1
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Zhang H, Li X, Hui Z, Huang S, Cai M, Shi W, Lin Y, Shen J, Sui M, Lai Q, Shao Z, Dou J, Luo X, Ge Y, Tang X. A Semisynthesis Platform for the Efficient Production and Exploration of Didemnin-Based Drugs. Angew Chem Int Ed Engl 2024; 63:e202318784. [PMID: 38291557 DOI: 10.1002/anie.202318784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.
Collapse
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xuyang Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Zhen Hui
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Shipeng Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518000, Shenzhen, China
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Wenguang Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yang Lin
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Jie Shen
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghao Sui
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, 361005, Xiamen, China
| | - Jie Dou
- College of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yun Ge
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| |
Collapse
|
3
|
Bérubé C, Guay LD, Fraser T, Lapointe V, Cardinal S, Biron É. Convenient route to Fmoc-homotyrosine via metallaphotoredox catalysis and its use in the total synthesis of anabaenopeptin cyclic peptides. Org Biomol Chem 2023; 21:9011-9020. [PMID: 37921761 DOI: 10.1039/d3ob01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Herein, we report the first solid-phase total synthesis of the natural cyclic peptide anabaenopeptin F and the use of metallaphotoredox catalysis to overcome the key challenges associated with the preparation of the non-proteinogenic amino acid homotyrosine contained in these peptides. Starting from L-homoserine, enantiopure Fmoc-protected homotyrosine was prepared in a straightforward manner by metallaphotoredox catalysis with N-Fmoc-(S)-2-amino-4-bromobutanoic acid and 4-tert-butoxybromobenzene partners. The prepared protected amino acid was used in solid-phase peptide synthesis to achieve the total synthesis of anabaenopeptin F and establish the stereochemistry of the isoleucine residue. Protease inhibition studies with the synthesized anabaenopeptin F showed inhibitory activities against carboxypeptidase B in the low nanomolar range. The high convergency of the synthetic methodologies paves the way for the rapid access to N-Fmoc-protected non-proteinogenic and unnatural amino acids and the total synthesis of complex bioactive peptides containing these amino acids.
Collapse
Affiliation(s)
- Christopher Bérubé
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Louis-David Guay
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Tommy Fraser
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - Victor Lapointe
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| | - Sébastien Cardinal
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, Canada, G5L 3A1
| | - Éric Biron
- Faculté de Pharmacie, Université Laval, Québec, Québec, Canada, G1 V 0A6.
- Laboratory of Medicinal Chemistry, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, Canada, G1 V 0A6
| |
Collapse
|
4
|
Flores-Holguín N, Salas-Leiva JS, Glossman-Mitnik D. Computational Discovery of Marine Molecules of the Cyclopeptide Family with Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1377. [PMID: 37895848 PMCID: PMC10610383 DOI: 10.3390/ph16101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Stellatolides are natural compounds that have shown promising biological activities, including antitumor, antimicrobial, and anti-inflammatory properties, making them potential candidates for drug development. Chemical Reactivity Theory (CRT) is a branch of chemistry that explains and predicts the behavior of chemical reactions based on the electronic structure of molecules. Conceptual Density Functional Theory (CDFT) and Computational Peptidology (CP) are computational approaches used to study the behavior of atoms, molecules, and peptides. In this study, we present the results of our investigation of the chemical reactivity and ADMET properties of Stellatolides A-H using a novel computational approach called Conceptual DFT-based Computational Peptidology (CDFT-CP). Our study uses CDFT and CP to predict the reactivity and stability of molecules and to understand the behavior of peptides at the molecular level. We also predict the ADMET properties of the Stellatolides A-H to provide insight into their effectiveness, potential side effects, and optimal dosage and route of administration, as well as their biological targets. This study sheds light on the potential of Stellatolides A-H as promising candidates for drug development and highlights the potential of CDFT-CP for the study of other natural compounds and peptides.
Collapse
|
5
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
6
|
Zhang Y, Huang Y, Fan J, Zhang M, Hasan A, Yi Y, Yu R, Zhou X, Ye M, Qiao X. Expanding the Scope of Targeted Metabolomics by One-pot Microscale Synthesis and Tailored Metabolite Profiling: Investigation of Bile Acid–Amino Acid Conjugates. Anal Chem 2022; 94:16596-16603. [DOI: 10.1021/acs.analchem.2c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yuxi Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jingjing Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing 100034, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
7
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Computational peptidology approach to the study of the chemical reactivity and bioactivity properties of Aspergillipeptide D, a cyclopentapeptide of marine origin. Sci Rep 2022; 12:506. [PMID: 35017576 PMCID: PMC8752680 DOI: 10.1038/s41598-021-04513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Aspergillipeptide D is a cyclic pentapeptide isolated from the marine gorgonian Melitodes squamata-derived fungus Aspergillus sp. SCSIO 41501 that it has been shown to present moderate activity against herpes virus simplex type 1 (HSV-1). Thus, this paper presents the results of a computational study of this cyclopentapeptide's chemical reactivity and bioactivity properties using a CDFT-based computational peptidology (CDFT-CP) methodology, which is derived from combining chemical reactivity descriptors derived from Conceptual Density Functional Theory (CDFT) and some Cheminformatics tools which may be used. This results in an improvement of the virtual screening procedure by a similarity search allowing the identification and validation of the known ability of the peptide to act as a possible useful drug. This was followed by an examination of the drug's bioactivity and pharmacokinetics indices in relation to the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. The findings provide further evidence of the MN12SX density functional's superiority in proving the Janak and Ionization Energy theorems using the proposed KID approach. This has proven to be beneficial in accurately predicting CDFT reactivity characteristics, which aid in the understanding of chemical reactivity. The Computational Pharmacokinetics study revealed the potential ability of Aspergillipeptide D as a therapeutic drug through the interaction with different target receptors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, 31136, Chihuahua, CHIH, Mexico
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, 07122, Spain
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, 31136, Chihuahua, CHIH, Mexico.
| |
Collapse
|
8
|
Flores‐Holguín N, Frau J, Glossman‐Mitnik D. Computational Pharmacokinetics Report, ADMET Study and Conceptual DFT-Based Estimation of the Chemical Reactivity Properties of Marine Cyclopeptides. ChemistryOpen 2021; 10:1142-1149. [PMID: 34806828 PMCID: PMC8607802 DOI: 10.1002/open.202100178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Homophymines A-E and A1-E1 are bioactive natural cyclodepsipeptides with a complex molecular architecture. These molecules could have a potential use as antimicrobial, antiviral, and anticancer substances. We have carried out a computational study of the properties of this family of marine peptides using a CDFT-based Computational Peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual Density Functional Theory (CDFT) together with cheminformatics tools. The latter can be used to estimate the associated physicochemical parameters and to improve the process of virtual screening through a similarity search. Using this approach, the ability of the peptides to behave as a potentially useful drugs can be investigated. An analysis of their bioactivity and pharmacokinetics indices related to the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) features has also been carried out.
Collapse
Affiliation(s)
- Norma Flores‐Holguín
- Laboratorio Virtual NANOCOSMOSDepartamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosMiguel de Cervantes 120, Complejo Industrial Chihuahua31136Chihuahua, ChihMexico
| | - Juan Frau
- Departament de QuímicaFacultat de CiencesUniversitat de les Illes Balears07122Pama de MallorcaSpain
| | - Daniel Glossman‐Mitnik
- Laboratorio Virtual NANOCOSMOSDepartamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosMiguel de Cervantes 120, Complejo Industrial Chihuahua31136Chihuahua, ChihMexico
| |
Collapse
|
9
|
Giesler RJ, Spaltenstein P, Jacobsen MT, Xu W, Maqueda M, Kay MS. A glutamic acid-based traceless linker to address challenging chemical protein syntheses. Org Biomol Chem 2021; 19:8821-8829. [PMID: 34585207 PMCID: PMC8604549 DOI: 10.1039/d1ob01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Collapse
Affiliation(s)
- Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Michael T Jacobsen
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Weiliang Xu
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| |
Collapse
|
10
|
An integrated molecular modeling protocol for drug screening based on conceptual density functional theory and chemoinformatics for the study of marine cyclopeptides. J Mol Model 2021; 27:314. [PMID: 34623510 DOI: 10.1007/s00894-021-04901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
An integrated molecular modeling protocol resulting from the combination of conceptual density functional theory (CDFT) chemical reactivity descriptors with several chemoinformatics tools has been used for the study of the chemical reactivity and bioactivity properties of a group of marine cyclic peptides. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides. The protocol allowed the estimation of the CDFT-based reactivity indices together with the associated physicochemical parameters that can help to identify the ability of the studied peptides to behave as potential useful drugs. This was complemented with an analysis of the bioactivity and pharmacokinetics parameters related to the ADMET (absorption, distribution, metabolism, excretion, and toxicity) features. Some examples related to the ability of the CDFT-based chemical reactivity descriptors for the prediction of the pKas of the peptides as well as their potential as AGE inhibitors are also presented.
Collapse
|
11
|
A CDFT-Based Computational Peptidology (CDFT-CP) Study of the Chemical Reactivity and Bioactivity of the Marine-Derived Alternaramide Cyclopentadepsipeptide. J CHEM-NY 2021. [DOI: 10.1155/2021/2989611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alternaramide is a cyclic pentadepsipeptide isolated from marine sources that has been shown to present weak antibiotic activity against Bacillus subtilis and Staphylococcus aureus as well as inhibitory effects on inflammatory mediator expressions. Thus, this work reports the results of a computational study of the chemical reactivity and bioactivity properties of this cyclopentadepsipeptide considering a CDFT-based computational peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual density functional theory (CDFT) together with some cheminformatics tools that can be used to estimate the associated physicochemical parameters, to improve the process of virtual screening through a similarity search, and to identify the ability of the peptide to behave as a potential useful drug, complemented with an analysis of its bioactivity and pharmacokinetics indices related to the ADMET (absorption, distribution, metabolism, excretion, and toxicity) features. The results represent a new confirmation of the superiority of the MN12SX density functional in the fulfilment of the Janak and ionization energy theorems through the proposed KID procedure. This has been useful for the accurate prediction of the CDFT reactivity descriptors that help in understanding the chemical reactivity. The computational pharmacokinetics study revealed the potential ability of alternaramide as a therapeutic drug by interacting with GPCR ligands and protease inhibitors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.
Collapse
|
12
|
Hermant Y, Palpal-Latoc D, Kovalenko N, Cameron AJ, Brimble MA, Harris PWR. The Total Chemical Synthesis and Biological Evaluation of the Cationic Antimicrobial Peptides, Laterocidine and Brevicidine. JOURNAL OF NATURAL PRODUCTS 2021; 84:2165-2174. [PMID: 34338512 DOI: 10.1021/acs.jnatprod.1c00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is a significant threat to public health systems worldwide, prompting immediate attention to develop new therapeutic agents with novel mechanisms of action. Recently, two new cationic non-ribosomal peptides (CNRPs), laterocidine and brevicidine, were discovered from Brevibacillus laterosporus through a global genome-mining approach. Both laterocidine and brevicidine exhibit potent antimicrobial activity toward Gram-negative bacteria, including difficult-to-treat Pseudonomas aeruginosa and colistin-resistant Escherichia coli, and a low risk of resistance development. Herein, we report the first total syntheses of laterocidine and brevicidine via an efficient and high-yielding combination of solid-phase synthesis and solution-phase macrolactamization. The crucial depsipeptide bond of the macrolactone rings of laterocidine and brevicidine was established on-resin between the side-chain hydroxy group of Thr9 with Alloc-Gly-OH or Alloc-Ser(tBu)-OH, respectively. A conserved glycine residue within the lactone macrocycle is exploited for the initial immobilization onto the hyper acid-labile 2-chlorotrityl chloride resin, subsequently enabling an efficient solution-phase macrocyclization to yield laterocidine and brevicidine in 36% and 10% overall yields, respectively (with respect to resin loading). A biological evaluation against both Gram-positive and Gram-negative bacteria demonstrated that synthetic laterocidine and brevicidine possessed a potent and selective antimicrobial activity toward Gram-negative bacteria, in accordance with the isolated compounds.
Collapse
Affiliation(s)
- Yann Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Dennise Palpal-Latoc
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Nadiia Kovalenko
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand
- School of Biological Sciences, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Lobo-Ruiz A, Tulla-Puche J. General Fmoc-Based Solid-Phase Synthesis of Complex Depsipeptides Circumventing Problematic Fmoc Removal. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ariadna Lobo-Ruiz
- Department of Inorganic and Organic Chemistry - Organic Chemistry Section; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry - Organic Chemistry Section; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
| |
Collapse
|
14
|
Hur J, Jang J, Sim J, Son WS, Ahn HC, Kim TS, Shin YH, Lim C, Lee S, An H, Kim SH, Oh DC, Jo EK, Jang J, Lee J, Suh YG. Conformation-Enabled Total Syntheses of Ohmyungsamycins A and B and Structural Revision of Ohmyungsamycin B. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joonseong Hur
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jaebong Jang
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Woo Sung Son
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Hee-Chul Ahn
- Department of Pharmacy; Dongguk University; Dongguk-ro 32 Ilsandong-gu, Goyang Geonggi-do 10326 Republic of Korea
| | - Tae Sung Kim
- Department of Microbiology; Chungnam National University School of Medicine; Munhwa-ro 266 Jungku Daejeon 35015 Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute; College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Changjin Lim
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hongchan An
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute; College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology; Chungnam National University School of Medicine; Munhwa-ro 266 Jungku Daejeon 35015 Republic of Korea
| | - Jichan Jang
- Division of Applied Life Science; Research Institute of Life Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| |
Collapse
|
15
|
Hur J, Jang J, Sim J, Son WS, Ahn HC, Kim TS, Shin YH, Lim C, Lee S, An H, Kim SH, Oh DC, Jo EK, Jang J, Lee J, Suh YG. Conformation-Enabled Total Syntheses of Ohmyungsamycins A and B and Structural Revision of Ohmyungsamycin B. Angew Chem Int Ed Engl 2018; 57:3069-3073. [PMID: 29380472 DOI: 10.1002/anie.201711286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/28/2017] [Indexed: 01/06/2023]
Abstract
The first total syntheses of the bioactive cyclodepsipeptides ohmyungsamycin A and B are described. Key features of our synthesis include the concise preparation of a linear cyclization precursor that consists of N-methyl amides and non-proteinogenic amino acids, and its macrolactamization from a bent conformation. The proposed structure of ohmyungsamycin B was revised based on its synthesis. The cyclic core of the ohmyungsamycins was shown to be responsible for the excellent antituberculosis activity, and ohmyungsamycin variants with truncated chains were evaluated for their biological activity.
Collapse
Affiliation(s)
- Joonseong Hur
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Woo Sung Son
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University, Dongguk-ro 32, Ilsandong-gu, Goyang, Geonggi-do, 10326, Republic of Korea
| | - Tae Sung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Munhwa-ro 266, Jungku, Daejeon, 35015, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changjin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hongchan An
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Munhwa-ro 266, Jungku, Daejeon, 35015, Republic of Korea
| | - Jichan Jang
- Division of Applied Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| |
Collapse
|
16
|
Abdel Monaim SAH, Jad YE, El-Faham A, de la Torre BG, Albericio F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg Med Chem 2017; 26:2788-2796. [PMID: 29029900 DOI: 10.1016/j.bmc.2017.09.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022]
Abstract
It looks that a new era of antimicrobial peptides (AMPs) started with the discovery of teixobactin, which is a "head to side-chain" cyclodepsipeptide. It was isolated from a soil gram-negative b-proteobacteria by means of a revolutionary technique. Since there, several groups have developed synthetic strategies for efficient synthesis of this peptide and its analogues as well. Herein, all chemistries reported as well as the biological activity of the analogues are analyzed. Finally, some inputs regarding new trends for the next generation of analogues are discussed.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Yahya E Jad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
| | - Beatriz G de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona 08028, Spain.
| |
Collapse
|
17
|
Spengler J, Barker M, Schelhorn C, García J, Macias MJ, Albericio F. The synthesis of an EDTA-like chelating peptidomimetic building block suitable for solid-phase peptide synthesis. Chem Commun (Camb) 2017; 53:2634-2636. [PMID: 28198898 DOI: 10.1039/c6cc10203d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novo trifunctional EDTA-like peptidomimetic amino acid is described. This unique building block, which is prepared in a straightforward manner from commercialized starting materials, contains three moieties: a hexadentate chelating unit similar to that present in EDTA, and amino and carboxylic groups, which facilitate its introduction into the backbone of peptides using conventional SPPS. As a proof of concept, this building block is introduced into a cyclic peptide inspired from the family of Gratisin analogues. The designed peptide contains the amino acid analogue in one of the turns, and chelates Ca2+ with nanomolar affinity at physiological pH.
Collapse
Affiliation(s)
- Jan Spengler
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, E-08028, Spain and Universidad Regional Amazónica IKIAM, Kilómetro 7 Vía Muyuna, Tena, Napo, Ecuador.
| | - Michael Barker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain and Erasmus+ funding through the University of Glasgow, College of Science and Engineering, Faculty of Chemistry Joseph Black Building, Glasgow G12 8QQ, Scotland, UK
| | - Constanze Schelhorn
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain and ICREA, Passeig Lluís Companys 23, E-08010-Barcelona, Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona E-08028, Spain and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, E-08028, Spain and Department of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain and School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|