1
|
Luo Y, Luo X, Zhang T, Li S, Liu S, Ma Y, Wang Z, Jin X, Liu J, Wang X. Anti-Tumor Secondary Metabolites Originating from Fungi in the South China Sea's Mangrove Ecosystem. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120776. [PMID: 36550982 PMCID: PMC9774444 DOI: 10.3390/bioengineering9120776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
A mangrove is a unique ecosystem with abundant resources, in which fungi are an indispensable microbial part. Numerous mangrove fungi-derived secondary metabolites are considerable sources of novel bioactive substances, such as polyketides, terpenoids, alkaloids, peptides, etc., which arouse people's interest in the search for potential natural anti-tumor drugs. This review includes a total of 44 research publications that described 110 secondary metabolites that were all shown to be anti-tumor from 39 mangrove fungal strains belonging to 18 genera that were acquired from the South China Sea between 2016 and 2022. To identify more potential medications for clinical tumor therapy, their sources, unique structures, and cytotoxicity qualities were compiled. This review could serve as a crucial resource for the research status of mangrove fungal-derived natural products deserving of further development.
Collapse
Affiliation(s)
- Yuyou Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiongming Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siyuan Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuping Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxin Ma
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zongming Wang
- Pituitary Tumor Center, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaobao Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.L.); (X.W.); Tel.: +86-134-2412-4716 (J.L.); +86-20-39352189 (X.W.)
| | - Xin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.L.); (X.W.); Tel.: +86-134-2412-4716 (J.L.); +86-20-39352189 (X.W.)
| |
Collapse
|
2
|
Njatcha C, Farooqui M, Almotlak AA, Siegfried JM. Prevention of Tobacco Carcinogen-Induced Lung Tumor Development by a Novel STAT3 Decoy Inhibitor. Cancer Prev Res (Phila) 2020; 13:735-746. [PMID: 32655003 PMCID: PMC7485626 DOI: 10.1158/1940-6207.capr-20-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
The STAT3 pathway is frequently overactive in non-small cell lung cancer (NSCLC), an often fatal disease with known risk factors including tobacco and chemical exposures. Whether STAT3 can be downmodulated to delay or prevent development of lung cancer resulting from an environmental exposure has not been previously tested. A circular oligonucleotide STAT3 decoy (CS3D) was used to treat mice previously exposed to the tobacco carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. CS3D contains a double-stranded STAT3 DNA response element sequence and interrupts STAT3 signaling by binding to STAT3 dimers, rendering them unable to initiate transcription at native STAT3 DNA binding sites. An intermittent course of CS3D decreased the development of airway preneoplasias by 42% at 1 week posttreatment, reduced the progression of preneoplasia to adenomas by 54% at 8 weeks posttreatment, and reduced the size and number of resulting lung tumors by 49.7% and 29.5%, respectively, at 20 weeks posttreatment. No toxicity was detected. A mutant cyclic oligonucleotide with no STAT3 binding ability was used as a control. Chemopreventive effects were independent of the KRAS mutational status of the tumors. In lungs harvested during and after the treatment course with CS3D, airway preneoplasias had reduced STAT3 signaling. Chemopreventive effects were accompanied by decreased VEGFA expression, ablated IL6, COX-2, and p-NF-κB, and decreased pulmonary M2 macrophages and myeloid-derived suppressor cells. Thus, downmodulation of STAT3 activity using a decoy molecule both reduced oncogenic signaling in the airway epithelium and favored a lung microenvironment with reduced immunosuppression.
Collapse
Affiliation(s)
- Christian Njatcha
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mariya Farooqui
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Abdulaziz A Almotlak
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Jill M Siegfried
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Méndez-López LF, Davila-Velderrain J, Domínguez-Hüttinger E, Enríquez-Olguín C, Martínez-García JC, Alvarez-Buylla ER. Gene regulatory network underlying the immortalization of epithelial cells. BMC SYSTEMS BIOLOGY 2017; 11:24. [PMID: 28209158 PMCID: PMC5314717 DOI: 10.1186/s12918-017-0393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of the components and interactions that have been found to be involved in such cell states and transitions into a network of 41 molecular components. We then reduce this initial network by removing simple mediators (i.e., linear pathways), and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the network components as a function of the states of its regulators. RESULTS Computational dynamic analysis shows that our proposed Gene Regulatory Network model recovers exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial, senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this state is increased when pro-inflammatory conditions are simulated, providing a systems-level mechanistic explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady states, such that recovered patterns resemble the time-ordered transitions observed during the spontaneous immortalization of epithelial cells, both in vivo and in vitro. CONCLUSION Our study strongly suggests that the in vitro tumorigenic transformation of epithelial cells, which strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo, emerges from underlying regulatory networks involved in epithelial trans-differentiation during development.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon, A. P. 14-740, México, 07300 D.F México
| | | | - Elisa Domínguez-Hüttinger
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| | | | | | - Elena R. Alvarez-Buylla
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| |
Collapse
|
4
|
Gröschel C, Aggarwal A, Tennakoon S, Höbaus J, Prinz-Wohlgenannt M, Marian B, Heffeter P, Berger W, Kállay E. Effect of 1,25-dihydroxyvitamin D3 on the Wnt pathway in non-malignant colonic cells. J Steroid Biochem Mol Biol 2016; 155:224-30. [PMID: 25777538 DOI: 10.1016/j.jsbmb.2015.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
Epidemiological studies suggest a correlation between vitamin D deficiency and colorectal cancer (CRC) incidence. The majority of sporadic tumors develop from premalignant lesions with aberrant activation of the Wnt/β-catenin signaling pathway. The adenoma cell line LT97 harbors an adenomatous polyposis coli (APC) mutation leading to constitutively active Wnt signaling. In these cells, expression of Wnt target genes leads to increased survival capacity. We hypothesized that 1,25-dihydroyvitamin D3 (1,25-D3), the active form of vitamin D3, promotes differentiation by modulating β-catenin/T-cell factor (TCF) 4-mediated gene transcription. The effect of dietary vitamin D on colonic Wnt signaling was investigated in mice fed either with 100 IU or 2500 IU vitamin D/kg diet. We examined the effect of 1,25-D3 on differentiation by measuring alkaline phosphatase activity. We analyzed mRNA expression of Wnt target genes by real time qRT-PCR. The impact of 1,25-D3 on β-catenin and TCF4 protein expression was assessed by western blot and immunohistochemistry. In LT97 cells, 1,25-D3 increased cellular differentiation and reduced nuclear β-catenin levels. Further, 1,25-D3 decreased mRNA expression of the Wnt target genes BCL-2, Cyclin D1, Snail1, CD44 and LGR5. In healthy colon of mice fed with high vitamin D diet, the mRNA levels of Wnt5a and ROR2, that promote degradation of β-catenin, were upregulated whereas β-catenin and TCF4 protein expression were decreased. In conclusion, 1,25-D3 inhibits Wnt signaling even in nonmalignant cells underlining its importance in protection against colorectal tumorigenesis and early tumor progression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Julia Höbaus
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Maximilian Prinz-Wohlgenannt
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Brigitte Marian
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform ``Translational Cancer Therapy Research", Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria; Research Platform ``Translational Cancer Therapy Research", Vienna, Austria
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
5
|
Meerzaman D, Dunn BK, Lee M, Chen Q, Yan C, Ross S. The promise of omics-based approaches to cancer prevention. Semin Oncol 2015; 43:36-48. [PMID: 26970123 DOI: 10.1053/j.seminoncol.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a complex category of diseases caused in large part by genetic or genomic, transcriptomic, and epigenetic or epigenomic alterations in affected cells and the surrounding microenvironment. Carcinogenesis reflects the clonal expansion of cells that progressively acquire these genetic and epigenetic alterations-changes that, in turn, lead to modifications at the RNA level. Gradually advancing technology and most recently, the advent of next-generation sequencing (NGS), combined with bioinformatics analytic tools, have revolutionized our ability to interrogate cancer cells. The ultimate goal is to apply these high-throughput technologies to the various aspects of clinical cancer care: cancer-risk assessment, diagnosis, as well as target identification for treatment and prevention. In this article, we emphasize how the knowledge gained through large-scale omics-oriented approaches, with a focus on variations at the level of nucleic acids, can inform the field of chemoprevention.
Collapse
Affiliation(s)
- Daoud Meerzaman
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| | - Barbara K Dunn
- Chemoprevention Agent Development Research Group, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maxwell Lee
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA
| | - Chunhua Yan
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA
| | - Sharon Ross
- Chemoprevention Agent Development Research Group, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Bevers TB, Brown PH, Maresso KC, Hawk ET. Cancer Prevention, Screening, and Early Detection. ABELOFF'S CLINICAL ONCOLOGY 2014:322-359.e12. [DOI: 10.1016/b978-1-4557-2865-7.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Espina V, Wysolmerski J, Edmiston K, Liotta LA. Attacking breast cancer at the preinvasion stage by targeting autophagy. ACTA ACUST UNITED AC 2013; 9:157-70. [PMID: 23477322 DOI: 10.2217/whe.13.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preinvasive breast carcinoma cells that proliferate and accumulate within the nonvascular, closed intraductal niche are under severe hypoxic and metabolic stress. Understanding the survival mechanisms used by these cells has revealed therapeutic strategies for killing preinvasive neoplasms. We have found that autophagy ('self-eating') is a major survival strategy used by preinvasive carcinoma and breast cancer stem-like cells. Based on this finding, we have opened a clinical trial that is exploring neoadjuvant oral chloroquine antiautophagy therapy for ductal carcinoma in situ. We envision that antiautophagy therapy can be administered in combination with other treatments such as those that elevate intracellular calcium, to create a state of intolerable stress for preinvasive neoplastic cells, and thereby stop breast cancer before it starts.
Collapse
Affiliation(s)
- Virginia Espina
- George Mason University, Center for Applied Proteomics & Molecular Medicine, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
8
|
Abstract
As with other epithelial cancers, lung cancer develops over a period of several years or decades via a series of progressive morphological changes accompanied by molecular alterations that commence in histologically normal epithelium. However the development of lung cancer presents certain unique features that complicates this evaluation. Anatomically the respiratory tree may be divided into central and peripheral compartments having different gross and histological anatomies as well as different functions. In addition, there are three major forms of lung cancer and many minor forms. Many of these forms arise predominantly in either the central or peripheral compartments. Squamous cell and small cell carcinomas predominantly arise in the central compartment, while adenocarcinomas predominantly arise peripherally. Large cell carcinomas are not a single entity but consist of poorly differentiated forms of the other types and, possibly, some truly undifferentiated "stem cell like" tumors. The multistage origin of squamous cell carcinomas, because of their central location, can be followed more closely than the peripherally arising adenocarcinomas. Squamous cell carcinomas arise after a series of reactive, metaplastic, premalignant and preinvasive changes. However, long term observations indicate that not all tumors follow a defined histologic course, and the clinical course, especially of early lesions, is difficult to predict. Peripheral adenocarcinomas are believed to arise from precursor lesions known as atypical adenomatous hyperplasias and may have extensive in situ growth before becoming invasive. Small cell carcinomas are believed to arise from severely molecularly damaged epithelium without going through recognizable preneoplastic changes. The molecular changes that occur prior to the onset on invasive cancers are extensive. As documented in this chapter, they encompass all of the six classic Hallmarks of Cancer other than invasion and metastasis, which by definition occur beyond preneoplasia. A study of preinvasive lung cancer has yielded much valuable biologic information that impacts on clinical management.
Collapse
Affiliation(s)
- Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical School, Dallas, TX, USA.
| | | |
Collapse
|
9
|
Zhu Y, Terry NG, Wax A. Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett's esophagus. Expert Rev Gastroenterol Hepatol 2012; 6:37-41. [PMID: 22149580 PMCID: PMC3292261 DOI: 10.1586/egh.11.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Angle-resolved low-coherence interferometry (a/LCI) is an optical biopsy technique that measures scattered light from tissue to determine nuclear size with submicron-level accuracy. The a/LCI probe can be deployed through the accessory channel of a standard endoscope and provides feedback to physicians to guide physical biopsies. The technique has been validated in animal and ex vivo human studies, and has been used to detect dysplasia in Barrett's esophagus patients in vivo. In a recent clinical study of 46 Barrett's esophagus patients, a/LCI was able to detect dysplasia with 100% sensitivity and 84% specificity. This report reviews the technique and discusses its potential clinical utility.
Collapse
|
10
|
Meyskens FL, Curt GA, Brenner DE, Gordon G, Herberman RB, Finn O, Kelloff GJ, Khleif SN, Sigman CC, Szabo E. Regulatory approval of cancer risk-reducing (chemopreventive) drugs: moving what we have learned into the clinic. Cancer Prev Res (Phila) 2011; 4:311-23. [PMID: 21372031 DOI: 10.1158/1940-6207.capr-09-0014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article endeavors to clarify the current requirements and status of regulatory approval for chemoprevention (risk reduction) drugs and discusses possible improvements to the regulatory pathway for chemoprevention. Covering a wide range of topics in as much depth as space allows, this report is written in a style to facilitate the understanding of nonscientists and to serve as a framework for informing the directions of experts engaged more deeply with this issue. Key topics we cover here are as follows: a history of definitive cancer chemoprevention trials and their influence on the evolution of regulatory assessments; a brief review of the long-standing success of pharmacologic risk reduction of cardiovascular diseases and its relevance to approval for cancer risk reduction drugs; the use and limitations of biomarkers for developing and the approval of cancer risk reduction drugs; the identification of individuals at a high(er) risk for cancer and who are appropriate candidates for risk reduction drugs; business models that should incentivize pharmaceutical industry investment in cancer risk reduction; a summary of scientific and institutional barriers to development of cancer risk reduction drugs; and a summary of major recommendations that should help facilitate the pathway to regulatory approval for pharmacologic cancer risk reduction drugs.
Collapse
Affiliation(s)
- Frank L Meyskens
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vazquez-Martin A, López-Bonetc E, Cufí S, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. Repositioning chloroquine and metformin to eliminate cancer stem cell traits in pre-malignant lesions. Drug Resist Updat 2011; 14:212-23. [PMID: 21600837 DOI: 10.1016/j.drup.2011.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/07/2023]
Abstract
Ideal oncology drugs would be curative after a short treatment course if they could eliminate epithelium-originated carcinomas at their non-invasive, pre-malignant stages. Such ideal molecules, which are expected to molecularly abrogate all the instrumental mechanisms acquired by migrating cancer stem cells (CSCs) to by-pass tumour suppressor barriers, might already exist. We here illustrate how system biology strategies for repositioning existing FDA-approved drugs may accelerate our therapeutic capacity to eliminate CSC traits in pre-invasive intraepithelial neoplasias. First, we describe a signalling network signature that overrides bioenergetics stress- and oncogene-induced senescence (OIS) phenomena in CSCs residing at pre-invasive lesions. Second, we functionally map the anti-malarial chloroquine and the anti-diabetic metformin ("old drugs") to their recently recognized CSC targets ("new uses") within the network. By discussing the preclinical efficacy of chloroquine and metformin to inhibiting the genesis and self-renewal of CSCs we finally underscore the expected translational impact of the "old drugs-new uses" repurposing strategy to open a new CSC-targeted chemoprevention era.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia s/n, E-17007 Girona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Invasive, genetically abnormal carcinoma progenitor cells have been propagated from human and mouse breast ductal carcinoma in situ (DCIS) lesions, providing new insights into breast cancer progression. The survival of DCIS cells in the hypoxic, nutrient-deprived intraductal niche could promote genetic instability and the derepression of the invasive phenotype. Understanding potential survival mechanisms, such as autophagy, that might be functioning in DCIS lesions provides strategies for arresting invasion at the pre-malignant stage. A new, open trial of neoadjuvant therapy for patients with DCIS constitutes a model for testing investigational agents that target malignant progenitor cells in the intraductal niche.
Collapse
Affiliation(s)
- Virginia Espina
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia 20110, USA
| | | |
Collapse
|
13
|
Peled N, Keith RL, Hirsch FR. Lung Cancer Prevention. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
De la cellule mammaire normale à la cellule cancéreuse. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2010. [DOI: 10.1016/j.mednuc.2009.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Abstract
Cancer in an important disease throughout the world and a major cause of death in both humans and animals. Pathologists play a critical role in cancer research and in the diagnosis, treatment, and prevention of human and animal cancers. They participate in basic and translational research in laboratories of colleges and universities, other research institutes, government research and regulatory agencies, and in the biotech, chemical, and pharmaceutical industries. This introductory review to the 2009 STP Symposium on Cancer will identify and discuss the major roles of pathologists in cancer research.
Collapse
|
16
|
Abstract
Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to common malignancies other than lung. Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to determine higher risk populations and the understanding of lung tumor and pre-malignant biology continues to advance. Additional biomarkers of risk continue to be investigated and validated. The World Health Organization/International Association for the Study of Lung Cancer classification for lung cancer now recognizes distinct histologic lesions that can be reproducibly graded as precursors of non-small cell lung cancer. For example, carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive squamous cell cancer. Similar precursor lesions exist for adenocarcinoma, and these pre-malignant lesions are targeted by chemopreventive agents in current and future trials. At this time, chemopreventive agents can only be recommended as part of well-designed clinical trials, and multiple trials are currently in progress and additional trials are in the planning stages. This review will discuss the principles of chemoprevention, summarize the completed trials, and discuss ongoing and potential future trials with a focus on targeted pathways.
Collapse
|
17
|
Hao Y, Xie T, Korotcov A, Zhou Y, Pang X, Shan L, Ji H, Sridhar R, Wang P, Califano J, Gu X. Salvianolic acid B inhibits growth of head and neck squamous cell carcinoma in vitro and in vivo via cyclooxygenase-2 and apoptotic pathways. Int J Cancer 2009; 124:2200-9. [PMID: 19123475 PMCID: PMC2849633 DOI: 10.1002/ijc.24160] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overexpression of cyclooxygenase-2 (COX-2) in oral mucosa has been associated with increased risk of head and neck squamous cell carcinoma (HNSCC). Celecoxib is a nonsteroidal anti-inflammatory drug, which inhibits COX-2 but not COX-1. This selective COX-2 inhibitor holds promise as a cancer preventive agent. Concerns about cardiotoxicity of celecoxib, limits its use in long-term chemoprevention and therapy. Salvianolic acid B (Sal-B) is a leading bioactive component of Salvia miltiorrhiza Bge, which is used for treating neoplastic and chronic inflammatory diseases in China. The purpose of this study was to investigate the mechanisms by which Sal-B inhibits HNSCC growth. Sal-B was isolated from S. miltiorrhiza Bge by solvent extraction followed by 2 chromatographic steps. Pharmacological activity of Sal-B was assessed in HNSCC and other cell lines by estimating COX-2 expression, cell viability and caspase-dependent apoptosis. Sal-B inhibited growth of HNSCC JHU-022 and JHU-013 cells with IC(50) of 18 and 50 microM, respectively. Nude mice with HNSCC solid tumor xenografts were treated with Sal-B (80 mg/kg/day) or celecoxib (5 mg/kg/day) for 25 days to investigate in vivo effects of the COX-2 inhibitors. Tumor volumes in Sal-B treated group were significantly lower than those in celecoxib treated or untreated control groups (p < 0.05). Sal-B inhibited COX-2 expression in cultured HNSCC cells and in HNSCC cells isolated from tumor xenografts. Sal-B also caused dose-dependent inhibition of prostaglandin E(2) synthesis, either with or without lipopolysaccharide stimulation. Taken together, Sal-B shows promise as a COX-2 targeted anticancer agent for HNSCC prevention and treatment.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Benzofurans/pharmacology
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Caspases/metabolism
- Cells, Cultured
- Colony-Forming Units Assay
- Cyclooxygenase 2/chemistry
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Dinoprostone/metabolism
- Drugs, Chinese Herbal/pharmacology
- Female
- Flow Cytometry
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- In Vitro Techniques
- Keratinocytes/cytology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mouth Mucosa/cytology
- Mouth Mucosa/drug effects
- Mouth Mucosa/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salvia miltiorrhiza/chemistry
- Survival Rate
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yubin Hao
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Tianpei Xie
- Shanghai TenGen Biomedical Co. Ltd, Shanghai
| | - Alexandru Korotcov
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | - Yanfei Zhou
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Xiaowu Pang
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
| | - Liang Shan
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | | | - Rajagopalan Sridhar
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiation Oncology, Howard University, Washington, District of Columbia
| | - Paul Wang
- Department of Cancer Center, Howard University, Washington, District of Columbia
- Department of Radiology, Howard University, Washington, District of Columbia
| | - Joseph Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Xinbin Gu
- Department of Oral Diagnostic Service, Howard University, Washington, District of Columbia
- Department of Cancer Center, Howard University, Washington, District of Columbia
| |
Collapse
|
18
|
Hill DA. Strengthening gynecologic cancer prevention studies. Obstet Gynecol Clin North Am 2007; 34:639-50, vii. [PMID: 18061861 DOI: 10.1016/j.ogc.2007.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This article describes the elements in the design of cancer-prevention trials and the skills needed to evaluate the study outcomes in this field. Efforts to prevent gynecologic malignancies face some methodological challenges common to other cancer-prevention studies, such as choice of study design, population to be studied, and agent to be administered (or intervention to be made). Flaws in making these choices or in analyzing results can lead to misattribution of effects or cause important findings to be overlooked. In addition, some investigators must address issues that have arisen in response to prevention-trial results from the past decade. Cancer prevention efforts have recently suffered some well-publicized and not-so-well publicized setbacks. The prominence of some of these findings should not overshadow well-established achievements and recent successes.
Collapse
Affiliation(s)
- Deirdre A Hill
- Department of Internal Medicine, Division of Epidemiology, University of New Mexico School of Medicine, 1 University of NM, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|