1
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
3
|
Niwa R, Matsumoto T, Liu AY, Kawato M, Kondo T, Tsukita K, Gee P, Inoue H, Maurissen TL, Woltjen K. Enrichment of Allelic Editing Outcomes by Prime Editing in Induced Pluripotent Stem Cells. CRISPR J 2024; 7:293-304. [PMID: 39436282 DOI: 10.1089/crispr.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Gene editing in human induced pluripotent stem (iPS) cells with programmable nucleases facilitates reliable disease models, but methods using double-strand break repair often produce random on-target by-products. Prime editing (PE) combines Cas9 nickase with reverse transcriptase and PE guide RNA (pegRNA) encoding a repair template to reduce by-products. We implemented a GMP-compatible protocol for transfecting Cas9- or PE-2A-mCherry plasmids to track and fractionate human iPS cells based on PE expression level. We compared the editing outcomes of Cas9- and PE-based methods in a GFP-to-BFP conversion assay at the HEK3 benchmark locus and at the APOE Alzheimer's risk locus, revealing superior precision of PE at high expression levels. Moreover, sorting cells for PE expression level influenced allelic editing outcomes at the target loci. We expect that our findings will aid in the creation of gene-edited human iPS cells with intentional heterozygous and homozygous genotypes.
Collapse
Affiliation(s)
- Ryo Niwa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Matsumoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Alexander Y Liu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Maki Kawato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Medical-Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Peter Gee
- MaxCyte Inc., Rockville, Maryland, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Medical-Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Thomas L Maurissen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Povolo L, Tian W, Vakhrushev SY, Halim A. Global View of Domain-Specific O-Linked Mannose Glycosylation in Glycoengineered Cells. Mol Cell Proteomics 2024; 23:100796. [PMID: 38851451 PMCID: PMC11292533 DOI: 10.1016/j.mcpro.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.
Collapse
Affiliation(s)
- Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Sahab S, Tibbits J, Spangenberg G, Mason J, Hayden M. Fluorescence-activated protoplast sorting for crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:605-606. [PMID: 38199831 DOI: 10.1016/j.tplants.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia.
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - German Spangenberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - John Mason
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
6
|
Puig-Blasco L, Piotrowski KB, Michaelsen SR, Bager NS, Areškevičiūtiė A, Thorseth ML, Sun XF, Keller UAD, Kristensen BW, Madsen DH, Gnosa SP, Kveiborg M. Loss of cancer cell-derived ADAM15 alters the tumor microenvironment in colorectal tumors. Int J Cancer 2023; 153:2068-2081. [PMID: 37602921 DOI: 10.1002/ijc.34695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Tumor progression and response to treatment are highly affected by interactions between cancer cells and the tumor microenvironment (TME). Many of the soluble factors and signaling receptors involved in this crosstalk are shed by a disintegrin and metalloproteinases (ADAMs). Upregulation of ADAM15 has been linked to worse survival in cancer patients and a tumor-promoting function both in vitro and in murine cancer models. Although ADAM15 has been involved in cell-cell and cell-extracellular matrix interactions, its role in the crosstalk between cancer cells and the TME in vivo remains unexplored. Therefore, we aimed to understand how ADAM15 regulates the cell composition of the TME and how it affects tumor progression. Here, we showed an upregulation of ADAM15 in tumor tissues from rectal cancer patients. Subcutaneous injection of wildtype and ADAM15-knockout CT26 colon cancer cells in syngeneic mice confirmed the protumorigenic role of ADAM15. Profiling of tumors revealed higher immune cell infiltration and cancer cell apoptosis in the ADAM15-deficient tumors. Specifically, loss of ADAM15 led to a reduced number of granulocytes and higher infiltration of antigen-presenting cells, including dendritic cells and macrophages, as well as more T cells. Using in vitro assays, we confirmed the regulatory effect of ADAM15 on macrophage migration and identified ADAM15-derived CYR61 as a potential molecular mediator of this effect. Based on these findings, we speculate that targeting ADAM15 could increase the infiltration of immune cells in colorectal tumors, which is a prerequisite for effective immunotherapy.
Collapse
Affiliation(s)
- Laia Puig-Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof B Piotrowski
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Signe R Michaelsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai S Bager
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtiė
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bjarne W Kristensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Copenhagen, Denmark
| | - Sebastian P Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Minerva Imaging, Ølstykke, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Paek HJ, Li ZY, Quan BH, Yin XJ. Application of PCR-RFLP for quick identification of MSTN mutants in MSTN mutant pig breeding. Anim Biotechnol 2023; 34:2231-2239. [PMID: 35697304 DOI: 10.1080/10495398.2022.2083628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Knockout of the MSTN gene is linked to the enlarged tongue, and it causes suckling difficulty in animals. The suckling difficulty has a severe effect on animal mortality. Thus, special care was required to ensure their survivability. Here, it is critical to promptly ascertain the genotype of all pigs after birth. The main objective of the present study was to develop the restriction enzyme-mediated PCR-RFLP assay for MSTN mutant pig genotyping. To accomplish this, conserved oligonucleotide primer and restriction site were deduced according to the mutated sequence of the MSTN mutant pigs. PCR amplification yielded a 176 bp band for all homozygous MSTN mutant (MSTN-/-), heterozygous MSTN mutant (MSTN+/-) and wild-type (WT) pigs. However, MSTN+/- samples produced two fragments with 176 and 87 bp, and WT samples produced one fragment with 87 bp after being digested by BstNI. MSTN-/- samples were not digested by BstNI and yielded a 176 bp band. Thus, we were able to determine the genotype of all pigs using BstNI restriction enzyme-mediated PCR-RFLP method. Overall, the present study reported a simple and fast PCR-RFLP genotyping method for MSTN mutant pig breeding. The present study may contribute to the establishment of commercial breeding systems and the production of double muscle pigs.
Collapse
Affiliation(s)
- Hyo-Jin Paek
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
8
|
Rømer TB, Khoder-Agha F, Aasted MKM, de Haan N, Horn S, Dylander A, Zhang T, Pallesen EMH, Dabelsteen S, Wuhrer M, Høgsbro CF, Thomsen EA, Mikkelsen JG, Wandall HH. CRISPR-screen identifies ZIP9 and dysregulated Zn2+ homeostasis as a cause of cancer-associated changes in glycosylation. Glycobiology 2023; 33:700-714. [PMID: 36648436 PMCID: PMC10627246 DOI: 10.1093/glycob/cwad003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION In epithelial cancers, truncated O-glycans, such as the Thomson-nouveau antigen (Tn) and its sialylated form (STn), are upregulated on the cell surface and associated with poor prognosis and immunological escape. Recent studies have shown that these carbohydrate epitopes facilitate cancer development and can be targeted therapeutically; however, the mechanism underpinning their expression remains unclear. METHODS To identify genes directly influencing the expression of cancer-associated O-glycans, we conducted an unbiased, positive-selection, whole-genome CRISPR knockout-screen using monoclonal antibodies against Tn and STn. RESULTS AND CONCLUSIONS We show that knockout of the Zn2+-transporter SLC39A9 (ZIP9), alongside the well-described targets C1GALT1 (C1GalT1) and its molecular chaperone, C1GALT1C1 (COSMC), results in surface-expression of cancer-associated O-glycans. No other gene perturbations were found to reliably induce O-glycan truncation. We furthermore show that ZIP9 knockout affects N-linked glycosylation, resulting in upregulation of oligo-mannose, hybrid-type, and α2,6-sialylated structures as well as downregulation of tri- and tetra-antennary structures. Finally, we demonstrate that accumulation of Zn2+ in the secretory pathway coincides with cell-surface presentation of truncated O-glycans in cancer tissue, and that over-expression of COSMC mitigates such changes. Collectively, the findings show that dysregulation of ZIP9 and Zn2+ induces cancer-like glycosylation on the cell surface by affecting the glycosylation machinery.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Koed Møller Aasted
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sabrina Horn
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - August Dylander
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Emil Marek Heymans Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Christine Flodgaard Høgsbro
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Piotrowski KB, Blasco LP, Samsøe-Petersen J, Eefsen RL, Illemann M, Oria VO, Campos KIA, Lopresti AM, Albrechtsen R, Sørensen CS, Sun XF, Kveiborg M, Gnosa S. ADAM12 expression is upregulated in cancer cells upon radiation and constitutes a prognostic factor in rectal cancer patients following radiotherapy. Cancer Gene Ther 2023; 30:1369-1381. [PMID: 37495855 PMCID: PMC10581903 DOI: 10.1038/s41417-023-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.
Collapse
Affiliation(s)
| | - Laia Puig Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Illemann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Alexia Mélanie Lopresti
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Sebastian Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Minerva Imaging, Lyshøjvej 21, Ølstykke, Denmark.
| |
Collapse
|
10
|
Costa AF, Senra E, Faria-Ramos I, Teixeira A, Morais J, Pacheco M, Reis CA, Gomes C. ST3GalIV drives SLeX biosynthesis in gastrointestinal cancer cells and associates with cancer cell motility. Glycoconj J 2023; 40:421-433. [PMID: 37074623 PMCID: PMC10335957 DOI: 10.1007/s10719-023-10113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
Expression of sialyl Lewis X (SLeX) is a well-documented event during malignant transformation of cancer cells, and largely associates with their invasive and metastatic properties. Glycoproteins and glycolipids are the main carriers of SLeX, whose biosynthesis is known to be performed by different glycosyltransferases, namely by the family of β-galactoside-α2,3-sialyltransferases (ST3Gals). In this study, we sought to elucidate the role of ST3GalIV in the biosynthesis of SLeX and in malignant properties of gastrointestinal (GI) cancer cells. By immunofluorescent screening, we selected SLeX-positive GI cancer cell lines and silenced ST3GalIV expression via CRISPR/Cas9. Flow cytometry, immunofluorescence and western blot analysis showed that ST3GalIV KO efficiently impaired SLeX expression in most cancer cell lines, with the exception of the colon cancer cell line LS174T. The impact of ST3GalIV KO in the biosynthesis of SLeX isomer SLeA and non sialylated Lewis X and A were also evaluated and overall, ST3GalIV KO led to a decreased expression of SLeA and an increased expression in both LeX and LeA. In addition, the abrogation of SLeX on GI cancer cells led to a reduction in cell motility. Furthermore, ST3GalVI KO was performed in LS174T ST3GalIV KO cells, resulting in the complete abolishment of SLeX expression and consequent reduced motility capacity of those cells. Overall, these findings portray ST3GalIV as the main, but not the only, enzyme driving the biosynthesis of SLeX in GI cancer cells, with a functional impact on cancer cell motility.
Collapse
Affiliation(s)
- Ana F Costa
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Emanuel Senra
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| | - João Morais
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Mariana Pacheco
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Catarina Gomes
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Cuevas-Ocaña S, Yang JY, Aushev M, Schlossmacher G, Bear CE, Hannan NRF, Perkins ND, Rossant J, Wong AP, Gray MA. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10266. [PMID: 37373413 PMCID: PMC10299534 DOI: 10.3390/ijms241210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jin Ye Yang
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Magomet Aushev
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Biomedicine West Wing, Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, UK;
| | - George Schlossmacher
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Christine E. Bear
- Programme in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Nicholas R. F. Hannan
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Neil D. Perkins
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Janet Rossant
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Amy P. Wong
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Michael A. Gray
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| |
Collapse
|
12
|
Glinšek K, Bozovičar K, Bratkovič T. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering. Int J Mol Sci 2023; 24:ijms24098144. [PMID: 37175850 PMCID: PMC10179654 DOI: 10.3390/ijms24098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression. The review highlights the potential of CRISPR technology in CHO cell line genome editing and epigenetic engineering for the more efficient and cost-effective development of biopharmaceuticals while ensuring the safety and quality of the final product.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, Dmytriyeva O, Alves F, Napp J, Sandelin A, Pedersen SF. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int J Cancer 2023; 152:1210-1225. [PMID: 36408933 PMCID: PMC10108304 DOI: 10.1002/ijc.34367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-β (TGFβ) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFβI increased growth of WT control spheroids, and inhibition of TGFβ signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.
Collapse
Affiliation(s)
- Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoming Chen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakub Mitrega
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Frauke Alves
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Napp
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, Miller RL, Chanda SK, Boltje TJ, Schjoldager KT, Vakhrushev SY, Halim A, Esko JD, Carlin AF, Hurtado-Guerrero R, Weigert R, Clausen H, Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat Commun 2023; 14:948. [PMID: 36804936 PMCID: PMC9941569 DOI: 10.1038/s41467-023-36598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Thomas Mandel Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Johan F A Pijnenborg
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Carlin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
15
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
16
|
Marques C, Poças J, Gomes C, Faria-Ramos I, Reis CA, Vivès RR, Magalhães A. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates Heparan Sulfate biosynthesis and shapes gastric cancer cell motility and invasion. J Biol Chem 2022; 298:102546. [PMID: 36181793 DOI: 10.1016/j.jbc.2022.102546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and Extracellular Matrix (ECM). By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-ECM crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either Exostosin Like glycosyltransferase 2 (EXTL2) or EXTL3, and revealed their regulatory roles in both Heparan Sulfate (HS) and Chondroitin Sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that knock-out of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell-surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression, and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.
Collapse
Affiliation(s)
- Catarina Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Juliana Poças
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
17
|
Van Coillie J, Schulz MA, Bentlage AEH, de Haan N, Ye Z, Geerdes DM, van Esch WJE, Hafkenscheid L, Miller RL, Narimatsu Y, Vakhrushev SY, Yang Z, Vidarsson G, Clausen H. Role of N-Glycosylation in FcγRIIIa interaction with IgG. Front Immunol 2022; 13:987151. [PMID: 36189205 PMCID: PMC9524020 DOI: 10.3389/fimmu.2022.987151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.
Collapse
Affiliation(s)
- Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Morten A. Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arthur E. H. Bentlage
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lise Hafkenscheid
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
van Senten JR, Møller TC, Von Moo E, Seiersen SD, Bräuner-Osborne H. Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C isozymes are involved in mGlu 5a receptor internalization. J Biol Chem 2022; 298:102466. [PMID: 36087841 PMCID: PMC9530845 DOI: 10.1016/j.jbc.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
The internalization of G protein-coupled receptors (GPCRs) can be regulated by protein kinase C (PKC). However, most tools available to study the contribution of PKC isozymes have considerable limitations, including a lack of selectivity. In this study, we generated and characterized human embryonic kidney 293A (HEK293A) cell lines devoid of conventional or novel PKC isozymes (ΔcPKC and ΔnPKC) and employ these to investigate the contribution of PKC isozymes in the internalization of the metabotropic glutamate receptor 5 (mGlu5). Direct activation of PKC and mutation of rat mGlu5a Ser901, a PKC-dependent phosphorylation site in the receptor C-tail, both showed that PKC isozymes facilitate approximately 40% of the receptor internalization. Nonetheless, we determined that mGlu5a internalization was not altered upon the loss of cPKCs or nPKCs. This indicates that isozymes from both classes are involved, compensate for the absence of the other class, and thus fulfill dispensable functions. Additionally, using the Gαq/11 inhibitor YM-254890, GPCR kinase 2 and 3 (GRK2 and GRK3) knock-out cells and a receptor containing a mutated putative adaptor protein complex 2 (AP-2) interaction motif, we demonstrate that internalization of rat mGlu5a is mediated by Gαq/11 proteins (77% of the response), GRK2 (27%) and AP-2 (29%), but not GRK3. Our PKC knock-out cell lines expand the repertoire of knock-out HEK293A cell lines available to research GPCR pharmacology. Moreover, since pharmacological tools to study PKC isozymes generally lack specificity and/or potency, we present the PKC knock-out cell lines as more specific research tools to investigate PKC-mediated aspects of cell biology.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
20
|
Zhang L, Li W, Liu Z, Liu Y, Liu Z, Gu Y, He L, Zhou B, Li T, Chao T, Liang Y, Lu L. sgRNA Knock-in Mouse Provides an Alternative Approach for In Vivo Genetic Modification. Front Cell Dev Biol 2022; 9:769673. [PMID: 35118065 PMCID: PMC8804526 DOI: 10.3389/fcell.2021.769673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
Functional genomics in a mammalian model such as mice is fundamental for understanding human biology. The CRISPR/Cas9 system dramatically changed the tempo of obtaining genetic mouse models due to high efficiency. However, experimental evidence for the establishment of sgRNA knock-in animals and analyses of their value in functional genomics are still not sufficient, particularly in mammalian models. In this study, we demonstrate that the establishment of sgRNA knock-in mice is feasible, and more importantly, crosses between sgRNA knock-in mice and the Cas9 constitutively expressing mice result in complete deletion of the target gene. Such sgRNA knock-in provides an alternative approach for in vivo genetic modification and can be useful in multiple circumstances, such as maintenance of genetically modified animals, which are difficult to breed as homozygotes, and cross of such mice to diverse genomic backgrounds to obtain genetically modified animals.
Collapse
Affiliation(s)
- Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Wushan Li
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhuangzhuang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yang Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Le He
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Tianhan Li
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Tianzhu Chao
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
21
|
Sharma SK, Gupta OP, Pathaw N, Sharma D, Maibam A, Sharma P, Sanasam J, Karkute SG, Kumar S, Bhattacharjee B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front Nutr 2022; 8:751512. [PMID: 34977113 PMCID: PMC8716883 DOI: 10.3389/fnut.2021.751512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
Plant viruses pose a serious threat to agricultural production systems worldwide. The world's population is expected to reach the 10-billion mark by 2057. Under the scenario of declining cultivable land and challenges posed by rapidly emerging and re-emerging plant pathogens, conventional strategies could not accomplish the target of keeping pace with increasing global food demand. Gene-editing techniques have recently come up as promising options to enable precise changes in genomes with greater efficiency to achieve the target of higher crop productivity. Of genome engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins have gained much popularity, owing to their simplicity, reproducibility, and applicability in a wide range of species. Also, the application of different Cas proteins, such as Cas12a, Cas13a, and Cas9 nucleases, has enabled the development of more robust strategies for the engineering of antiviral mechanisms in many plant species. Recent studies have revealed the use of various CRISPR-Cas systems to either directly target a viral gene or modify a host genome to develop viral resistance in plants. This review provides a comprehensive record of the use of the CRISPR-Cas system in the development of antiviral resistance in plants and discusses its applications in the overall enhancement of productivity and nutritional landscape of cultivated plant species. Furthermore, the utility of this technique for the detection of various plant viruses could enable affordable and precise in-field or on-site detection. The futuristic potential of CRISPR-Cas technologies and possible challenges with their use and application are highlighted. Finally, the future of CRISPR-Cas in sustainable management of viral diseases, and its practical utility and regulatory guidelines in different parts of the globe are discussed systematically.
Collapse
Affiliation(s)
| | - Om Prakash Gupta
- Division of Quality & Basic Science, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Albert Maibam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Parul Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jyotsana Sanasam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sandeep Kumar
- Department of Plant Pathology, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | | |
Collapse
|
22
|
Sun L, Konstantinidi A, Ye Z, Nason R, Zhang Y, Büll C, Kahl-Knutson B, Hansen L, Leffler H, Vakhrushev SY, Yang Z, Clausen H, Narimatsu Y. Installation of O-glycan sulfation capacities in human HEK293 cells for display of sulfated mucins. J Biol Chem 2021; 298:101382. [PMID: 34954141 PMCID: PMC8789585 DOI: 10.1016/j.jbc.2021.101382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The human genome contains at least 35 genes that encode Golgi sulfotransferases that function in the secretory pathway, where they are involved in decorating glycosaminoglycans, glycolipids, and glycoproteins with sulfate groups. Although a number of important interactions by proteins such as selectins, galectins, and sialic acid–binding immunoglobulin-like lectins are thought to mainly rely on sulfated O-glycans, our insight into the sulfotransferases that modify these glycoproteins, and in particular GalNAc-type O-glycoproteins, is limited. Moreover, sulfated mucins appear to accumulate in respiratory diseases, arthritis, and cancer. To explore further the genetic and biosynthetic regulation of sulfated O-glycans, here we expanded a cell-based glycan array in the human embryonic kidney 293 (HEK293) cell line with sulfation capacities. We stably engineered O-glycan sulfation capacities in HEK293 cells by site-directed knockin of sulfotransferase genes in combination with knockout of genes to eliminate endogenous O-glycan branching (core2 synthase gene GCNT1) and/or sialylation capacities in order to provide simplified substrates (core1 Galβ1–3GalNAcα1–O-Ser/Thr) for the introduced sulfotransferases. Expression of the galactose 3-O-sulfotransferase 2 in HEK293 cells resulted in sulfation of core1 and core2 O-glycans, whereas expression of galactose 3-O-sulfotransferase 4 resulted in sulfation of core1 only. We used the engineered cell library to dissect the binding specificity of galectin-4 and confirmed binding to the 3-O-sulfo-core1 O-glycan. This is a first step toward expanding the emerging cell-based glycan arrays with the important sulfation modification for display and production of glycoconjugates with sulfated O-glycans.
Collapse
Affiliation(s)
- Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Medical College of Yan'an University, Yan'an University, Yan'an, 716000, Shaanxi Province, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yuecheng Zhang
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Jan Waldenströms gata 25, 205 06 Malmö, Sweden
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Barbro Kahl-Knutson
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan28, 221 84 Lund, Sweden
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
23
|
Wimmer T, Bonthu D, Moeschl V, Kleekamp P, Thiel C, Lytvynchuk L, Ellinwood M, Stieger K. A Bioluminescence Resonance Energy Transfer-Based Reporter System: Characterization and Applications. CRISPR J 2021; 4:884-895. [PMID: 34847743 DOI: 10.1089/crispr.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome editing strategies and DNA repair research need powerful analytical tools. We generated a bioluminescence resonance energy transfer (BRET)-based reporter for the quantification of indel frequencies induced by DNA repair. The BRET reporter, expressed as a single molecule, consists of a mutated Renilla reniformis luciferase domain and a GFP2 domain separated by a shuttle-cloning box for the integration of any given endonuclease target sequence. The luciferase activity acts both as energy donor and as the internal standard, while the loss of GFP2 fluorescence acts as a reporter for the out-of-frame sequence alterations that result from the DNA repair via the non-homologous end joining/microhomology-mediated end joining DNA repair pathways of the endonuclease-mediated DNA double-strand break. This results in a decrease of the fluorescence/luminescence ratio. Employing this reporter in different experimental scenarios, using different cell lines and diseases targeted, we quantified the influence of both protein knockdown of DNA repair pathways as well as guide RNA mismatches on CRISPR-mediated nuclease activity and subsequent repair based on mutagenic repair on the reporter. In conclusion, we demonstrated this BRET-based reporter to be a robust and sensitive analytical tool for assessment of variety of different genome editing-based approaches.
Collapse
Affiliation(s)
- Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dileep Bonthu
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vincent Moeschl
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Philip Kleekamp
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Thiel
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Rahman ML, Hyodo T, Karnan S, Ota A, Hasan MN, Mihara Y, Wahiduzzaman M, Tsuzuki S, Hosokawa Y, Konishi H. Experimental strategies to achieve efficient targeted knock-in via tandem paired nicking. Sci Rep 2021; 11:22627. [PMID: 34799652 PMCID: PMC8604973 DOI: 10.1038/s41598-021-01978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Tandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700-2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.
Collapse
Affiliation(s)
- Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Yuko Mihara
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
- Bangladesh Medical Research Council, Dhaka, 1212, Bangladesh
- Eukaryotic Gene Expression and Function (EuGEF) Research Group, Chattogram, 4000, Bangladesh
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Building #2, Room 362, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
25
|
Shen Y, Jiang L, Iyer VS, Raposo B, Dubnovitsky A, Boddul SV, Kasza Z, Wermeling F. A rapid CRISPR competitive assay for in vitro and in vivo discovery of potential drug targets affecting the hematopoietic system. Comput Struct Biotechnol J 2021; 19:5360-5370. [PMID: 34745454 PMCID: PMC8531760 DOI: 10.1016/j.csbj.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
CRISPR/Cas9 can be used as an experimental tool to inactivate genes in cells. However, a CRISPR-targeted cell population will not show a uniform genotype of the targeted gene. Instead, a mix of genotypes is generated - from wild type to different forms of insertions and deletions. Such mixed genotypes complicate analysis of the role of the targeted gene in the studied cell population. Here, we present a rapid and universal experimental approach to functionally analyze a CRISPR-targeted cell population that does not involve generating clonal lines. As a simple readout, we leverage the CRISPR-induced genetic heterogeneity and use sequencing to identify how different genotypes are enriched or depleted in relation to the studied cellular behavior or phenotype. The approach uses standard PCR, Sanger sequencing, and a simple sequence deconvoluting software, enabling laboratories without specific in-depth experience to perform these experiments. As proof of principle, we present examples studying various aspects related to hematopoietic cells (T cell development in vivo and activation in vitro, differentiation of macrophages and dendritic cells, as well as a leukemia-like phenotype induced by overexpressing a proto-oncogene). In conclusion, we present a rapid experimental approach to identify potential drug targets related to mature immune cells, as well as normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Yunbing Shen
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Long Jiang
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Vaishnavi Srinivasan Iyer
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Bruno Raposo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Anatoly Dubnovitsky
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sanjaykumar V. Boddul
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Zsolt Kasza
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Jung SB, Lee CY, Lee KH, Heo K, Choi SH. A cleavage-based surrogate reporter for the evaluation of CRISPR-Cas9 cleavage efficiency. Nucleic Acids Res 2021; 49:e85. [PMID: 34086942 PMCID: PMC8421217 DOI: 10.1093/nar/gkab467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
CRISPR-Cas9 is a powerful tool for genome engineering, but its efficiency largely depends on guide RNA (gRNA). There are multiple methods available to evaluate the efficiency of gRNAs, including the T7E1 assay, surveyor nuclease assay, deep sequencing, and surrogate reporter systems. In the present study, we developed a cleavage-based surrogate that we have named the LacI-reporter to evaluate gRNA cleavage efficiency. The LacI repressor, under the control of the EF-1α promoter, represses luciferase or EGFP reporter expression by binding to the lac operator. Upon CRISPR-Cas9 cleavage at a target site located between the EF-1α promoter and the lacI gene, repressor expression is disrupted, thereby triggering luciferase or EGFP expression. Using this system, we can quantitate gRNA cleavage efficiency by assessing luciferase activity or EGFP expression. We found a strong positive correlation between the cleavage efficiency of gRNAs measured using this reporter and mutation frequency, measured using surveyor and deep sequencing. The genome-editing efficiency of gRNAs was validated in human liver organoids. Our LacI-reporter system provides a useful tool to select efficient gRNAs for genome editing.
Collapse
Affiliation(s)
- Soo Bin Jung
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Chae young Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Kwang-Ho Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, 46033, Republic of Korea
| |
Collapse
|
27
|
Mao Y, Wang S, Zhao Y, Konstantinidi A, Sun L, Ye Z, Vakhrushev SY. Systematic Evaluation of Fragmentation Methods for Unlabeled and Isobaric Mass Tag-Labeled O-Glycopeptides. Anal Chem 2021; 93:11167-11175. [PMID: 34347445 DOI: 10.1021/acs.analchem.1c01696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dissecting site-specific functions of O-glycosylation requires simultaneous identification and quantification of differentially expressed O-glycopeptides by mass spectrometry. However, different dissociation methods have not been systematically compared in their performance in terms of identification, glycosite localization, and quantification with isobaric labeling. Here, we conducted this comparison on highly enriched unlabeled O-glycopeptides with higher-energy collision dissociation (HCD), electron-transfer/collision-induced dissociation (ETciD), and electron transfer/higher-energy collisional dissociation (EThcD), concluding that ETciD and EThcD with optimal supplemental activation resulted in superior identification of glycopeptides and unambiguous site localizations than HCD in a database search by Sequest HT. We later described a pseudo-EThcD strategy that in silico concatenates the electron transfer dissociation spectrum with the paired HCD spectrum acquired sequentially for the same precursor ions, which combines the identification advantage of ETciD/EThcD with the superior reporter ion quality of HCD. We demonstrated its improvements in identification and quantification of isobaric mass tag-labeled O-glycopeptides and showcased the discovery of the specific glycosites of GalNAc transferase 11 (GALNT11) in HepG2 cells.
Collapse
Affiliation(s)
- Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, China
| | - Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
28
|
Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2021; 10:1347. [PMID: 34371550 PMCID: PMC8309169 DOI: 10.3390/plants10071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
Fruit trees provide essential nutrients to humans by contributing to major agricultural outputs and economic growth globally. However, major constraints to sustainable agricultural productivity are the uncontrolled proliferation of the population, and biotic and abiotic stresses. Tree mutation breeding has been substantially improved using different physical and chemical mutagens. Nonetheless, tree plant breeding has certain crucial bottlenecks including a long life cycle, ploidy level, occurrence of sequence polymorphisms, nature of parthenocarpic fruit development and linkage. Genetic engineering of trees has focused on boosting quality traits such as productivity, wood quality, and resistance to biotic and abiotic stresses. Recent technological advances in genome editing provide a unique opportunity for the genetic improvement of woody plants. This review examines application of the CRISPR-Cas system to reduce disease susceptibility, alter plant architecture, enhance fruit quality, and improve yields. Examples are discussed of the contemporary CRISPR-Cas system to engineer easily scorable PDS genes, modify lignin, and to alter the flowering onset, fertility, tree architecture and certain biotic stresses.
Collapse
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - S. Mohan Jain
- Department of Agricultural Sciences, PL-27, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
29
|
Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, Mandel U, Joshi HJ, Dworkin LA, Hansen L, David L, Iverson TM, Bensing BA, Sullam PM, Varki A, Vries ED, de Haan CAM, Vincentelli R, Henrissat B, Vakhrushev SY, Clausen H, Narimatsu Y. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun 2021; 12:4070. [PMID: 34210959 PMCID: PMC8249670 DOI: 10.1038/s41467-021-24366-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells. Availability of defined mucin TR O-glycodomains advances experimental studies into the versatile role of mucins at the interface with pathogenic microorganisms and the microbiome, and sparks new strategies for molecular dissection of specific roles of adhesins, glycoside hydrolases, glycopeptidases, viruses and other interactions with mucin TRs as highlighted by examples.
Collapse
Affiliation(s)
- Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wenjuan Du
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonor David
- Institute of Molecular Pathology and Immunology of the University of Porto/I3S, Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal
| | - Tina M Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Ajit Varki
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Erik de Vries
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
30
|
Xiang X, Zhao X, Pan X, Dong Z, Yu J, Li S, Liang X, Han P, Qu K, Jensen JB, Farup J, Wang F, Petersen TS, Bolund L, Teng H, Lin L, Luo Y. Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:403-415. [PMID: 33868784 PMCID: PMC8039775 DOI: 10.1016/j.omtn.2021.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
CRISPR gene therapy is one promising approach for treatment of Duchenne muscular dystrophy (DMD), which is caused by a large spectrum of mutations in the dystrophin gene. To broaden CRISPR gene editing strategies for DMD treatment, we report the efficient restoration of dystrophin expression in induced myotubes by SpCas9 and dual guide RNAs (gRNAs). We first sequenced 32 deletion junctions generated by this editing method and revealed that non-homologous blunt-end joining represents the major indel type. Based on this predictive repair outcome, efficient in-frame deletion of a part of DMD exon 51 was achieved in HEK293T cells with plasmids expressing SpCas9 and dual gRNAs. More importantly, we further corrected a frameshift mutation in human DMD (exon45del) fibroblasts with SpCas9-dual gRNA ribonucleoproteins. The edited DMD fibroblasts were transdifferentiated into myotubes by lentiviral-mediated overexpression of a human MYOD transcription factor. Restoration of DMD expression at both the mRNA and protein levels was confirmed in the induced myotubes. With further development, the combination of SpCas9-dual gRNA-corrected DMD patient fibroblasts and transdifferentiation may provide a valuable therapeutic strategy for DMD.
Collapse
Affiliation(s)
- Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Xiaoying Zhao
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zhanying Dong
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Jiaying Yu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Siyuan Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Jonas Brorson Jensen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | | | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| |
Collapse
|
31
|
Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, Moons SJ, Yang Z, Arbitman S, Fernandes SM, Furukawa S, McBride R, Nycholat CM, Adema GJ, Paulson JC, Schnaar RL, Boltje TJ, Clausen H, Narimatsu Y. Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc Natl Acad Sci U S A 2021; 118:e2026102118. [PMID: 33893239 PMCID: PMC8092401 DOI: 10.1073/pnas.2026102118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galβ1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.
Collapse
Affiliation(s)
- Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven Arbitman
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steve M Fernandes
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Gosse J Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ronald L Schnaar
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- GlycoDisplay ApS, Copenhagen, 2100 N, Denmark
| |
Collapse
|
32
|
Vitelli M, Budman H, Pritzker M, Tamer M. Applications of flow cytometry sorting in the pharmaceutical industry: A review. Biotechnol Prog 2021; 37:e3146. [PMID: 33749147 DOI: 10.1002/btpr.3146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Melih Tamer
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, Canada
| |
Collapse
|
33
|
The Extracellular Small Leucine-Rich Proteoglycan Biglycan Is a Key Player in Gastric Cancer Aggressiveness. Cancers (Basel) 2021; 13:cancers13061330. [PMID: 33809543 PMCID: PMC8001774 DOI: 10.3390/cancers13061330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Approximately 80% of gastric cancer patients are diagnosed at advanced stages with an average five-year survival rate of less than 30%. Alterations of the extracellular matrix proteins have been largely demonstrated in all steps of the disease. Thus, studies for the identification of novel prognostic biomarkers and efficient therapeutic strategies are urgently needed. In this study, we report the oncogenic role of biglycan, an extracellular proteoglycan, in gastric carcinogenesis. Biglycan was able to modulate gastric cancer aggressive features as cell survival, migration, and angiogenesis. Additionally, high levels of biglycan expression correlates with tumorigenic gene signatures and they are associated with poor patient prognosis in advanced stages of the disease. These results point biglycan as a key player in gastric cancer aggressiveness and further studies should be done to investigate the therapeutic potential of biglycan to tackle gastric cancer progression. Abstract Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.
Collapse
|
34
|
Kamali E, Rahbarizadeh F, Hojati Z, Frödin M. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells. BMC Biotechnol 2021; 21:9. [PMID: 33514392 PMCID: PMC7844963 DOI: 10.1186/s12896-020-00665-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background The ability of CRISPR/Cas9 to mutate any desired genomic locus is being increasingly explored in the emerging area of cancer immunotherapy. In this respect, current efforts are mostly focused on the use of autologous (i.e. patient-derived) T cells. The autologous approach, however, has drawbacks in terms of manufacturing time, cost, feasibility and scalability that can affect therapeutic outcome or wider clinical application. The use of allogeneic T cells from healthy donors may overcome these limitations. For this strategy to work, the endogenous T cell receptor (TCR) needs to be knocked out in order to reduce off-tumor, graft-versus-host-disease (GvHD). Furthermore, CD52 may be knocked out in the donor T cells, since this leaves them resistant to the commonly used anti-CD52 monoclonal antibody lymphodepletion regimen aiming to suppress rejection of the infused T cells by the recipient. Despite the great prospect, genetic manipulation of human T cells remains challenging, in particular how to deliver the engineering reagents: virus-mediated delivery entails the inherent risk of altering cancer gene expression by the genomically integrated CRISPR/Cas9. This is avoided by delivery of CRISPR/Cas9 as ribonucleoproteins, which, however, are fragile and technically demanding to produce. Electroporation of CRISPR/Cas9 expression plasmids would bypass the above issues, as this approach is simple, the reagents are robust and easily produced and delivery is transient. Results Here, we tested knockout of either TCR or CD52 in human primary T cells, using electroporation of CRISPR/Cas9 plasmids. After validating the CRISPR/Cas9 constructs in human 293 T cells by Tracking of Indels by Decomposition (TIDE) and Indel Detection by Amplicon Analysis (IDAA) on-target genomic analysis, we evaluated their efficacy in primary T cells. Four days after electroporation with the constructs, genomic analysis revealed a knockout rate of 12–14% for the two genes, which translated into 7–8% of cells showing complete loss of surface expression of TCR and CD52 proteins, as determined by flow cytometry analysis. Conclusion Our results demonstrate that genomic knockout by electroporation of plasmids encoding CRISPR/Cas9 is technically feasible in human primary T cells, albeit at low efficiency.
Collapse
Affiliation(s)
- Elahe Kamali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zohreh Hojati
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Schweickert PG, Wang N, Sandefur SL, Lloyd ME, Konieczny SF, Frye CC, Cheng Z. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction. Biotechnol J 2021; 16:e2000308. [PMID: 33369118 DOI: 10.1002/biot.202000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022]
Abstract
Most biopharmaceuticals produced today are generated using Chinese hamster ovary (CHO) cells, therefore significant attention is focused on methods to improve CHO cell productivity and product quality. The discovery of gene-editing tools, such as CRISPR/Cas9, offers new opportunities to improve CHO cell bioproduction through cell line engineering. Recently an additional CRISPR-associated protein, Cas12a (Cpf1), was shown to be effective for gene editing in eukaryotic cells, including CHO. In this study, we demonstrate the successful application of CRISPR/Cas12a for the generation of clonally derived CHO knockout (KO) cell lines with improved product quality attributes. While we found Cas12a efficiency to be highly dependent on the targeting RNA used, we were able to generate CHO KO cell lines using small screens of only 96-320 clonally derived cell lines. Additionally, we present a novel bulk culture analysis approach that can be used to quickly assess CRISPR RNA efficiency and determine ideal screen sizes for generating genetic KO cell lines. Most critically, we find that Cas12a can be directly integrated into the cell line generation process through cotransfection with no negative impact on titer or screen size. Overall, our results show CRISPR/Cas12a to be an efficient and effective CHO genome editing tool.
Collapse
Affiliation(s)
- Patrick G Schweickert
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Ning Wang
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Stephanie L Sandefur
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Michael E Lloyd
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Christopher C Frye
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Zhuo Cheng
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Duarte HO, Rodrigues JG, Gomes C, Hensbergen PJ, Ederveen ALH, de Ru AH, Mereiter S, Polónia A, Fernandes E, Ferreira JA, van Veelen PA, Santos LL, Wuhrer M, Gomes J, Reis CA. ST6Gal1 targets the ectodomain of ErbB2 in a site-specific manner and regulates gastric cancer cell sensitivity to trastuzumab. Oncogene 2021; 40:3719-3733. [PMID: 33947960 PMCID: PMC8154592 DOI: 10.1038/s41388-021-01801-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab's target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2's ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor's trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.
Collapse
Affiliation(s)
- Henrique O. Duarte
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Joana G. Rodrigues
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Catarina Gomes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Paul J. Hensbergen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Agnes L. Hipgrave Ederveen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Arnoud H. de Ru
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Stefan Mereiter
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.4299.60000 0001 2169 3852Present Address: IMBA, Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - António Polónia
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP Diagnostics, Department of Pathology, IPATIMUP, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - José A. Ferreira
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - Peter A. van Veelen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Lúcio L. Santos
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal ,grid.418711.a0000 0004 0631 0608Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Manfred Wuhrer
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Joana Gomes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Celso A. Reis
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Reconstitution of the oocyte transcriptional network with transcription factors. Nature 2020; 589:264-269. [PMID: 33328630 DOI: 10.1038/s41586-020-3027-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
Collapse
|
39
|
Adams BM, Canniff NP, Guay KP, Larsen ISB, Hebert DN. Quantitative glycoproteomics reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and UGGT2. eLife 2020; 9:e63997. [PMID: 33320095 PMCID: PMC7771966 DOI: 10.7554/elife.63997] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) 1 and 2 are central hubs in the chaperone network of the endoplasmic reticulum (ER), acting as gatekeepers to the early secretory pathway, yet little is known about their cellular clients. These two quality control sensors control lectin chaperone binding and glycoprotein egress from the ER. A quantitative glycoproteomics strategy was deployed to identify cellular substrates of the UGGTs at endogenous levels in CRISPR-edited HEK293 cells. The 71 UGGT substrates identified were mainly large multidomain and heavily glycosylated proteins when compared to the general N-glycoproteome. UGGT1 was the dominant glucosyltransferase with a preference toward large plasma membrane proteins whereas UGGT2 favored the modification of smaller, soluble lysosomal proteins. This study sheds light on differential specificities and roles of UGGT1 and UGGT2 and provides insight into the cellular reliance on the carbohydrate-dependent chaperone system to facilitate proper folding and maturation of the cellular N-glycoproteome.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| | - Ida Signe Bohse Larsen
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
- Copenhagen Center for Glycomics, University of CopenhagenCopenhagenDenmark
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of MassachusettsAmherstUnited States
- Program in Molecular and Cellular Biology, University of MassachusettsAmherstUnited States
| |
Collapse
|
40
|
Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, Met Ö, Wandall HH, Frödin M. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res 2020; 48:11958-11981. [PMID: 33170255 PMCID: PMC7708060 DOI: 10.1093/nar/gkaa975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies. PN technologies share the principle of inducing a DNA double-strand break (DSB) at a user-specified site in the genome, followed by cellular repair of the induced DSB. PN-elicited DSBs are mainly repaired by the non-homologous end joining (NHEJ) and the microhomology-mediated end joining (MMEJ) pathways, which can elicit a variety of small insertion or deletion (indel) mutations. If indels are elicited in a protein coding sequence and shift the reading frame, targeted gene knock out (KO) can readily be achieved using either of the available PNs. Despite the ease by which gene inactivation in principle can be achieved, in practice, successful KO is not only determined by the efficiency of NHEJ and MMEJ repair; it also depends on the design and properties of the PN utilized, delivery format chosen, the preferred indel repair outcomes at the targeted site, the chromatin state of the target site and the relative activities of the repair pathways in the edited cells. These variables preclude accurate prediction of the nature and frequency of PN induced indels. A key step of any gene KO experiment therefore becomes the detection, characterization and quantification of the indel(s) induced at the targeted genomic site in cells, tissues or whole organisms. In this survey, we briefly review naturally occurring indels and their detection. Next, we review the methods that have been developed for detection of PN-induced indels. We briefly outline the experimental steps and describe the pros and cons of the various methods to help users decide a suitable method for their editing application. We highlight recent advances that enable accurate and sensitive quantification of indel events in cells regardless of their genome complexity, turning a complex pool of different indel events into informative indel profiles. Finally, we review what has been learned about PN-elicited indel formation through the use of the new methods and how this insight is helping to further advance the genome editing field.
Collapse
Affiliation(s)
- Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yiyuan Niu
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Rep 2020; 30:1195-1207.e7. [PMID: 31995758 DOI: 10.1016/j.celrep.2019.12.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Targeted knockin mediated by double-stranded DNA cleavage is accompanied by unwanted insertions and deletions (indels) at on-target and off-target sites. A nick-mediated approach scarcely generates indels but exhibits reduced efficiency of targeted knockin. Here, we demonstrate that tandem paired nicking, a method for targeted knockin involving two Cas9 nickases that create nicks at the homologous regions of the donor DNA and the genome in the same strand, scarcely creates indels at the edited genomic loci, while permitting the efficiency of targeted knockin largely equivalent to that of the Cas9-nuclease-based approach. Tandem paired nicking seems to accomplish targeted knockin by DNA recombination analogous to Holliday's model and creates intended genomic changes without introducing additional nucleotide changes, such as silent mutations. Targeted knockin through tandem paired nicking neither triggers significant p53 activation nor occurs preferentially in p53-suppressed cells. These properties of tandem paired nicking demonstrate its utility in precision genome engineering.
Collapse
|
42
|
Møller TC, Pedersen MF, van Senten JR, Seiersen SD, Mathiesen JM, Bouvier M, Bräuner-Osborne H. Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Sci Rep 2020; 10:17395. [PMID: 33060647 PMCID: PMC7567791 DOI: 10.1038/s41598-020-73674-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023] Open
Abstract
Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.
Collapse
Affiliation(s)
- Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Mie F Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
43
|
Sumer SA, Hoffmann S, Laue S, Campbell B, Raedecke K, Frajs V, Clauss S, Kääb S, Janssen JWG, Jauch A, Laugwitz KL, Dorn T, Moretti A, Rappold GA. Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection. Stem Cell Reports 2020; 15:999-1013. [PMID: 32976766 PMCID: PMC7562944 DOI: 10.1016/j.stemcr.2020.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
Collapse
Affiliation(s)
- Simon Alexander Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja Laue
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Birgit Campbell
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Kristin Raedecke
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Viktoria Frajs
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Sebastian Clauss
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Stefan Kääb
- DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany; Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), 81675 Munich, Bavaria, Germany
| | - Johannes W G Janssen
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Anna Jauch
- Department of Human Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar - Technical University of Munich, 81675 Munich, Bavaria, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich, Munich, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Baden-Wuerttemberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
44
|
Králová M, Bergougnoux V, Frébort I. CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. J Biotechnol 2020; 325:341-354. [PMID: 33053363 DOI: 10.1016/j.jbiotec.2020.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/09/2023]
Abstract
Claviceps purpurea is a filamentous fungus well known as a widespread plant pathogen, but it is also an important ergot alkaloid producer exploited by the pharmaceutic industry. In this work, we demonstrated that CRISPR/Cas9 can be a tool for directed mutagenesis in C. purpurea targeting pyr4 and TrpE genes encoding the orotidine 5'-phosphate decarboxylase involved in pyrimidine biosynthesis and the α-subunit of the anthranilate synthase involved in tryptophan biosynthesis, respectively. After protoplast transformation and single spore isolation, homokaryotic mutants showing uridine or tryptophan auxotrophy were selected. In all cases, insertions or insertions combined with deletions were found mostly 3 bp upstream of the PAM sequence. However, transformation efficiencies of CRISPR/Cas9 and CRISPR/Cas9 mediated homology-directed repair only slightly improved in comparison to homologous recombination-mediated knocking-out of the TrpE gene. Moreover, Trp auxotrophs were non-infectious towards rye plants likely due to a decreased production of the plant hormones auxins, which are synthesized by C. purpurea from indole-3-glycerolphosphate in Trp-dependent and Trp-independent biosynthetic pathways, and help the fungus to colonize the plant host. It was demonstrated that the CRISPR/Cas9 vector containing autonomous replicative sequence AMA1 can be fully removed by further culturing of C. purpurea on non-selective media. This method enables introducing multiple mutations in Claviceps and makes feasible metabolic engineering of industrial strains.
Collapse
Affiliation(s)
- Michaela Králová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.
| |
Collapse
|
45
|
Blayney J, Foster EM, Jagielowicz M, Kreuzer M, Morotti M, Reglinski K, Xiao JH, Hublitz P. Unexpectedly High Levels of Inverted Re-Insertions Using Paired sgRNAs for Genomic Deletions. Methods Protoc 2020; 3:mps3030053. [PMID: 32751356 PMCID: PMC7565582 DOI: 10.3390/mps3030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Use of dual sgRNAs is a common CRISPR/Cas9-based strategy for the creation of genetic deletions. The ease of screening combined with a rather high rate of success makes this approach a reliable genome engineering procedure. Recently, a number of studies using CRISPR/Cas9 have revealed unwanted large-scale rearrangements, duplications, inversions or larger-than-expected deletions. Strict quality control measures are required to validate the model system, and this crucially depends on knowing which potential experimental outcomes to expect. Using the dual sgRNA deletion approach, our team discovered high levels of excision, inversion and re-insertion at the site of targeting. We detected those at a variety of genomic loci and in several immortalized cell lines, demonstrating that inverted re-insertions are a common by-product with an overall frequency between 3% and 20%. Our findings imply an inherent danger in the misinterpretation of screening data when using only a single PCR screening. While amplification of the region of interest might classify clones as wild type (WT) based on amplicon size, secondary analyses can discover heterozygous (HET) clones among presumptive WTs, and events deemed as HET clones could potentially be full KO. As such, screening for inverted re-insertions helps in decreasing the number of clones required to obtain a full KO. With this technical note, we want to raise awareness of this phenomenon and suggest implementing a standard secondary PCR while screening for deletions.
Collapse
Affiliation(s)
- Joseph Blayney
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK;
| | - Evangeline M. Foster
- Translational Neuroscience and Dementia Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK;
| | - Marta Jagielowicz
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
| | - Mira Kreuzer
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.K.); (M.M.)
| | - Matteo Morotti
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.K.); (M.M.)
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Centre, HiTIDE group, Rue du Bugnon 25A, CH-1005 Lausanne, Switzerland
| | - Katharina Reglinski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Julie Huiyuan Xiao
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
| | - Philip Hublitz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK;
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
- MRC Weatherall Institute of Molecular Medicine, Genome Engineering Facility, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
- Correspondence: ; Tel.: +44-1865-222339
| |
Collapse
|
46
|
He X, Chen W, Liu Z, Yu G, Chen Y, Cai YJ, Sun L, Xu W, Zhong L, Gao C, Chen J, Zhang M, Yang S, Yao Y, Zhang Z, Ma F, Zhang CC, Lu HP, Yu B, Cheng TL, Qiu J, Sheng Q, Zhou HM, Lv ZR, Yan J, Zhou Y, Qiu Z, Cui Z, Zhang X, Meng A, Sun Q, Yang Y. Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Res 2020; 48:e57. [PMID: 32232370 PMCID: PMC7261186 DOI: 10.1093/nar/gkaa195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.
Collapse
Affiliation(s)
- Xiaozhen He
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guirong Yu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Youbang Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yi-Jun Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wanli Xu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lili Zhong
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Caixi Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jishen Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minjie Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shengxi Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yizhou Yao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiping Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fujun Ma
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Ping Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Lin Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juhui Qiu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hai-Meng Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Zhi-Rong Lv
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yongjian Zhou
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xi Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
47
|
Kruse T, Gnosa SP, Nasa I, Garvanska DH, Hein JB, Nguyen H, Samsøe-Petersen J, Lopez-Mendez B, Hertz EPT, Schwarz J, Pena HS, Nikodemus D, Kveiborg M, Kettenbach AN, Nilsson J. Mechanisms of site-specific dephosphorylation and kinase opposition imposed by PP2A regulatory subunits. EMBO J 2020; 39:e103695. [PMID: 32400009 PMCID: PMC7327492 DOI: 10.15252/embj.2019103695] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
PP2A is an essential protein phosphatase that regulates most cellular processes through the formation of holoenzymes containing distinct regulatory B‐subunits. Only a limited number of PP2A‐regulated phosphorylation sites are known. This hampers our understanding of the mechanisms of site‐specific dephosphorylation and of its tumor suppressor functions. Here, we develop phosphoproteomic strategies for global substrate identification of PP2A‐B56 and PP2A‐B55 holoenzymes. Strikingly, we find that B‐subunits directly affect the dephosphorylation site preference of the PP2A catalytic subunit, resulting in unique patterns of kinase opposition. For PP2A‐B56, these patterns are further modulated by affinity and position of B56 binding motifs. Our screens identify phosphorylation sites in the cancer target ADAM17 that are regulated through a conserved B56 binding site. Binding of PP2A‐B56 to ADAM17 protease decreases growth factor signaling and tumor development in mice. This work provides a roadmap for the identification of phosphatase substrates and reveals unexpected mechanisms governing PP2A dephosphorylation site specificity and tumor suppressor function.
Collapse
Affiliation(s)
- Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Isha Nasa
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Dimitriya Hristoforova Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jamin B Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hieu Nguyen
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez-Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Peter Thrane Hertz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Hanna Sofia Pena
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Denise Nikodemus
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
de Las Rivas M, Paul Daniel EJ, Narimatsu Y, Compañón I, Kato K, Hermosilla P, Thureau A, Ceballos-Laita L, Coelho H, Bernadó P, Marcelo F, Hansen L, Maeda R, Lostao A, Corzana F, Clausen H, Gerken TA, Hurtado-Guerrero R. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat Chem Biol 2020; 16:351-360. [PMID: 31932717 PMCID: PMC7923394 DOI: 10.1038/s41589-019-0444-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022]
Abstract
Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.
Collapse
Affiliation(s)
- Matilde de Las Rivas
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | | | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, Spain
| | - Kentaro Kato
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
- Department of Eco-epidemiology, Institute of Tropical Medicine Nagasaki University, Nagasaki, Japan
| | - Pablo Hermosilla
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Laura Ceballos-Laita
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, Caparica, Portugal
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale. INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, Caparica, Portugal
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Ryota Maeda
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, Spain
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
49
|
Carballar-Lejarazú R, Kelsey A, Pham TB, Bennett EP, James AA. Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species Anopheles stephensi. Biotechniques 2020; 68:172-179. [PMID: 32040336 PMCID: PMC7177198 DOI: 10.2144/btn-2019-0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CRISPR/Cas9 technology is a powerful tool for the design of gene-drive systems to control and/or modify mosquito vector populations; however, CRISPR/Cas9-mediated nonhomologous end joining mutations can have an important impact on generating alleles resistant to the drive and thus on drive efficiency. We demonstrate and compare the insertions or deletions (indels) detection capabilities of two techniques in the malaria vector mosquito Anopheles stephensi: Indel Detection by Amplicon Analysis (IDAA™) and Droplet Digital™ PCR (ddPCR™). Both techniques showed accuracy and reproducibility for indel frequencies across mosquito samples containing different ratios of indels of various sizes. Moreover, these techniques have advantages that make them potentially better suited for high-throughput nonhomologous end joining analysis in cage trials and contained field testing of gene-drive mosquitoes. Mosquito DNA was extracted with the Promega Wizard® Genomic DNA Purification Kit protocol and quantified with Qubit® 3.0 following manufacturer protocols. PCR products for IDAA and ddPCR were generated with primers spanning 150–500 bp around the target site. IDAA amplicons were sent directly to COBO Technologies for analysis. ddPCR amplicons were analyzed using the Bio-Rad QX200™ ddPCR system.
Collapse
Affiliation(s)
- Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Adam Kelsey
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-4025, USA.,Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
50
|
Bjune JI, Dyer L, Røsland GV, Tronstad KJ, Njølstad PR, Sagen JV, Dankel SN, Mellgren G. The homeobox factor Irx3 maintains adipogenic identity. Metabolism 2020; 103:154014. [PMID: 31751577 DOI: 10.1016/j.metabol.2019.154014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT) mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in mice and humans. However, the underlying mechanisms of the Irx control over beiging are still largely unknown, as illustrated by recent reports showing divergent effects of Irx3 on adipocyte metabolism and function. Here, we investigated the role of Irx3 in controlling beige preadipocyte function and differentiation. METHODS Stable knock out of Irx3 in ME3 mouse preadipocytes capable of beiging was performed using a CRISPR-Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment analysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells were measured by WST-1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry and mitochondrial respiration was investigated by Seahorse assay. RESULTS Irx3 was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes. We further observed profound changes in numerous genes during both early and late stages of adipogenic differentiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphorylation (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to chondrogenic stimuli. CONCLUSIONS Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that, while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental loss of adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Laurence Dyer
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Karl Johan Tronstad
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Department of Pediatrics and Adolescents, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Jørn V Sagen
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Gunnar Mellgren
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|