1
|
Maurino VG. Next generation technologies for protein structure determination: challenges and breakthroughs in plant biology applications. JOURNAL OF PLANT PHYSIOLOGY 2025; 310:154522. [PMID: 40382917 DOI: 10.1016/j.jplph.2025.154522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Advancements in structural biology have significantly deepened our understanding of plant proteins, which are central to critical biological functions such as photosynthesis, metabolism, signal transduction, and structural architechture. Gaining insights into their structures is crucial for unraveling their functions and mechanisms, which in turn has profound implications for agriculture, biotechnology, and environmental sustainability. Traditional methods in protein structural biology often fall short in addressing large protein assemblies and membrane proteins, and, in particular the dynamics and structural features of proteins in the native cellular context. This paper explores how next-generation technologies are transforming the field of plant protein structural biology, offering powerful tools to overcome longstanding obstacles and enabling remarkable scientific breakthroughs. Key technologies discussed include advanced X-ray crystallography, Cryo-Electron microscopy, Nuclear Magnetic Resonance spectroscopy, Cross-linking mass spectrometry, and Artificial Intelligence-driven approaches. These technologies are examined in terms of their challenges, innovations, and application with particular emphasis on their relevance to plant systems. Future directions in plant protein structural biology are also discussed. Although technical details are not covered in depth, readers are referred to the primary literature for more comprehensive information.
Collapse
Affiliation(s)
- Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
2
|
Querci L, Burgassi L, Ciofi-Baffoni S, Schiavina M, Piccioli M. Optimized 13C Relaxation-Filtered Nuclear Magnetic Resonance: Harnessing Optimal Control Pulses and Ultra-High Magnetic Fields for Metalloprotein Structural Elucidation. Int J Mol Sci 2025; 26:3870. [PMID: 40332551 PMCID: PMC12027794 DOI: 10.3390/ijms26083870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Ultra-high magnetic fields and high-sensitivity cryoprobes permit the achievement of a high S/N ratio in 13C detection experiments, thus making a 13C superWEFT (Super water eliminated Fourier transform) experiment feasible. 13C signals that are not visible using 1H observed heteronuclear experiments, nor with established 2D 13C direct detection experiments, become easily observable when a 13C relaxation-based filter is used. Within this frame, optimal control pulses (OC pulses) have been, for the first time, applied to paramagnetic systems. Although the duration of OC pulses competes with relaxation, their application to paramagnetic signals has been successfully tested. OC pulses are much more efficient with respect to the phase- and amplitude-modulated ones routinely used at lower fields while providing bandwidth excitation profiles that are sufficient to meet the need to cover up to an 80 ppm spectral region. On the other hand, when paramagnetic relaxation is shorter than the duration of OC pulses, the use of hard, rectangular pulses is, at the present state of the art, the best approach to minimize the loss of signal intensity.
Collapse
Affiliation(s)
- Leonardo Querci
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Liza Burgassi
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Schiavina
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Mario Piccioli
- Department of Chemistry ‘Ugo Schiff’ (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Chen W, Fraser OA, George C, Showalter SA. From molecular descriptions to cellular functions of intrinsically disordered protein regions. BIOPHYSICS REVIEWS 2024; 5:041306. [PMID: 39600309 PMCID: PMC11596140 DOI: 10.1063/5.0225900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Molecular descriptions of intrinsically disordered protein regions (IDRs) are fundamental to understanding their cellular functions and regulation. NMR spectroscopy has been a leading tool in characterizing IDRs at the atomic level. In this review, we highlight recent conceptual breakthroughs in the study of IDRs facilitated by NMR and discuss emerging NMR techniques that bridge molecular descriptions to cellular functions. First, we review the assemblies formed by IDRs at various scales, from one-to-one complexes to non-stoichiometric clusters and condensates, discussing how NMR characterizes their structural dynamics and molecular interactions. Next, we explore several unique interaction modes of IDRs that enable regulatory mechanisms such as selective transport and switch-like inhibition. Finally, we highlight recent progress in solid-state NMR and in-cell NMR on IDRs, discussing how these methods allow for atomic characterization of full-length IDR complexes in various phases and cellular environments. This review emphasizes recent conceptual and methodological advancements in IDR studies by NMR and offers future perspectives on bridging the gap between in vitro molecular descriptions and the cellular functions of IDRs.
Collapse
Affiliation(s)
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christy George
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
4
|
Zhong C, Li G, Tian W, Ouyang D, Ji Y, Cai Z, Lin Z. Construction of Covalent Organic Framework Capsule-Based Nanoreactor for Sensitive Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10158-10165. [PMID: 36786379 DOI: 10.1021/acsami.2c19408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enzyme immobilization is critical to boosting its application in various areas. Covalent organic frameworks (COFs) are ideal hosts for enzyme immobilization due to their porous and predesignable structures. Nevertheless, the construction of COFs-based enzyme immobilization systems with high activity via existing immobilization methods (including covalent linkages and channel entrapment) remains a considerable challenge. Herein, a versatile approach was introduced to encapsulate enzymes within hollow COF capsule (named enzyme@COF) using metal-organic frameworks (including ZPF-1(C8H11N4O4.5Zn), ZIF-8(C8H10N4Zn), and ZIF-90(C8H6N4O2Zn)) as sacrificial templates. The obtained porous COF capsule could not only facilitate the efficient mass transfer of enzymatic reactions but also protect enzymes against the incompatible conditions, resulting in enhanced activity and stability of the encapsulated enzymes. Moreover, this approach offered an opportunity to spatially organize multienzymes in COF capsule to construct enzyme cascade system. For instance, glucose oxidase (GOx) and cytochrome c (Cyt c) were coencapsulated within COF capsule to construct GOx-Cyt c cascade. The integration of GOx and Cyt c within COF capsule achieved ∼1.6-fold improvement in catalytic activity than that of free enzymes and the resultant GOx-Cyt c@COF was successfully adopted as a nanoreactor for the sensitive determination of glucose in serum. This work provided a new insight into the design of COFs-based enzyme immobilization systems.
Collapse
Affiliation(s)
- Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
| |
Collapse
|
5
|
Lopez JM. Combined H-N Cross-Polarization and Carbonyl Detection NMR Spectroscopy Allow to Record High-Resolution, High-Sensitivity Spectra of Alpha-Synuclein in Bacterial Cells. Methods Mol Biol 2023; 2551:449-460. [PMID: 36310219 DOI: 10.1007/978-1-0716-2597-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies of intrinsically disordered proteins (IDPs) under physiological conditions by conventional NMR methods based on proton detection are severely limited by fast proton amide solvent exchange. Carbon detection has been proposed as a solution to the exchange problem but is hampered by low sensitivity. Here, we present a protocol combining proton-nitrogen cross-polarization and carbonyl detection to record high-resolution and high-sensitivity NMR spectra of IDPs under physiological conditions. The protocol describes a step-by-step method to register high-quality N-CO correlation spectrum of alpha-synuclein in E.coli bacterial cells at 37 °C.
Collapse
Affiliation(s)
- Juan M Lopez
- Pontificia Universidad Católica del Perú, Departamento de Ciencias - Química, CERMN, Lima, Perú.
| |
Collapse
|
6
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
8
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Höfurthner T, Mateos B, Konrat R. On-Cell NMR Contributions to Membrane Receptor Binding Characterization. Chempluschem 2021; 86:938-945. [PMID: 34160899 DOI: 10.1002/cplu.202100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/28/2021] [Indexed: 12/21/2022]
Abstract
NMR spectroscopy has matured into a powerful tool to characterize interactions between biological molecules at atomic resolution, most importantly even under near to native (physiological) conditions. The field of in-cell NMR aims to study proteins and nucleic acids inside living cells. However, cells interrogate their environment and are continuously modulated by external stimuli. Cell signaling processes are often initialized by membrane receptors on the cell surface; therefore, characterizing their interactions at atomic resolution by NMR, hereafter referred as on-cell NMR, can provide valuable mechanistic information. This review aims to summarize recent on-cell NMR tools that give information about the binding site and the affinity of membrane receptors to their ligands together with potential applications to in vivo drug screening systems.
Collapse
Affiliation(s)
- Theresa Höfurthner
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Borja Mateos
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| |
Collapse
|
11
|
Teleanu F, Sadet A, Vasos PR. Symmetry versus entropy: Long-lived states and coherences. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:63-75. [PMID: 33632418 DOI: 10.1016/j.pnmrs.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In recent years, new molecular symmetry-based approaches for magnetic resonance have been invented. The implications of these discoveries will be significant for molecular imaging via magnetic resonance, in vitro as well as in vivo, for quantum computing and for other fields. Since the initial observation in 2004 in Southampton that effective spin symmetry can be instilled in a molecule during magnetic resonance experiments, spin states that are resilient to relaxation mechanisms have been increasingly used. Most of these states are related to the nuclear singlet in a pair of J-coupled spins. Tailored relaxation rate constants for magnetization became available in molecules of different sizes and structures, as experimental developments broadened the scope of symmetry-adapted spin states. The ensuing access to timescales longer than the classically-attained ones by circa one order of magnitude allows the study of processes such as slow diffusion or slow exchange that were previously beyond reach. Long-lived states formed by differences between populations of singlets and triplets have overcome the limitations imposed by longitudinal relaxation times (T1) by factors up to 40. Long-lived coherences formed by superpositions of singlets and triplets have overcome the limit of classical transverse coherence (T2) by a factor 9. We present here an overview of the development and applications of long-lived states (LLS) and long-lived coherences (LLC's) and considerations on future perspectives.
Collapse
Affiliation(s)
- Florin Teleanu
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; College for Advanced Performance Studies, Babeș-Bolyai University, Mihail Kogălniceanu Street 1, Cluj-Napoca, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania
| | - Aude Sadet
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania
| | - Paul R Vasos
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, RO-077125 Bucharest-Măgurele, Romania; Interdisciplinary School of Doctoral Studies, University of Bucharest, B-dul Regina Elisabeta, Bucharest, Romania.
| |
Collapse
|
12
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
13
|
Pontoriero L, Schiavina M, Murrali MG, Pierattelli R, Felli IC. Monitoring the Interaction of α‐Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Letizia Pontoriero
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Marco Schiavina
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
- Present address: Department of Chemistry and Biochemistry University of California at Los Angeles USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Isabella C. Felli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| |
Collapse
|
14
|
Pontoriero L, Schiavina M, Murrali MG, Pierattelli R, Felli IC. Monitoring the Interaction of α‐Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angew Chem Int Ed Engl 2020; 59:18537-18545. [DOI: 10.1002/anie.202008079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Letizia Pontoriero
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Marco Schiavina
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
- Present address: Department of Chemistry and Biochemistry University of California at Los Angeles USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| | - Isabella C. Felli
- CERM and Department of Chemistry “Ugo Schiff” University of Florence Via Luigi Sacconi 6 50019 Sesto Fiorentino Florence Italy
| |
Collapse
|
15
|
Alik A, Bouguechtouli C, Julien M, Bermel W, Ghouil R, Zinn‐Justin S, Theillet F. Sensitivity‐Enhanced
13
C‐NMR Spectroscopy for Monitoring Multisite Phosphorylation at Physiological Temperature and pH. Angew Chem Int Ed Engl 2020; 59:10411-10415. [DOI: 10.1002/anie.202002288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ania Alik
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Chafiaa Bouguechtouli
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Manon Julien
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Germany
| | - Rania Ghouil
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sophie Zinn‐Justin
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Francois‐Xavier Theillet
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| |
Collapse
|
16
|
Alik A, Bouguechtouli C, Julien M, Bermel W, Ghouil R, Zinn‐Justin S, Theillet F. Sensitivity‐Enhanced
13
C‐NMR Spectroscopy for Monitoring Multisite Phosphorylation at Physiological Temperature and pH. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ania Alik
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Chafiaa Bouguechtouli
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Manon Julien
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Germany
| | - Rania Ghouil
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Sophie Zinn‐Justin
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Francois‐Xavier Theillet
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| |
Collapse
|
17
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
18
|
Mateos B, Sealey‐Cardona M, Balazs K, Konrat J, Staffler G, Konrat R. NMR Characterization of Surface Receptor Protein Interactions in Live Cells Using Methylcellulose Hydrogels. Angew Chem Int Ed Engl 2020; 59:3886-3890. [PMID: 31721390 PMCID: PMC7065066 DOI: 10.1002/anie.201913585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Interactions of transmembrane receptors with their extracellular ligands are essential for cellular communication and signaling and are therefore a major focus in drug discovery programs. The transition from in vitro to live cell interaction studies, however, is typically a bottleneck in many drug discovery projects due to the challenge of obtaining atomic-resolution information under near-physiological conditions. Although NMR spectroscopy is ideally suited to overcome this limitation, several experimental impairments are still present. Herein, we propose the use of methylcellulose hydrogels to study extracellular proteins and their interactions with plasma membrane receptors. This approach reduces cell sedimentation, prevents the internalization of membrane receptors, and increases cell survival, while retaining the free tumbling of extracellular proteins.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| | - Marco Sealey‐Cardona
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
- Present address: Calyxha Biotechnologies GmbHKarl-Farkas-Gasse 221030ViennaAustria
| | | | - Judith Konrat
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| | | | - Robert Konrat
- Department of Structural and Computational BiologyMax Perutz LabsVienna Biocenter Campus 51030ViennaAustria
| |
Collapse
|
19
|
Mateos B, Sealey‐Cardona M, Balazs K, Konrat J, Staffler G, Konrat R. NMR Characterization of Surface Receptor Protein Interactions in Live Cells Using Methylcellulose Hydrogels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology Max Perutz Labs Vienna Biocenter Campus 5 1030 Vienna Austria
| | - Marco Sealey‐Cardona
- Department of Structural and Computational Biology Max Perutz Labs Vienna Biocenter Campus 5 1030 Vienna Austria
- Present address: Calyxha Biotechnologies GmbH Karl-Farkas-Gasse 22 1030 Vienna Austria
| | - Katja Balazs
- AFFiRiS AG Karl-Farkas-Gasse 22 1030 Vienna Austria
| | - Judith Konrat
- Department of Structural and Computational Biology Max Perutz Labs Vienna Biocenter Campus 5 1030 Vienna Austria
| | | | - Robert Konrat
- Department of Structural and Computational Biology Max Perutz Labs Vienna Biocenter Campus 5 1030 Vienna Austria
| |
Collapse
|
20
|
Mateos B, Conrad-Billroth C, Schiavina M, Beier A, Kontaxis G, Konrat R, Felli IC, Pierattelli R. The Ambivalent Role of Proline Residues in an Intrinsically Disordered Protein: From Disorder Promoters to Compaction Facilitators. J Mol Biol 2019; 432:3093-3111. [PMID: 31794728 DOI: 10.1016/j.jmb.2019.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable three-dimensional structure, but rather adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. In IDPs, proline residues are significantly enriched. Given their unique physicochemical and structural properties, a more detailed understanding of their potential role in stabilizing partially folded states in IDPs is highly desirable. Nuclear magnetic resonance (NMR) spectroscopy, and in particular 13C-detected NMR, is especially suitable to address these questions. We applied a 13C-detected strategy to study Osteopontin, a largely disordered IDP with a central compact region. By using the exquisite sensitivity and spectral resolution of these novel techniques, we gained unprecedented insight into cis-Pro populations, their local structural dynamics, and their role in mediating long-range contacts. Our findings clearly call for a reassessment of the structural and functional role of proline residues in IDPs. The emerging picture shows that proline residues have ambivalent structural roles. They are not simply disorder promoters but rather can, depending on the primary sequence context, act as nucleation sites for structural compaction in IDPs. These unexpected features provide a versatile mechanistic toolbox to enrich the conformational ensembles of IDPs with specific features for adapting to changing molecular and cellular environments.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Marco Schiavina
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andreas Beier
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
21
|
Arthanari H, Takeuchi K, Dubey A, Wagner G. Emerging solution NMR methods to illuminate the structural and dynamic properties of proteins. Curr Opin Struct Biol 2019; 58:294-304. [PMID: 31327528 PMCID: PMC6778509 DOI: 10.1016/j.sbi.2019.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
The first recognition of protein breathing was more than 50 years ago. Today, we are able to detect the multitude of interaction modes, structural polymorphisms, and binding-induced changes in protein structure that direct function. Solution-state NMR spectroscopy has proved to be a powerful technique, not only to obtain high-resolution structures of proteins, but also to provide unique insights into the functional dynamics of proteins. Here, we summarize recent technical landmarks in solution NMR that have enabled characterization of key biological macromolecular systems. These methods have been fundamental to atomic resolution structure determination and quantitative analysis of dynamics over a wide range of time scales by NMR. The ability of NMR to detect lowly populated protein conformations and transiently formed complexes plays a critical role in its ability to elucidate functionally important structural features of proteins and their dynamics.
Collapse
Affiliation(s)
- Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 135-0064 Tokyo, Japan.
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
22
|
Piovesan D, Tabaro F, Paladin L, Necci M, Micetic I, Camilloni C, Davey N, Dosztányi Z, Mészáros B, Monzon AM, Parisi G, Schad E, Sormanni P, Tompa P, Vendruscolo M, Vranken WF, Tosatto SCE. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 2019; 46:D471-D476. [PMID: 29136219 PMCID: PMC5753340 DOI: 10.1093/nar/gkx1071] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 01/30/2023] Open
Abstract
The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Francesco Tabaro
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy.,Institute of Biosciences and Medical Technology, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy.,Department of Agricultural Sciences, University of Udine, via Palladio 8, 33100 Udine, Italy.,Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Italy
| | - Ivan Micetic
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | - Norman Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, 1/c Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Bálint Mészáros
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, 1/c Pázmány Péter sétány, H-1117, Budapest, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary
| | - Alexander M Monzon
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, CONICET, Roque Saenz Pena 182, Bernal B1876BXD, Argentina
| | - Gustavo Parisi
- Structural Bioinformatics Group, Department of Science and Technology, National University of Quilmes, CONICET, Roque Saenz Pena 182, Bernal B1876BXD, Argentina
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium.,VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels 1050, Belgium
| | | | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium.,VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels 1050, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, 1050 Brussels, Belgium
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy.,CNR Institute of Neuroscience, via U. Bassi 58/b, 35131 Padua, Italy
| |
Collapse
|
23
|
Schiavina M, Murrali MG, Pontoriero L, Sainati V, Kümmerle R, Bermel W, Pierattelli R, Felli IC. Taking Simultaneous Snapshots of Intrinsically Disordered Proteins in Action. Biophys J 2019; 117:46-55. [PMID: 31176511 PMCID: PMC6626832 DOI: 10.1016/j.bpj.2019.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) as well as intrinsically disordered regions (IDRs) of complex protein machineries have recently been recognized as key players in many cellular functions. NMR represents a unique tool to access atomic resolution structural and dynamic information on highly flexible IDPs/IDRs. Improvements in instrumental sensitivity made heteronuclear direct detection possible for biomolecular NMR applications. The CON experiment has become one of the most useful NMR experiments to get a snapshot of an IDP/IDR in conditions approaching physiological ones. The availability of NMR spectrometers equipped with multiple receivers now enables the acquisition of several experiments simultaneously instead of one after the other. Here, we propose several variants of the CON experiment in which, during the recovery delay, a second two-dimensional experiment is acquired, either based on 1H detection (CON//HN) or on 15N detection (CON//btNH, CON//(H)CAN). The possibility to collect simultaneous snapshots of an IDP/IDR through different two-dimensional spectra provides a novel tool to follow chemical reactions, such as the occurrence of posttranslational modifications, as well as to study samples of limited lifetime such as cell lysates or whole cells.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria Grazia Murrali
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | - Valerio Sainati
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy
| | | | | | - Roberta Pierattelli
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy.
| | - Isabella C Felli
- Magnetic Resonance Center and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
24
|
Lane D, Soong R, Bermel W, Ning P, Dutta Majumdar R, Tabatabaei-Anaraki M, Heumann H, Gundy M, Bönisch H, Liaghati Mobarhan Y, Simpson MJ, Simpson AJ. Selective Amino Acid-Only in Vivo NMR: A Powerful Tool To Follow Stress Processes. ACS OMEGA 2019; 4:9017-9028. [PMID: 31459990 PMCID: PMC6648361 DOI: 10.1021/acsomega.9b00931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
In vivo NMR of small 13C-enriched aquatic organisms is developing as a powerful tool to detect and explain toxic stress at the biochemical level. Amino acids are a very important category of metabolites for stress detection as they are involved in the vast majority of stress response pathways. As such, they are a useful proxy for stress detection in general, which could then be a trigger for more in-depth analysis of the metabolome. 1H-13C heteronuclear single quantum coherence (HSQC) is commonly used to provide additional spectral dispersion in vivo and permit metabolite assignment. While some amino acids can be assigned from HSQC, spectral overlap makes monitoring them in vivo challenging. Here, an experiment typically used to study protein structures is adapted for the selective detection of amino acids inside living Daphnia magna (water fleas). All 20 common amino acids can be selectively detected in both extracts and in vivo. By monitoring bisphenol-A exposure, the in vivo amino acid-only approach identified larger fluxes in a greater number of amino acids when compared to published works using extracts from whole organism homogenates. This suggests that amino acid-only NMR of living organisms may be a very sensitive tool in the detection of stress in vivo and is highly complementary to more traditional metabolomics-based methods. The ability of selective NMR experiments to help researchers to "look inside" living organisms and only detect specific molecules of interest is quite profound and paves the way for the future development of additional targeted experiments for in vivo research and monitoring.
Collapse
Affiliation(s)
- Daniel Lane
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Ronald Soong
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Wolfgang Bermel
- Bruker
BioSpin GmbH, Silberstreifen 4, Rheinstetten, Germany
| | - Paris Ning
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Rudraksha Dutta Majumdar
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
- Bruker
Canada Ltd, 2800 High
Point Drive, Milton, Ontario, Canada L9T 6P4
| | - Maryam Tabatabaei-Anaraki
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | | | | | | | - Yalda Liaghati Mobarhan
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J. Simpson
- Environmental
NMR Centre, Department of Physical and Environmental Science, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| |
Collapse
|
25
|
Ambadipudi S, Reddy JG, Biernat J, Mandelkow E, Zweckstetter M. Residue-specific identification of phase separation hot spots of Alzheimer's-related protein tau. Chem Sci 2019; 10:6503-6507. [PMID: 31341602 PMCID: PMC6610569 DOI: 10.1039/c9sc00531e] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
Visualizing liquid–liquid phase separation by NMR spectroscopy: LLPS of the Alzheimer's-related protein tau involves aggregation-prone hexapeptides and activity regulating KXGS motifs.
Liquid–liquid phase separation (LLPS) of proteins enables the formation of non-membrane-bound organelles in cells and is associated with cancer and neurodegeneration. Little is known however about the structure and dynamics of proteins in LLPS conditions, because of the polymorphic nature of liquid-like protein droplets. Using carbon-detected NMR experiments we here show that the conversion of the aggregation-prone repeat region of the Alzheimer's-related protein tau from the dispersed monomeric state to phase-separated liquid-like droplets involves tau's aggregation-prone hexapeptides and regulatory KXGS motifs. Droplet dissolution in presence of 1,6-hexanediol revealed that chemical shift perturbations in the hexapeptide motifs are temperature driven, while those in KXGS motifs report on phase separation. Residue-specific secondary structure analysis further indicated that tau's repeat region exists in extended conformation in the dispersed state and attains transient β-hairpin propensity upon LLPS. Taken together our work shows that NMR spectroscopy can provide high-resolution insights into LLPS-induced changes in intrinsically disordered proteins.
Collapse
Affiliation(s)
- Susmitha Ambadipudi
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Von-Siebold-Str. 3a , 37075 Göttingen , Germany .
| | - Jithender G Reddy
- Max-Planck-Institut für Biophysikalische Chemie , Am Fassberg 11 , 37077 Göttingen , Germany.,NMR & Structural Chemistry Division , CSIR-Indian Institute of Chemical Technology , Hyderabad , 500007 , India
| | - Jacek Biernat
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Ludwig-Erhard-Allee 2 , 53175 Bonn , Germany
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Ludwig-Erhard-Allee 2 , 53175 Bonn , Germany.,CAESAR Research Center, Bonn , MPI for Metabolism Research , Hamburg Outstation , 22607 Hamburg , Germany
| | - Markus Zweckstetter
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) , Von-Siebold-Str. 3a , 37075 Göttingen , Germany . .,Max-Planck-Institut für Biophysikalische Chemie , Am Fassberg 11 , 37077 Göttingen , Germany
| |
Collapse
|
26
|
Abstract
In-cell NMR spectroscopy is a powerful tool to study protein structures and interactions under near physiological conditions in both prokaryotic and eukaryotic living cells. The low sensitivity and resolution of in-cell NMR spectra and limited lifetime of cells over the course of an in-cell experiment have presented major hurdles to wide acceptance of the technique, limiting it to a few select systems. These issues are addressed by introducing the use of the CRINEPT pulse sequence to increase the sensitivity and resolution of in-cell NMR spectra and the use of a bioreactor to maintain cell viability for up to 24h. Application of advanced pulse sequences and bioreactor during in-cell NMR experiments will facilitate the exploration of a wide range of biological processes.
Collapse
|
27
|
Breindel L, Burz DS, Shekhtman A. Interaction proteomics by using in-cell NMR spectroscopy. J Proteomics 2019; 191:202-211. [PMID: 29427760 PMCID: PMC6082733 DOI: 10.1016/j.jprot.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
A synopsis of in-cell NMR spectroscopic approaches to study interaction proteomics in prokaryotic and eukaryotic cells is presented. We describe the use of in-cell NMR spectroscopy to resolve high resolution protein structures, discuss methodologies for determining and analyzing high and low affinity protein-target structural interactions, including intrinsically disordered proteins, and detail important functional interactions that result from these interactions. SIGNIFICANCE: The ultimate goal of structural and biochemical research is to understand how macromolecular interactions give rise to and regulate biological activity in living cells. The challenge is formidable due to the complexity that arises not only from the number of proteins (genes) expressed by the organism, but also from the combinatorial interactions between them. Despite ongoing efforts to decipher the complex nature of protein interactions, new methods for structurally characterizing protein complexes are needed to fully understand molecular networks. With the onset of in-cell NMR spectroscopy, molecular structures and interactions can be studied under physiological conditions shedding light on the structural underpinning of biological activity.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
28
|
Mateos B, Konrat R, Pierattelli R, Felli IC. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in 13 C Direct-Detection Experiments. Chembiochem 2018; 20:335-339. [PMID: 30407719 DOI: 10.1002/cbic.201800539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable 3D structure and are able to adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. A widely used experimental NMR spectroscopy approach to study long-range contacts in IDPs exploits paramagnetic effects, and 1 H detection experiments are generally used to determine paramagnetic relaxation enhancement (PRE) for amide protons. However, under physiological conditions, exchange broadening hampers the detection of solvent-exposed amide protons, which reduces the content of information available. Herein, we present an experimental approach based on direct carbon detection of PRE that provides improved resolution, reduced sensitivity to exchange broadening, and complementary information derived from the use of different starting polarization sources.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
29
|
Pan BB, Yang F, Ye Y, Wu Q, Li C, Huber T, Su XC. 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem Commun (Camb) 2018; 52:10237-40. [PMID: 27470136 DOI: 10.1039/c6cc05490k] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determining the three-dimensional structure of a protein in living cells remains particularly challenging. We demonstrated that the integration of site-specific tagging proteins and GPS-Rosetta calculations provides a fast and effective way of determining the structures of proteins in living cells, and in principle the interactions and dynamics of protein-ligand complexes.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | - Feng Yang
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| | - Xun-Cheng Su
- State Key Laboratory and Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Lippens G, Cahoreau E, Millard P, Charlier C, Lopez J, Hanoulle X, Portais JC. In-cell NMR: from metabolites to macromolecules. Analyst 2018; 143:620-629. [PMID: 29333554 DOI: 10.1039/c7an01635b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell NMR of macromolecules has gained momentum over the last ten years as an approach that might bridge the branches of cell biology and structural biology. In this review, we put it in the context of earlier efforts that aimed to characterize by NMR the cellular environment of live cells and their intracellular metabolites. Although technical aspects distinguish these earlier in vivo NMR studies and the more recent in cell NMR efforts to characterize macromolecules in a cellular environment, we believe that both share major concerns ranging from sensitivity and line broadening to cell viability. Approaches to overcome the limitations in one subfield thereby can serve the other one and vice versa. The relevance in biomedical sciences might stretch from the direct following of drug metabolism in the cell to the observation of target binding, and thereby encompasses in-cell NMR both of metabolites and macromolecules. We underline the efforts of the field to move to novel biological insights by some selected examples.
Collapse
Affiliation(s)
- G Lippens
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - E Cahoreau
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - P Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| | - C Charlier
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - J Lopez
- CERMN, Seccion Quimica, Departemento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru
| | - X Hanoulle
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, CNRS UMR8576, Lille, France
| | - J C Portais
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
31
|
Quinn CM, Wang M, Polenova T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 2018; 1688:1-35. [PMID: 29151202 PMCID: PMC6217836 DOI: 10.1007/978-1-4939-7386-6_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
As a result of profound gains in sensitivity and resolution afforded by ultrahigh magnetic fields, transformative applications in the fields of structural biology and materials science are being realized. The development of dual low temperature superconducting (LTS)/high-temperature superconducting (HTS) magnets has enabled the achievement of magnetic fields above 1 GHz (23.5 T), which will open doors to an unprecedented new range of applications. In this contribution, we discuss the promise of ultrahigh field magnetic resonance. We highlight several methodological developments pertinent at high-magnetic fields including measurement of 1H-1H distances and 1H chemical shift anisotropy in the solid state as well as studies of quadrupolar nuclei such as 17O. Higher magnetic fields have advanced heteronuclear detection in solution NMR, valuable for applications including metabolomics and disordered proteins, as well as expanded use of proton detection in the solid state in conjunction with ultrafast magic angle spinning. We also present several recent applications to structural studies of the AP205 bacteriophage, the M2 channel from Influenza A, and biomaterials such as human bone. Gains in sensitivity and resolution from increased field strengths will enable advanced applications of NMR spectroscopy including in vivo studies of whole cells and intact virions.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
32
|
Sanz-Hernández M, De Simone A. The PROSECCO server for chemical shift predictions in ordered and disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 69:147-156. [PMID: 29119515 PMCID: PMC5711976 DOI: 10.1007/s10858-017-0145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.
Collapse
Affiliation(s)
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
33
|
Gerecht K, Figueiredo AM, Hansen DF. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR. Chem Commun (Camb) 2017; 53:10062-10065. [PMID: 28840203 PMCID: PMC5708338 DOI: 10.1039/c7cc04821a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine to characterise the interactions mediated by arginine side chains.
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Collapse
Affiliation(s)
- Karola Gerecht
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
34
|
Plitzko JM, Schuler B, Selenko P. Structural Biology outside the box-inside the cell. Curr Opin Struct Biol 2017; 46:110-121. [PMID: 28735108 DOI: 10.1016/j.sbi.2017.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/17/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Recent developments in cellular cryo-electron tomography, in-cell single-molecule Förster resonance energy transfer-spectroscopy, nuclear magnetic resonance-spectroscopy and electron paramagnetic resonance-spectroscopy delivered unprecedented insights into the inner workings of cells. Here, we review complementary aspects of these methods and provide an outlook toward joint applications in the future.
Collapse
Affiliation(s)
- Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Selenko
- Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Laboratory, Robert-Roessle Strasse 10, D-13125 Berlin, Germany.
| |
Collapse
|
35
|
Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int J Mol Sci 2017; 18:ijms18040740. [PMID: 28362316 PMCID: PMC5412325 DOI: 10.3390/ijms18040740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates.
Collapse
|
36
|
Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun 2016; 7:12563. [PMID: 27640673 PMCID: PMC5031799 DOI: 10.1038/ncomms12563] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/14/2016] [Indexed: 02/02/2023] Open
Abstract
α-synuclein (αS) is an intrinsically disordered protein whose fibrillar aggregates are the major constituents of Lewy bodies in Parkinson's disease. Although the specific function of αS is still unclear, a general consensus is forming that it has a key role in regulating the process of neurotransmitter release, which is associated with the mediation of synaptic vesicle interactions and assembly. Here we report the analysis of wild-type αS and two mutational variants linked to familial Parkinson's disease to describe the structural basis of a molecular mechanism enabling αS to induce the clustering of synaptic vesicles. We provide support for this 'double-anchor' mechanism by rationally designing and experimentally testing a further mutational variant of αS engineered to promote stronger interactions between synaptic vesicles. Our results characterize the nature of the active conformations of αS that mediate the clustering of synaptic vesicles, and indicate their relevance in both functional and pathological contexts.
Collapse
|
37
|
Garay PG, Martin OA, Scheraga HA, Vila JA. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study. PeerJ 2016; 4:e2253. [PMID: 27547559 PMCID: PMC4963218 DOI: 10.7717/peerj.2253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/23/2016] [Indexed: 11/20/2022] Open
Abstract
Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results.
Collapse
Affiliation(s)
- Pablo G. Garay
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Osvaldo A. Martin
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | | | - Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
38
|
Lopez J, Schneider R, Cantrelle FX, Huvent I, Lippens G. Studying Intrinsically Disordered Proteins under True In Vivo Conditions by Combined Cross-Polarization and Carbonyl-Detection NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan Lopez
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
- Departamento de Ciencias-Quimica; Pontificia Universidad Catolica del Peru; Av. Universitaria 1801 Lima 32 Peru
| | - Robert Schneider
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Francois-Xavier Cantrelle
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Isabelle Huvent
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Guy Lippens
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés; Université de Toulouse; CNRS; INRA; INSA Toulouse; 135 Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
39
|
Lopez J, Schneider R, Cantrelle FX, Huvent I, Lippens G. Studying Intrinsically Disordered Proteins under True In Vivo Conditions by Combined Cross-Polarization and Carbonyl-Detection NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:7418-22. [DOI: 10.1002/anie.201601850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Lopez
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
- Departamento de Ciencias-Quimica; Pontificia Universidad Catolica del Peru; Av. Universitaria 1801 Lima 32 Peru
| | - Robert Schneider
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Francois-Xavier Cantrelle
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Isabelle Huvent
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
| | - Guy Lippens
- Université de Lille; CNRS; UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle; 59000 Lille France
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés; Université de Toulouse; CNRS; INRA; INSA Toulouse; 135 Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
40
|
Dubey A, Kadumuri RV, Jaipuria G, Vadrevu R, Atreya HS. Rapid NMR Assignments of Proteins by Using Optimized Combinatorial Selective Unlabeling. Chembiochem 2016; 17:334-40. [DOI: 10.1002/cbic.201500513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Abhinav Dubey
- NMR Research Center; Indian Institute of Science, Malleswaram; Bangalore 560012 India
- IISc Mathematics Initiative; Indian Institute of Science, Malleswaram; Bangalore 560012 India
| | - Rajashekar Varma Kadumuri
- Department of Biological Sciences; Birla Institute of Technology and Science-Pilani; Hyderabad Campus Hyderabad 500078 India
| | - Garima Jaipuria
- NMR Research Center; Indian Institute of Science, Malleswaram; Bangalore 560012 India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences; Birla Institute of Technology and Science-Pilani; Hyderabad Campus Hyderabad 500078 India
| | - Hanudatta S. Atreya
- NMR Research Center; Indian Institute of Science, Malleswaram; Bangalore 560012 India
| |
Collapse
|
41
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
42
|
Abstract
Conventional structural and chemical biology approaches are applied to macromolecules extrapolated from their native context. When this is done, important structural and functional features of macromolecules, which depend on their native network of interactions within the cell, may be lost. In-cell nuclear magnetic resonance is a branch of biomolecular NMR spectroscopy that allows macromolecules to be analyzed in living cells, at the atomic level. In-cell NMR can be applied to several cellular systems to obtain biologically relevant structural and functional information. Here we summarize the existing approaches and focus on the applications to protein folding, interactions, and post-translational modifications.
Collapse
Affiliation(s)
- Enrico Luchinat
- From the Magnetic Resonance Center (CERM), the Department of Biomedical, Clinical and Experimental Sciences, and
| | - Lucia Banci
- From the Magnetic Resonance Center (CERM), the Department of Chemistry, University of Florence, Florence 50121, Italy
| |
Collapse
|
43
|
Tompa P, Schad E, Tantos A, Kalmar L. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 2015; 35:49-59. [PMID: 26402567 DOI: 10.1016/j.sbi.2015.08.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsically disordered proteins or regions of proteins (IDPs/IDRs) most often function through protein-protein interactions, when they permanently or transiently bind partner molecules with diverse functional consequences. There is a rapid advance in our understanding of the ensuing functional modes, obtained from describing atomic details of individual complexes, proteome-wide studies of interactomes and characterizing loosely assembled hydrogels and tightly packed amyloids. Here we briefly survey the most important recent methodological developments and structural-functional observations, with the aim of increasing the general appreciation of IDPs/IDRs as 'interaction specialists'.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC), Brussels, Belgium; Vrije Universiteit Brussel, Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
44
|
Felli IC, Pierattelli R. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:1-13. [PMID: 25669738 DOI: 10.1016/j.pnmrs.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Spin-state-selective methods to achieve homonuclear decoupling in the direct acquisition dimension of (13)C detected NMR experiments have been one of the key contributors to converting (13)C detected NMR experiments into really useful tools for studying biomolecules. We discuss here in detail the various methods that have been proposed, summarize the large array of new experiments that have been developed and present applications to different kinds of proteins in different aggregation states.
Collapse
Affiliation(s)
- Isabella C Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
45
|
Brutscher B, Felli IC, Gil-Caballero S, Hošek T, Kümmerle R, Piai A, Pierattelli R, Sólyom Z. NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:49-122. [PMID: 26387100 DOI: 10.1007/978-3-319-20164-1_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thanks to recent improvements in NMR instrumentation, pulse sequence design, and sample preparation, a panoply of new NMR tools has become available for atomic resolution characterization of intrinsically disordered proteins (IDPs) that are optimized for the particular chemical and spectroscopic properties of these molecules. A wide range of NMR observables can now be measured on increasingly complex IDPs that report on their structural and dynamic properties in isolation, as part of a larger complex, or even inside an entire living cell. Herein we present basic NMR concepts, as well as optimised tools available for the study of IDPs in solution. In particular, the following sections are discussed hereafter: a short introduction to NMR spectroscopy and instrumentation (Sect. 3.1), the effect of order and disorder on NMR observables (Sect. 3.2), particular challenges and bottlenecks for NMR studies of IDPs (Sect. 3.3), 2D HN and CON NMR experiments: the fingerprint of an IDP (Sect. 3.4), tools for overcoming major bottlenecks of IDP NMR studies (Sect. 3.5), 13C detected experiments (Sect. 3.6), from 2D to 3D: from simple snapshots to site-resolved characterization of IDPs (Sect. 3.7), sequential NMR assignment: 3D experiments (Sect. 3.8), high-dimensional NMR experiments (nD, with n>3) (Sect. 3.9) and conclusions and perspectives (Sect. 3.10).
Collapse
Affiliation(s)
- Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France.
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | | | - Tomáš Hošek
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Rainer Kümmerle
- Bruker BioSpin AG, Industriestrasse 26, 8117, Fällanden, Switzerland
| | - Alessandro Piai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, 50019, Via Luigi Sacconi 6, Sesto Fiorentino, Florence, Italy.
| | - Zsófia Sólyom
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044, Grenoble Cedex 9, France
| |
Collapse
|
46
|
Cedeño C, Raveh-Hamit H, Dinnyés A, Tompa P. Towards Understanding Protein Disorder In-Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:319-34. [PMID: 26387107 DOI: 10.1007/978-3-319-20164-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Investigating the activity and structure of cellular biochemical machinery at atomic resolution has been a point of paramount significance for understanding health and disease over the decades. The underlying molecular mechanisms are primarily studied in vitro. Nuclear magnetic resonance (NMR) is a technique that allows to look into cells and study proteins and other constituents, thanks to careful experimental design and technological advances (spectrometer sensitivity and pulse sequence design). Here we outline current applications of the technique and propose a realistic future for the field.
Collapse
Affiliation(s)
- Cesyen Cedeño
- VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | | | - András Dinnyés
- BioTalentum Ltd, Aulich L. str. 26, 2100, Godollo, Hungary.
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050, Brussels, Belgium.,Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 1518, Budapest, Hungary
| |
Collapse
|