specific DNA target through base pairing between a synthetic guide RNA and DNA, outperforms zinc-finger proteins and transcription activator-like effectors, both of which target through protein-DNA interactions 1 . Recently, three potent dCas9-based transcriptional activation systems, namely VPR, SAM and SunTag, have been developed for animal cells 2-6 . However, an efficient dCas9-based transcriptional activation platform is still lacking for plant cells 7-9 . Here, we developed a new potent dCas9-TAD, named dCas9-TV, through plant cell-based screens. dCas9-TV confers far stronger transcriptional activation of single or multiple target genes than the routinely used dCas9-VP64 activator in both plant and mammalian cells.
Collapse
Affiliation(s)
- Zhenxiang Li
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhang
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangyu Xiong
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingyu Yan
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jian-Feng Li
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:958. [PMID: 28638398 PMCID: PMC5461349 DOI: 10.3389/fpls.2017.00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Background: Chickpea (Cicer arietinum L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea. Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr). Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs), of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM), 13,778 genic Single Nucleotide Polymorphism (SNP) putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST) were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance. Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS) for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.
Collapse
Affiliation(s)
- Mir A. Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Khela R. Soren
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Priyanka Gangwar
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - P. S. Shanmugavadivel
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - K. Aravind
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Rahul S. Jasrotia
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sushil K. Chaturvedi
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Narendra P. Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Rajeev K. Varshney
- Genetic Gains, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| |
Collapse
|
27
|
Ju Z, Cao D, Gao C, Zuo J, Zhai B, Li S, Zhu H, Fu D, Luo Y, Zhu B. A Viral Satellite DNA Vector (TYLCCNV) for Functional Analysis of miRNAs and siRNAs in Plants. PLANT PHYSIOLOGY 2017; 173:1940-1952. [PMID: 28228536 PMCID: PMC5373046 DOI: 10.1104/pp.16.01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/19/2017] [Indexed: 05/11/2023]
Abstract
With experimental and bioinformatical methods, numerous small RNAs, including microRNAs (miRNAs) and short interfering RNAs (siRNAs), have been found in plants, and they play vital roles in various biological regulation processes. However, most of these small RNAs remain to be functionally characterized. Until now, only several viral vectors were developed to overexpress miRNAs with limited application in plants. In this study, we report a new small RNA overexpression system via viral satellite DNA associated with Tomato yellow leaf curl China virus (TYLCCNV) vector, which could highly overexpress not only artificial and endogenous miRNAs but also endogenous siRNAs in Nicotiana benthamiana First, we constructed basic TYLCCNV-amiRPDS(319L) vector with widely used AtMIR319a backbone, but the expected photobleaching phenotype was very weak. Second, through comparing the effect of backbones (AtMIR319a, AtMIR390a, and SlMIR159) on specificity and significance of generating small RNAs, the AtMIR390a backbone was optimally selected to construct the small RNA overexpression system. Third, through sRNA-Seq and Degradome-Seq, the small RNAs from AtMIR390a backbone in TYLCCNV-amiRPDS(390) vector were confirmed to highly overexpress amiRPDS and specifically silence targeted PDS gene. Using this system, rapid functional analysis of endogenous miRNAs and siRNAs was carried out, including miR156 and athTAS3a 5'D8(+). Meanwhile, through designing corresponding artificial miRNAs, this system could also significantly silence targeted endogenous genes and show specific phenotypes, including PDS, Su, and PCNA These results demonstrated that this small RNA overexpression system could contribute to investigating not only the function of endogenous small RNAs, but also the functional genes in plants.
Collapse
Affiliation(s)
- Zheng Ju
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Dongyan Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Chao Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Jinhua Zuo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Baiqiang Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Shan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.)
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China (Z.J., D.C., Ba.Z., S.L., H.Z., D.F., Y.L., Be.Z.);
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China (C.G.); and
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (J.Z.)
| |
Collapse
|
28
|
Zhang N, Zhang D, Li JF. A Simple Protoplast-Based Method for Screening Potent Artificial miRNA for Maximal Gene Silencing in Arabidopsis. ACTA ACUST UNITED AC 2017; 117:26.9.1-26.9.10. [PMID: 28060406 DOI: 10.1002/cpmb.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unpredictability of in planta silencing efficiency of artificial micro RNAs (amiRNAs) has greatly limited the application of the amiRNA technology in basic and applied plant research. This unit describes a simple and robust method called the epitope-tagged protein-based amiRNA (ETPamir) screen for identifying the most effective amiRNA for silencing a particular Arabidopsis gene. After selecting three to four amiRNA candidates designed by the WMD3 web server for the target gene, the silencing efficiencies of the amiRNA candidates can be compared by co-expressing individual amiRNAs with the target mRNA encoding an epitope-tagged target protein in Arabidopsis mesophyll protoplasts. By monitoring target protein levels through immunoblotting with commercial "anti-tag" antibodies, the most potent amiRNA can be easily identified as the one with minimal target protein accumulation. This empirical method bypasses the complexity of amiRNA silencing mechanisms and the scarcity of plant specific antibodies, and can be applied to a broad range of plant species. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Confraria A, Baena-González E. Using Arabidopsis Protoplasts to Study Cellular Responses to Environmental Stress. Methods Mol Biol 2016; 1398:247-69. [PMID: 26867629 DOI: 10.1007/978-1-4939-3356-3_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Arabidopsis mesophyll protoplasts can be readily isolated and transfected in order to transiently express proteins of interest. As freshly isolated mesophyll protoplasts maintain essentially the same physiological characteristics of whole leaves, this cell-based transient expression system can be used to molecularly dissect the responses to various stress conditions. The response of stress-responsive promoters to specific stimuli can be accessed via reporter gene assays. Additionally, reporter systems can be easily engineered to address other levels of regulation, such as transcript and/or protein stability. Here we present a detailed protocol for using the Arabidopsis mesophyll protoplast system to study responses to environmental stress, including preparation of reporter and effector constructs, large scale DNA purification, protoplast isolation, transfection, treatment, and quantification of luciferase-based reporter gene activities.
Collapse
Affiliation(s)
- Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
30
|
Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. MOLECULAR PLANT PATHOLOGY 2016; 17:427-37. [PMID: 26136043 PMCID: PMC6638354 DOI: 10.1111/mpp.12291] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process.
Collapse
Affiliation(s)
- András Kis
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
- Crop Science PhD School, Plant Protection Programme, Szent István University, Páter Károly u. 1, Gödöllő, H-2100, Hungary
| | - Gergely Tholt
- Plant Protection Institute, Centre for Agricultural Research, , Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
- Department of Systematic Zoology and Ecology, Faculty of Science, Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, H-1117, Hungary
| | - Milán Ivanics
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Éva Várallyay
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Barnabás Jenes
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi A. út 4, Gödöllő, H-2100, Hungary
| |
Collapse
|
31
|
Teotia S, Singh D, Tang X, Tang G. Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends Biotechnol 2016; 34:106-123. [PMID: 26774589 DOI: 10.1016/j.tibtech.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Genome sequencing has not only extended our understanding of the blueprints of many plant species but has also revealed the secrets of coding and non-coding genes. We present here a brief introduction to and personal account of key RNA-based technologies, as well as their development and applications for functional genomics of plant coding and non-coding genes, with a focus on short tandem target mimics (STTMs), artificial microRNAs (amiRNAs), and CRISPR/Cas9. In addition, their use in multiplex technologies for the functional dissection of gene networks is discussed.
Collapse
Affiliation(s)
- Sachin Teotia
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; School of Biotechnology, Gautam Buddha University, Greater Noida, UP 201312, India; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP 201312, India; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Guiliang Tang
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
32
|
Zhang D, Liu M, Tang M, Dong B, Wu D, Zhang Z, Zhou B. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:24-32. [PMID: 26089149 DOI: 10.1016/j.plantsci.2015.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
The RNaseIII enzyme Dicer-like 1 (DCL1) processes the microRNA biogenesis and plays a determinant role in plant development. In this study, we reported the function of OsDCL1 in the immunity to rice blast, the devastating disease caused by the fungal pathogen, Magnaporthe oryzae. Expression profiling demonstrated that different OsDCLs responded dynamically and OsDCL1 reduced its expression upon the challenge of rice blast pathogen. In contrast, miR162a predicted to target OsDCL1 increased its expression, implying a negative feedback loop between OsDCL1 and miR162a in rice. In addition to developmental defects, the OsDCL1-silencing mutants showed enhanced resistance to virulent rice blast strains in a non-race specific manner. Accumulation of hydrogen peroxide and cell death were observed in the contact cells with infectious hyphae, revealing that silencing of OsDCL1 activated cellular defense responses. In OsDCL1 RNAi lines, 12 differentially expressed miRNAs were identified, of which 5 and 7 were down- and up-regulated, respectively, indicating that miRNAs responded dynamically in the interaction between rice and rice blast. Moreover, silencing of OsDCL1 activated the constitutive expression of defense related genes. Taken together, our results indicate that rice is capable of activating basal resistance against rice blast by perturbing OsDCL1-dependent miRNA biogenesis pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Mingzhi Tang
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bo Dong
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bo Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines.
| |
Collapse
|
33
|
Abstract
Targeted modification of plant genome is key for elucidating and manipulating gene functions in basic and applied plant research. The CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome editing tool in diverse organisms. This technology utilizes an easily reprogrammable guide RNA (gRNA) to guide Streptococcus pyogenes Cas9 endonuclease to generate a DNA double-strand break (DSB) within an intended genomic sequence and subsequently stimulate chromosomal mutagenesis or homologous recombination near the DSB site through cellular DNA repair machineries. In this chapter, we describe the detailed procedure to design, construct, and evaluate dual gRNAs for plant codon-optimized Cas9 (pcoCas9)-mediated genome editing using Arabidopsis thaliana and Nicotiana benthamiana protoplasts as model cellular systems. We also discuss strategies to apply the CRISPR/Cas9 system to generating targeted genome modifications in whole plants.
Collapse
Affiliation(s)
- Jian-Feng Li
- Massachusetts General Hospital, Boston, MA, USA,
| | | | | |
Collapse
|
34
|
Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants: progress and perspectives. PLANT MOLECULAR BIOLOGY 2014; 86:1-18. [PMID: 25022825 DOI: 10.1007/s11103-014-0224-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/05/2014] [Indexed: 05/24/2023]
Abstract
Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.
Collapse
Affiliation(s)
- Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | | | | |
Collapse
|
35
|
Zhang ZJ. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. PLANTA 2014; 239:1139-46. [PMID: 24643516 DOI: 10.1007/s00425-014-2054-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/05/2014] [Indexed: 05/25/2023]
Abstract
Completion of whole genome sequencing in many plant species including economically important crop species not only opens up new opportunities but also imposes challenges for plant science research community. Functional validation and utilization of these enormous DNA sequences necessitate new or improved tools with high accuracy and efficiency. Of various tools, small RNA-mediated gene silencing platform plays an important and unique role in functional verification of plant genes and trait improvements. Artificial trans-acting small interfering RNA (atasiRNA) has emerged as a potent and specific gene silencing platform which overcomes major limitations of other small RNA silencing approaches including double-stranded RNA, artificial microRNA (amiRNA), and microRNA-induced gene silencing. To best utilize atasiRNA platform, it is essential to be able to test candidate atasiRNAs efficiently through either in vivo or in vitro validation approach. Very recently, a breakthrough has been made in developing a new method for in vitro screen of amiRNA candidates, named "epitope-tagged protein-based amiRNA screens". Such a screen can be readily employed to validate atasiRNA candidates and thus accelerate the deployment of atasiRNA technology. Therefore, atasiRNA as an emerging tool shall accelerate both plant biology study and crop genetic improvements including trait stacking.
Collapse
Affiliation(s)
- Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA,
| |
Collapse
|
36
|
Abstract
Targeted modification of plant genome is key to elucidating and manipulating gene functions in plant research and biotechnology. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome-editing method in diverse plants that traditionally lacked facile and versatile tools for targeted genetic engineering. This technology utilizes easily reprogrammable guide RNAs (sgRNAs) to direct Streptococcus pyogenes Cas9 endonuclease to generate DNA double-stranded breaks in targeted genome sequences, which facilitates efficient mutagenesis by error-prone nonhomologous end-joining (NHEJ) or sequence replacement by homology-directed repair (HDR). In this chapter, we describe the procedure to design and evaluate dual sgRNAs for plant codon-optimized Cas9-mediated genome editing using mesophyll protoplasts as model cell systems in Arabidopsis thaliana and Nicotiana benthamiana. We also discuss future directions in sgRNA/Cas9 applications for generating targeted genome modifications and gene regulations in plants.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| | - Dandan Zhang
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jen Sheen
- Department of Molecular Biology, Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|