1
|
Teslenko A, Fierz B. Single-molecule analysis reveals the mechanism of chromatin ubiquitylation by variant PRC1 complexes. SCIENCE ADVANCES 2025; 11:eadt7013. [PMID: 40397729 PMCID: PMC12094234 DOI: 10.1126/sciadv.adt7013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/08/2025] [Indexed: 05/23/2025]
Abstract
Chromatin regulation relies on "writer" enzymes that add posttranslational modifications to histone proteins. Variant polycomb repressive complex 1 (PRC1) exists as several subtypes, which are "writers" of ubiquitylation on histone H2A K118 and K119, crucial for transcriptional repression during development and cell identity determination. The mechanism by which dynamic chromatin exploration by variant PRC1 complexes couples to ubiquitin writing is unknown. Here, we developed a single-molecule approach to directly observe chromatin interactions and ubiquitylation by PRC1. We find that variant PRC1 transiently samples chromatin until it reaches a catalytically competent nucleosome-bound state, resulting in E2 recruitment and ubiquitin transfer. Variant PRC1 is weakly processive in ubiquitylating neighboring nucleosomes. Moreover, activity differences between PRC1 subtypes, containing either a PCGF1 or PCGF4 subunit, result from distinct probabilities of achieving a catalytically competent state. Our results thus demonstrate that the dynamic formation of an active complex between variant PRC1, E2, and chromatin is the critical determinant of subtype-specific variant PRC1 activity.
Collapse
Affiliation(s)
- Alexandra Teslenko
- SB ISIC LCBM, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Beat Fierz
- SB ISIC LCBM, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Oprea I, Smith TK. Click Chemistry Methodology: The Novel Paintbrush of Drug Design. ACS Chem Biol 2025; 20:19-32. [PMID: 39730316 PMCID: PMC11744672 DOI: 10.1021/acschembio.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Click chemistry is an immensely powerful technique for the synthesis of reliable and efficient covalent linkages. When undertaken in living cells, the concept is thereby coined bioorthogonal chemistry. Used in conjunction with the photo-cross-linking methodology, it serves as a sound strategy in the exploration of biological processes and beyond. Its broad scope has led to widespread use in many disciplines; however, this Review focuses on the use of click and bioorthogonal chemistry within medicinal chemistry, specifically with regards to drug development applications, namely, the use of DNA-encoded libraries as a novel technique for lead compound discovery, as well as the synthesis of antisense oligonucleotides and protein-drug conjugates. This Review aims to provide a critical perspective and a future outlook of this methodology, such as potential widespread use in cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Ioana Oprea
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| | - Terry K. Smith
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| |
Collapse
|
3
|
Franz P, Delvaux de Fenffe CM, Fierz B. A Site-Specific Click Chemistry Approach to Di-Ubiquitylate H1 Variants Reveals Position-Dependent Stimulation of the DNA Repair Protein RNF168. Angew Chem Int Ed Engl 2024; 63:e202408435. [PMID: 39377639 DOI: 10.1002/anie.202408435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Ubiquitylation of histone H2A at lysines 13 and 15 by the E3 ligase RNF168 plays a key role in orchestrating DNA double-strand break (DSB) repair, which is often deregulated in cancer. RNF168 activity is triggered by DSB signaling cascades, reportedly through K63-linked poly-ubiquitylation of linker histone H1. However, direct experimental evidence of this mechanism has been elusive, primarily due to the lack of methods to specifically poly-ubiquitylate H1. Here, we developed a versatile click chemistry approach to covalently link multiple proteins in a site-specific, controlled, and stepwise manner. Applying this method, we synthesized H1 constructs bearing triazole-linked di-ubiquitin on four DNA repair-associated ubiquitylation hotspots (H1KxUb2, at K17, 46, 64 and 96). Integrated into nucleosome arrays, the H1KxUb2 variants stimulated H2A ubiquitylation by RNF168 in a position-dependent manner, with H1K17Ub2 showing the strongest RNF168 activation effect. Moreover, we show that di-ubiquitin binding is the driving force underlying RNF168 recruitment, introducing H1K17Ub2 into living U-2 OS cells. Together, our results support the hypothesis of poly-ubiquitylated H1 guiding RNF168 recruitment to DSB sites. Moreover, we demonstrate how the streamlined synthesis of H1KxUb2 variants enables mechanistic studies into RNF168 regulation, with potential implications for its inhibition in susceptible cancers.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| | - Charlotte M Delvaux de Fenffe
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
- present address: Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Nederland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), EPFL (Ecole Polytechnique Fédérale de Lausanne), Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
5
|
Chen Y, Feng H, Chen L, Zhou W, Zhou S. Construction of homologous branched oligomer megamolecules based on linker-directed protein assembly. SOFT MATTER 2024; 20:6889-6893. [PMID: 39177042 DOI: 10.1039/d4sm00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Utilizing the building blocks of recombinant proteins and synthetic linkers, we have obtained two distinct octameric megamolecules with diverse branched structures. This approach combines principles from both click chemistry and protein engineering technology, enabling the integration of functional domains within highly ordered protein assemblies for biomedical applications.
Collapse
Affiliation(s)
- Yue Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Honghong Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Wenbin Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
6
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
7
|
Immler F, Schneider T, Kovermann M. Targeted Preparation and NMR Spectroscopic Characterization of Lys11-Linked Ubiquitin Trimers. Chembiochem 2024; 25:e202300670. [PMID: 37983597 DOI: 10.1002/cbic.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ubiquitylation refers to the attachment of mono- or poly-ubiquitin molecules to a substrate protein. To shield ubiquitin chains against potential hydrolysis, a facile, click-chemistry based approach was recently established for the generation of site-specifically conjugated ubiquitin dimers relying on triazole-linkage. Here, the preparation of such ubiquitin chains was advanced by the generation of homotypic Lys11-linked ubiquitin trimers considering an isotopic labeling scheme in a moiety-wise manner. The structural and dynamical impact on the ubiquitin unit at proximal, central, or distal position that is potentially invoked by the respective other two moieties was systematically probed by heteronuclear high-resolution NMR spectroscopic approaches. As a result, conjugating a third ubiquitin moiety to the proximal or distal site of a ubiquitin dimer does not alter structural and dynamical characteristics as it has been seen for ubiquitin dimers. This observation suggests that recognition of a homotypically assembled ubiquitin chain by a potential substrate is primarily done by screening the length of a ubiquitin chain rather than relying on subtle changes in structure or dynamic properties of single ubiquitin moieties composing the chain.
Collapse
Affiliation(s)
- Fabian Immler
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Schneider
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Universität Konstanz, Department of Chemistry and Graduate School of Chemical Biology (KoRS-CB), Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
8
|
Saumer P, Scheffner M, Marx A, Stengel F. Interactome of intact chromatosome variants with site-specifically ubiquitylated and acetylated linker histone H1.2. Nucleic Acids Res 2024; 52:101-113. [PMID: 37994785 PMCID: PMC10783519 DOI: 10.1093/nar/gkad1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.
Collapse
Affiliation(s)
- Philip Saumer
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
9
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
10
|
Peng T, Das T, Ding K, Hang HC. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci 2023; 32:e4618. [PMID: 36883310 PMCID: PMC10031814 DOI: 10.1002/pro.4618] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Tandrila Das
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| | - Ke Ding
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Howard C. Hang
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
11
|
Iwase R, Dempsey DR, Whedon SD, Jiang H, Palanski BA, Deng B, Cole PA. Semisynthetic Approach to the Analysis of Tumor Suppressor PTEN Ubiquitination. J Am Chem Soc 2023; 145:6039-6044. [PMID: 36897111 PMCID: PMC10071500 DOI: 10.1021/jacs.2c13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Phosphatase and tensin homologue (PTEN) tumor suppressor protein is a PIP3 lipid phosphatase that is subject to multifaceted post-translational modifications. One such modification is the monoubiquitination of Lys13 that may alter its cellular localization but is also positioned in a manner that could influence several of its cellular functions. To explore the regulatory influence of ubiquitin on PTEN's biochemical properties and its interaction with ubiquitin ligases and a deubiquitinase, the generation of a site-specifically and stoichiometrically ubiquitinated protein could be beneficial. Here, we describe a semisynthetic method that relies upon sequential expressed protein ligation steps to install ubiquitin at a Lys13 mimic in near full-length PTEN. This approach permits the concurrent installation of C-terminal modifications in PTEN, thereby facilitating an analysis of the interplay between N-terminal ubiquitination and C-terminal phosphorylation. We find that the N-terminal ubiquitination of PTEN inhibits its enzymatic function, reduces its binding to lipid vesicles, modulates its processing by NEDD4-1 E3 ligase, and is efficiently cleaved by the deubiquitinase, USP7. Our ligation approach should motivate related efforts for uncovering the effects of ubiquitination of complex proteins.
Collapse
Affiliation(s)
- Reina Iwase
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel R. Dempsey
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Dermatology and Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Samuel D. Whedon
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Brad A. Palanski
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bedphiny Deng
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115, United States
- College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Su X, Zhang L, Zhao L, Pan B, Chen B, Chen J, Zhai C, Li B. Efficient Protein–Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022; 61:e202205597. [DOI: 10.1002/anie.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xun‐Cheng Su
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ling‐Yang Zhang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Na Zhao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ben‐Guang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Liang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Liang Zhai
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Su XC, Zhang LY, Zhao LN, Pan BB, Chen BG, Chen JL, Zhai CL, Li B. Efficient Protein‐Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xun-Cheng Su
- Nankai University College of Chemistry Stat Key Laboratory of Elemento-organic Chemistry Weijing Road 94 300071 Tianjin CHINA
| | | | - Li-Na Zhao
- Nankai University college of chemistry CHINA
| | - Bin-Bin Pan
- Nankai University college of chemistry CHINA
| | | | | | | | - Bin Li
- Nankai University college of chemistry CHINA
| |
Collapse
|
16
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
17
|
Marx A, Julier A, Radtke V, Scheffner M. Generation and characterization of site-specifically mono-ubiquitylated p53. Chembiochem 2022; 23:e202100659. [PMID: 35025136 PMCID: PMC9303418 DOI: 10.1002/cbic.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Indexed: 11/11/2022]
Abstract
The tumor suppressor p53 is regulated by various posttranslational modifications including different types of ubiquitylation, which exert distinct effects on p53. While modification by ubiquitin chains targets p53 for degradation, attachment of single ubiquitin moieties (mono‐ubiquitylation) affects the intracellular location of p53 and/or its interaction with chromatin. However, how this is achieved at the molecular level remains largely unknown. Similarly, since p53 can be ubiquitylated at different lysine residues, it remains unclear if the eventual effect depends on the position of the lysine modified. Here, we combined genetic code expansion with oxime ligation to generate p53 site‐specifically mono‐ubiquitylated at position 120. We found that mono‐ubiquitylation at this position neither interferes with p53 ubiquitylation by the E3 ligases HDM2 and E6AP in complex with the viral E6 oncoprotein nor affects p53 binding to a cognate DNA sequence. Thus, ubiquitylation per se does not affect physiologically relevant properties of p53.
Collapse
Affiliation(s)
- Andreas Marx
- Konstanz University, Department of Chemistry, Universitaetsstrasse 10, 78457, Konstanz, GERMANY
| | | | - Vanessa Radtke
- University of Konstanz: Universitat Konstanz, Chemistry, GERMANY
| | | |
Collapse
|
18
|
Höllmüller E, Geigges S, Niedermeier ML, Kammer KM, Kienle SM, Rösner D, Scheffner M, Marx A, Stengel F. Site-specific ubiquitylation acts as a regulator of linker histone H1. Nat Commun 2021; 12:3497. [PMID: 34108453 PMCID: PMC8190259 DOI: 10.1038/s41467-021-23636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1. While the role of specific posttranslational modifications (PTMs) is increasingly well understood for core histones, this is not the case for linker histone H1. Here the authors show that site-specific ubiquitylation of H1 results in distinct interactomes, regulates phase separation, and modulates assembly of chromatosomes.
Collapse
Affiliation(s)
- Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon Geigges
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon M Kienle
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Rösner
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
19
|
Fennell LM, Gomez Diaz C, Deszcz L, Kavirayani A, Hoffmann D, Yanagitani K, Schleiffer A, Mechtler K, Hagelkruys A, Penninger J, Ikeda F. Site-specific ubiquitination of the E3 ligase HOIP regulates apoptosis and immune signaling. EMBO J 2020; 39:e103303. [PMID: 33215740 PMCID: PMC7737615 DOI: 10.15252/embj.2019103303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), is a critical regulator of inflammation. However, how HOIP itself is regulated to control inflammatory responses is unclear. Here, we discover that site-specific ubiquitination of K784 within human HOIP promotes tumor necrosis factor (TNF)-induced inflammatory signaling. A HOIP K784R mutant is catalytically active but shows reduced induction of an NF-κB reporter relative to wild-type HOIP. HOIP K784 is evolutionarily conserved, equivalent to HOIP K778 in mice. We generated HoipK778R/K778R knock-in mice, which show no overt developmental phenotypes; however, in response to TNF, HoipK778R/K778R mouse embryonic fibroblasts display mildly suppressed NF-κB activation and increased apoptotic markers. On the other hand, HOIP K778R enhances the TNF-induced formation of TNFR complex II and an interaction between TNFR complex II and LUBAC. Loss of the LUBAC component SHARPIN leads to embryonic lethality in HoipK778R/K778R mice, which is rescued by knockout of TNFR1. We propose that site-specific ubiquitination of HOIP regulates a LUBAC-dependent switch between survival and apoptosis in TNF signaling.
Collapse
Affiliation(s)
- Lilian M Fennell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Carlos Gomez Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Luiza Deszcz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities (VBCF)Vienna Biocenter (VBC)ViennaAustria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Kota Yanagitani
- Medical Institute of Bioregulation (MIB)Kyushu UniversityFukuokaJapan
| | - Alexander Schleiffer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Medical Institute of Bioregulation (MIB)Kyushu UniversityFukuokaJapan
| |
Collapse
|
20
|
Wang YS, Wu KP, Jiang HK, Kurkute P, Chen RH. Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis. Molecules 2020; 25:E5200. [PMID: 33182242 PMCID: PMC7664869 DOI: 10.3390/molecules25215200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Prashant Kurkute
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
21
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
22
|
Hua X, Chu GC, Li YM. The Ubiquitin Enigma: Progress in the Detection and Chemical Synthesis of Branched Ubiquitin Chains. Chembiochem 2020; 21:3313-3318. [PMID: 32621561 DOI: 10.1002/cbic.202000295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated. This concept article introduces the function, detection and chemical synthesis of branched ubiquitin chains; and offers some future perspective for this exciting new field.
Collapse
Affiliation(s)
- Xiao Hua
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. The Length of a Ubiquitin Chain: A General Factor for Selective Recognition by Ubiquitin-Binding Proteins. Angew Chem Int Ed Engl 2020; 59:12371-12375. [PMID: 32301549 PMCID: PMC7384046 DOI: 10.1002/anie.202003058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Indexed: 12/16/2022]
Abstract
The attachment of ubiquitin (Ub) chains of various length to proteins is a prevalent posttranslational modification in eukaryotes. The fate of a modified protein is determined by Ub-binding proteins (UBPs), which interact with Ub chains in a linkage-selective manner. However, the impact and functional consequences of chain length on the binding selectivity of UBPs remain mostly elusive. We have generated Ub chains of defined length and linkage by using click chemistry and GELFrEE fractionation. These defined polymers were used in affinity-based enrichment assays to identify length- and linkage-selective interaction partners on a proteome-wide scale. For the first time, it is revealed that the length of a Ub chain generally has a major impact on its ability to be selectively recognized by UBPs.
Collapse
Affiliation(s)
- Joachim Lutz
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Eva Höllmüller
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Martin Scheffner
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Florian Stengel
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
24
|
Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Die Länge einer Ubiquitinkette: ein genereller Faktor für die selektive Erkennung durch Ubiquitin‐bindende Proteine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joachim Lutz
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Höllmüller
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Martin Scheffner
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Florian Stengel
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
25
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
26
|
Gui W, Paudel P, Zhuang Z. Activity-Based Ubiquitin Probes for Investigation of Deubiquitinases. COMPREHENSIVE NATURAL PRODUCTS III 2020. [PMCID: PMC7157470 DOI: 10.1016/b978-0-12-409547-2.14672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ubiquitination is emerging as an important post-translational modification (PTM) for numerous cellular functions including protein degradation, DNA damage repair and tolerance, and cell cycle progression. Compared with other small-molecule modifiers found in phosphorylation, acetylation and glycosylation, ubiquitin is a small protein modifier that exists as either a single ubiquitin or a polyubiquitin chain. Furthermore, the polyubiquitin chains are formed via various linkages imparting an additional layer of specificity in cellular signaling. In order to adequately study ubiquitin signaling and particularly deubiquitination, a number of ubiquitin activity-based probes (ABPs) were developed and utilized in understanding the deubiquitinase (DUBs) function. Here, we focus on the current state of the DUB ABP development and their application in understanding DUB function and specificity for polyubiquitin chains and ubiquitinated proteins.
Collapse
|
27
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
28
|
Ruiz-Agudo C, Lutz J, Keckeis P, King M, Marx A, Gebauer D. Ubiquitin Designer Proteins as a New Additive Generation toward Controlling Crystallization. J Am Chem Soc 2019; 141:12240-12245. [PMID: 31321970 DOI: 10.1021/jacs.9b06473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins controlling mineralization in vivo are diverse, suggesting that there are various ways by which mineralization can be directed in bioinspired approaches. While well-defined three-dimensional (3D) structures occur in biomineralization proteins, the design of synthetic, soluble, bioinspired macromolecules with specific, reproducible, and predictable 3D arrangements of mineral-interacting functions poses an ultimate challenge. Thus, the question of how certain arrangements of such functions on protein surfaces influence mineralization and in what ways specific alterations subsequently affect this process remains elusive. Here we used genetically engineered ubiquitin (Ub) proteins in order to overcome the limitations of generic bioinspired additive systems. By advancing existing protocols, we introduced an unnatural amino acid and subsequently mineral-interacting functions via selective-pressure incorporation and click chemistry, respectively, without affecting the Ub secondary structure. Indeed, as-obtained Ub with three phosphate functions at defined positions shows unique effects based on a yet-unmatched capability toward the stabilization of a film of a dense liquid mineral phase visible even with the naked eye and its transformation into amorphous nanoparticles and afterward crystals with complex shapes. We thereby demonstrate that Ub designer proteins pose a unique new generation of crystallization additives where the 3D arrangement of mineral-interacting functions can be designed at will, promising their future use for programmable, target-oriented mineralization control.
Collapse
Affiliation(s)
| | - Joachim Lutz
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| | - Philipp Keckeis
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| | - Michael King
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| | - Andreas Marx
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| | - Denis Gebauer
- Department of Chemistry , University of Konstanz , 78457 Konstanz , Germany
| |
Collapse
|
29
|
Zhao X, Mißun M, Schneider T, Müller F, Lutz J, Scheffner M, Marx A, Kovermann M. Artificially Linked Ubiquitin Dimers Characterised Structurally and Dynamically by NMR Spectroscopy. Chembiochem 2019; 20:1772-1777. [PMID: 30920720 PMCID: PMC6771822 DOI: 10.1002/cbic.201900146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/23/2022]
Abstract
As one of the most prevalent post-translational modifications in eukaryotic cells, ubiquitylation plays vital roles in many cellular processes, such as protein degradation, DNA metabolism, and cell differentiation. Substrate proteins can be tagged by distinct types of polymeric ubiquitin (Ub) chains, which determine the eventual fate of the modified protein. A facile, click chemistry based approach for the efficient generation of linkage-defined Ub chains, including Ub dimers, was recently established. Within these chains, individual Ub moieties are connected through a triazole linkage, rather than the natural isopeptide bond. Herein, it is reported that the conformation of an artificially K48-linked Ub dimer resembles that of the natively linked dimer, with respect to structural and dynamic characteristics, as demonstrated by means of high-resolution NMR spectroscopy. Thus, it is proposed that artificially linked Ub dimers, as generated by this approach, represent potent tools for studying the inherently different properties and functions of distinct Ub chains.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Maite Mißun
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Tobias Schneider
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Franziska Müller
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Joachim Lutz
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Martin Scheffner
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Andreas Marx
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Michael Kovermann
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
30
|
Welte H, Kovermann M. Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy. Protein Expr Purif 2019; 157:86-91. [DOI: 10.1016/j.pep.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
|
31
|
Affiliation(s)
- Karl W Barber
- Department of Cellular and Molecular Physiology and the Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology and the Systems Biology Institute, Yale University, West Haven, Connecticut, USA
| |
Collapse
|
32
|
Synthetic ubiquitinated proteins meet the proteasome: Distinct roles of ubiquitin in a chain. Proc Natl Acad Sci U S A 2019; 116:7614-7616. [PMID: 30926663 DOI: 10.1073/pnas.1903405116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Conibear AC, Muttenthaler M. Advancing the Frontiers of Chemical Protein Synthesis-The 7 th CPS Meeting, Haifa, Israel. Cell Chem Biol 2019; 25:247-254. [PMID: 29547714 DOI: 10.1016/j.chembiol.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 7th Chemical Protein Synthesis Meeting took place in September 2017 in Haifa, Israel, bringing together 100 scientists from 11 countries. The cutting-edge scientific program included new synthetic strategies and ligation auxiliaries, novel insights into protein signaling and post-translational modifications, and a range of promising therapeutic applications.
Collapse
Affiliation(s)
- Anne C Conibear
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
34
|
Zhao X, Scheffner M, Marx A. Assembly of branched ubiquitin oligomers by click chemistry. Chem Commun (Camb) 2019; 55:13093-13095. [DOI: 10.1039/c9cc07303e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ubiquitin monomers functionalized with an azide or multiple alkynes were utilized for the assembly of branched ubiquitin oligomers that exhibit stability in eukaryotic cell lysates.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Departments of Chemistry and Biology
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| | - Martin Scheffner
- Departments of Chemistry and Biology
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| | - Andreas Marx
- Departments of Chemistry and Biology
- Konstanz Research School Chemical Biology
- University of Konstanz
- 78457 Konstanz
- Germany
| |
Collapse
|
35
|
Bhat S, Hwang Y, Gibson MD, Morgan MT, Taverna SD, Zhao Y, Wolberger C, Poirier MG, Cole PA. Hydrazide Mimics for Protein Lysine Acylation To Assess Nucleosome Dynamics and Deubiquitinase Action. J Am Chem Soc 2018; 140:9478-9485. [PMID: 29991262 PMCID: PMC6070418 DOI: 10.1021/jacs.8b03572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A range of acyl-lysine (acyl-Lys) modifications on histones and other proteins have been mapped over the past decade but for most, their functional and structural significance remains poorly characterized. One limitation in the study of acyl-Lys containing proteins is the challenge of producing them or their mimics in site-specifically modified forms. We describe a cysteine alkylation-based method to install hydrazide mimics of acyl-Lys post-translational modifications (PTMs) on proteins. We have applied this method to install mimics of acetyl-Lys, 2-hydroxyisobutyryl-Lys, and ubiquityl-Lys that could be recognized selectively by relevant acyl-Lys modification antibodies. The acyl-Lys modified histone H3 proteins were reconstituted into nucleosomes to study nucleosome dynamics and stability as a function of modification type and site. We also installed a ubiquityl-Lys mimic in histone H2B and generated a diubiquitin analog, both of which could be cleaved by deubiquitinating enzymes. Nucleosomes containing the H2B ubiquityl-Lys mimic were used to study the SAGA deubiquitinating module's molecular recognition. These results suggest that acyl-Lys mimics offer a relatively simple and promising strategy to study the role of acyl-Lys modifications in the function, structure, and regulation of proteins and protein complexes.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Matthew D. Gibson
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael T. Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Philip A. Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Division of Genetics, Brigham and Women’s Hospital; Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 77 Ave Louis Pasteur, HMS New Research Building, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 725] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
37
|
Zhang X, Smits AH, van Tilburg GB, Ovaa H, Huber W, Vermeulen M. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 2018; 13:530-550. [PMID: 29446774 DOI: 10.1038/nprot.2017.147] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitin-binding proteins play an important role in eukaryotes by translating differently linked polyubiquitin chains into proper cellular responses. Current knowledge about ubiquitin-binding proteins and ubiquitin linkage-selective interactions is mostly based on case-by-case studies. We have recently reported a method called ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), which enables comprehensive identification of ubiquitin interactors for all ubiquitin linkages from crude cell lysates. One major strength of UbIA-MS is the fact that ubiquitin interactors are enriched from crude cell lysates, in which proteins are present at endogenous levels, contain biologically relevant post-translational modifications (PTMs) and are assembled in native protein complexes. In addition, UbIA-MS uses chemically synthesized nonhydrolyzable diubiquitin, which mimics native diubiquitin and is inert to cleavage by endogenous deubiquitinases (DUBs). Here, we present a detailed protocol for UbIA-MS that proceeds in five stages: (i) chemical synthesis of ubiquitin precursors and click chemistry for the generation of biotinylated nonhydrolyzable diubiquitin baits, (ii) in vitro affinity purification of ubiquitin interactors, (iii) on-bead interactor digestion, (iv) liquid chromatography (LC)-MS/MS analysis and (v) data analysis to identify differentially enriched proteins. The computational analysis tools are freely available as an open-source R software package, including a graphical interface. Typically, UbIA-MS allows the identification of dozens to hundreds of ubiquitin interactors from any type of cell lysate, and can be used to study cell type or stimulus-dependent ubiquitin interactions. The nonhydrolyzable diubiquitin synthesis can be completed in 3 weeks, followed by ubiquitin interactor enrichment and identification, which can be completed within another 2 weeks.
Collapse
Affiliation(s)
- Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arne H Smits
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Huib Ovaa
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
38
|
Lang K. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2018; 19:115-120. [PMID: 29251813 DOI: 10.1002/cbic.201700606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/24/2023]
Abstract
The power of CPS, live! More than 90 attendees from around the world came together in Haifa to present and hear about cutting-edge science in protein chemistry, from advances in synthetic methods to applications in biology and medicine. The meeting was a powerful demonstration that chemical protein synthesis can provide otherwise unattainable insights into protein structure and function.
Collapse
Affiliation(s)
- Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
39
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identification of Proteins Interacting with Ubiquitin Chains. Angew Chem Int Ed Engl 2017; 56:15764-15768. [DOI: 10.1002/anie.201705898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohui Zhao
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Joachim Lutz
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Martin Scheffner
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
40
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identifizierung von Interaktoren von Ubiquitinketten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaohui Zhao
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Joachim Lutz
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Höllmüller
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Martin Scheffner
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Florian Stengel
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
41
|
Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S. Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. eLife 2017; 6. [PMID: 28968219 PMCID: PMC5624781 DOI: 10.7554/elife.29154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Rab GTPases, which are involved in intracellular trafficking pathways, have recently been reported to be ubiquitinated. However, the functions of ubiquitinated Rab proteins remain unexplored. Here we show that Rab5 is monoubiquitinated on K116, K140, and K165. Upon co-transfection with ubiquitin, Rab5 exhibited abnormalities in endosomal localization and EGF-induced EGF receptor degradation. Rab5 K140R and K165R mutants restored these abnormalities, whereas K116R did not. We derived structural models of individual monoubiquitinated Rab5 proteins (mUbRab5s) by solution scattering and observed different conformational flexibilities in a site-specific manner. Structural analysis combined with biochemical data revealed that interactions with downstream effectors were impeded in mUbRab5K140, whereas GDP release and GTP loading activities were altered in mUbRab5K165. By contrast, mUbRab5K116 apparently had no effect. We propose a regulatory mechanism of Rab5 where monoubiquitination downregulates effector recruitment and GDP/GTP conversion in a site-specific manner.
Collapse
Affiliation(s)
- Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Wooju Na
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
42
|
Yang A, Cho K, Park HS. Chemical biology approaches for studying posttranslational modifications. RNA Biol 2017; 15:427-440. [PMID: 28901832 DOI: 10.1080/15476286.2017.1360468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.
Collapse
Affiliation(s)
- Aerin Yang
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Kyukwang Cho
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| | - Hee-Sung Park
- a Department of Chemistry , Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu , Daejeon , Republic of Korea
| |
Collapse
|
43
|
Kwon I, Yang B. Bioconjugation and Active Site Design of Enzymes Using Non-natural Amino Acids. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Inchan Kwon
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byungseop Yang
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
44
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
45
|
Swiderska KW, Szlachcic A, Czyrek A, Zakrzewska M, Otlewski J. Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg Med Chem 2017; 25:3685-3693. [PMID: 28522266 DOI: 10.1016/j.bmc.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Recent advances in site-specific protein modification include the increasingly popular incorporation of unnatural amino acid(s) using amber codon, a method developed by Schultz and coworkers. In this study, we employ this technique to introduce propargyllysine (PrK) in human fibroblast growth factor 2 (FGF2). Owing to an alkyne moiety in its side chain, PrK is compatible with Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC). We successfully tested CuAAC-mediated conjugation of FGF2 with two compounds - a fluorophore carboxyrhodamine 110 or a cytotoxic drug monomethyl auristatin E (MMAE). In the case of the MMAE conjugate we improved the initial poor conjugation yield to achieve nearly 100% efficiency after extensive optimization. The detergent-based optimization approach may help overcome problems with the CuAAC reaction yield for protein modification with hydrophobic compounds, such as MMAE.
Collapse
Affiliation(s)
- K W Swiderska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - A Szlachcic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - A Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - M Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - J Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
46
|
Rodrigues TS, da Silva AG, de Oliveira LC, da Silva AM, Teixeira RR, Camargo PH. Cu2O spheres as an efficient source of catalytic Cu(I) species for performing azide-alkyne click reactions. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nat Protoc 2017; 12:279-288. [PMID: 28079880 DOI: 10.1038/nprot.2016.160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
At present, several assays that use radioisotope labeling to quantify the degradation of long-lived proteins have been developed to measure autophagic flux. Here, we describe a nonradioactive pulse-chase protocol using L-azidohomoalanine (AHA) labeling to quantify long-lived protein degradation during autophagy. AHA is used as a surrogate for L-methionine, and, when added to cultured cells grown in methionine-free medium, AHA is incorporated into proteins during de novo protein synthesis. After a chase period to remove short-lived proteins, autophagy is induced by starvation or other stimuli. Cells then undergo a 'click' reaction between the azide group of AHA and a fluorescently tagged alkyne probe. The AHA-containing proteins can then be detected by flow cytometry. This protocol is nonradioactive, sensitive and quantitative, and it is easy to perform. It is also applicable to various cell culture systems. The whole protocol is estimated to take 4-5 d to complete.
Collapse
|
48
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
49
|
Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17:626-42. [PMID: 27485899 PMCID: PMC6211636 DOI: 10.1038/nrm.2016.91] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein-protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging.
Collapse
Affiliation(s)
- Lori Buetow
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Danny T. Huang
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
50
|
van Tilburg GB, Elhebieshy AF, Ovaa H. Synthetic and semi-synthetic strategies to study ubiquitin signaling. Curr Opin Struct Biol 2016; 38:92-101. [PMID: 27315041 PMCID: PMC7125694 DOI: 10.1016/j.sbi.2016.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
Abstract
The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself.
Collapse
Affiliation(s)
- Gabriëlle Ba van Tilburg
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Angela F Elhebieshy
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|