1
|
Nian S, Zeng Y, Heyden KE, Cagnone G, Yagi H, Boeck M, Lee D, Hirst V, Hua Z, Lee J, Wang C, Neilsen K, Joyal JS, Field MS, Fu Z. Folic Acid Supplementation Inhibits Proliferative Retinopathy of Prematurity. Biomolecules 2025; 15:309. [PMID: 40001612 PMCID: PMC11852370 DOI: 10.3390/biom15020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is the major cause of blindness in children. It is a biphasic disease with retinal vessel growth cessation and loss (Phase I) followed by uncontrolled retinal vessel growth (Phase II). Folate is an essential nutrient for fetal development and growth. Premature infants have a high risk for folate deficiency. However, the contribution of folate to ROP risk remains unknown. METHODS In mouse oxygen-induced retinopathy (OIR), the nursing dams were fed with a folic acid-deficient or control diet after delivery until the end of hyperoxia. Alternatively, pups received direct injection of either folic acid or vehicle during Phase I hyperoxia. Genes involved in the folate cycle and angiogenic responses were examined using real-time PCR. Total retinal folate levels were measured with the Lactobacillus casei assay. RESULTS Maternal folic acid deficiency in early life exacerbated pathological retinal vessel growth, while supplementation with folic acid suppressed it. Genes involved in the folate cycle were downregulated in Phase I OIR retinas and were highly expressed in Müller glia. Folic acid reduced pro-angiogenic signaling in cultured rat retinal Müller glia in vitro. CONCLUSIONS Appropriate supplementation of folic acid might be a new and safe treatment for ROP at an early stage.
Collapse
Affiliation(s)
- Shen Nian
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Department of Pathology, Xi’an Medical University, Xi’an 710021, China
| | - Yan Zeng
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Katarina E. Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (K.E.H.); (M.S.F.)
| | - Gaël Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada (J.-S.J.)
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Victoria Hirst
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Zhanqing Hua
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Jeff Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada (J.-S.J.)
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Martha S. Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (K.E.H.); (M.S.F.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| |
Collapse
|
2
|
Ge M, Zhu W, Mei J, Hu T, Yang C, Lin H, Shi J. Piezoelectric-Enhanced Nanocatalysts Trigger Neutrophil N1 Polarization against Bacterial Biofilm by Disrupting Redox Homeostasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409633. [PMID: 39350533 DOI: 10.1002/adma.202409633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Indexed: 02/13/2025]
Abstract
Strategies of manipulating redox signaling molecules to inhibit or activate immune signals have revolutionized therapeutics involving reactive oxygen species (ROS). However, certain diseases with dual resistance barriers to the attacks by both ROS and immune cells, such as bacterial biofilm infections of medical implants, are difficult to eradicate by a single exogenous oxidative stimulus due to the diversity and complexity of the redox species involved. Here, this work demonstrates that metal-organic framework (MOF) nanoparticles capable of disrupting the bacterial ROS-defense system can dismantle bacterial redox resistance and induce potent antimicrobial immune responses in a mouse model of surgical implant infection by simultaneously modulating redox homeostasis and initiating neutrophil N1 polarization in the infection microenvironment. Mechanistically, the piezoelectrically enhanced MOF triggers ROS production by tilting the band structure and acts synergistically with the aurintricarboxylic acid loaded within the MOF, which inhibits the activity of the cystathionine γ-cleaving enzyme. This leads to biofilm structure disruption and antigen exposure through homeostatic imbalance and synergistic activation of neutrophil N1 polarization signals. Thus, this study provides an alternative but promising strategy for the treatment of antibiotic-resistant biofilm infections.
Collapse
Affiliation(s)
- Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Wanbo Zhu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| |
Collapse
|
3
|
Ishikawa K, Hoshino Y, Osawa M, Funayama E, Miura T, Hojo M, Sasaki Y, Sasaki S, Yamamoto Y, Maeda T. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat Accelerates Wound Healing in a Mouse Hind limb Lymphedema Model. Adv Wound Care (New Rochelle) 2025. [PMID: 39853221 DOI: 10.1089/wound.2024.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Objective: Drugs regulating hypoxia-inducible factor (HIF)-1α have not been investigated for wound healing in lymphedema. Therefore, we examined the effects of drug modulation of HIF-1α activity for wound healing in our previously developed mouse model of nonirradiated hind limb lymphedema. Approach: Mouse hind limb lymphedema models (n = 17) and a sham group (n = 6) were created using 8- to 10-week-old male C57BL/6N mice. Mice with hind limb lymphedema were randomized into experimental groups receiving roxadustat, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), or dimethyl sulfoxide and were given intraperitoneal injections every 2 days for up to 2 weeks. Four days after the surgery, an 8-mm diameter full-thickness skin wound was created in the hind limb. The number of days required for wound closure and the percentage of wounds closed were measured. Skin samples taken at wound creation were evaluated by histological and molecular analysis. Results: Administration of roxadustat accelerated wound healing, whereas YC-1 delayed it, with a significant decrease and increase in skin thickness, respectively. The relative mRNA expression of Hif1α, matrix metalloproteinase-3, and interleukin-6 was significantly higher in the roxadustat group and that of metalloproteinase-9 was significantly lower in the roxadustat group compared with the control group. Innovation: This study is the first to demonstrate delayed wound healing in a mouse model of hind limb lymphedema and the first to demonstrate the promotion of significant wound healing through the use of roxadustat. Conclusion: Roxadustat exerts wound-healing effects and may promote the regulation of extracellular matrix remodeling via gene expression in hind limb lymphedema wound models.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitada Hoshino
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Osawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Sasaki
- Department of Plastic and Reconstructive Surgery, Center for Vascular Anomalies, Tonan Hospital, Sapporo, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Niu Z, Xia X, Zhang Z, Liu J, Li X. hCeO 2@CA-074Me Nanoparticles Alleviate Inflammation and Improve Osteogenic Microenvironment by Regulating the CTSB-NLRP3 Signaling Pathway. Int J Nanomedicine 2025; 20:161-179. [PMID: 39802379 PMCID: PMC11721695 DOI: 10.2147/ijn.s389156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Background It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach. Methods We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel hCeO2@CA-074Me NPs. We characterized the surface morphology and physicochemical properties of hCeO2@CA-074Me NPs. Macrophage RAW 264.7 was cultured with hCeO2@CA-074Me NPs using P. gingivalis-LPS (P.g-LPS) stimulation as a model of inflammation. RT-PCR and Western blot analysis was employed to evaluate the effects of hCeO2@CA-074Me NPs on macrophage phenotype and the CTSB-NLRP3 signaling pathway. To further investigate the inflammatory osteogenic microenvironment, MC3T3-E1 cells were cultured with P.g-LPS to create an in vitro osteogenic conditions under inflammation. The cells were then co-cultured with hCeO2@CA-074Me NPs for 7, 14, and 21 d. The osteogenic ability was evaluated using ALP staining, ALP quantitative analysis, alizarin red staining, and RT-PCR analysis. Results Findings clearly demonstrated that hCeO2@CA-074Me NPs could effectively reduce the production of ROS and inhibited CTSB-NLRP3 signal pathway, thereby significantly attenuating the damage caused by the cellular inflammatory response. hCeO2@CA-074Me NPs could also induce the polarization of macrophages towards anti-inflammatory M2 phenotype. Additionally, results confirmed that hCeO2@CA-074Me NPs could inhibit inflammation and ameliorate osteogenic microenvironment, thus promoting the osteogenesis of MC3T3-E1 cells. Conclusion The synthetic hCeO2@CA-074Me NPs could able to modify the osteogenic microenvironment under inflammatory conditions by simultaneously inhibiting the CTSB-NLRP3 signaling pathway and regulating the macrophage phenotype through their ability to scavenge ROS. Based on these findings, our study may offer a promising approach for managing inflammatory bone damage.
Collapse
Affiliation(s)
- Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Zhimin Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
- School of Stomatology, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Ling P, Song D, Yang P, Tang C, Xu W, Wang F. NIR-II-Responsive Versatile Nanozyme Based on H 2O 2 Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy. ACS Biomater Sci Eng 2024; 10:5290-5299. [PMID: 39011938 DOI: 10.1021/acsbiomaterials.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Disturbing cellular redox homeostasis within malignant cells, particularly improving reactive oxygen species (ROS), is one of the effective strategies for cancer therapy. The ROS generation based on nanozymes presents a promising strategy for cancer treatment. However, the therapeutic efficacy is limited due to the insufficient catalytic activity of nanozymes or their high dependence on hydrogen peroxide (H2O2) or oxygen. Herein, we reported a nanozyme (CSA) based on well-defined CuSe hollow nanocubes (CS) uniformly covered with Ag nanoparticles (AgNPs) to disturb cellular redox homeostasis and catalyze a cascade of intracellular biochemical reactions to produce ROS for the synergistic therapy of breast cancer. In this system, CSA could interact with the thioredoxin reductase (TrxR) and deplete the tumor microenvironment-activated glutathione (GSH), disrupting the cellular antioxidant defense system and augmenting ROS generation. Besides, CSA possessed high peroxidase-mimicking activity toward H2O2, leading to the generation of various ROS including hydroxyl radical (•OH), superoxide radicals (•O2-), and singlet oxygen (1O2), facilitated by the Cu(II)/Cu(I) redox and H2O2 cycling, and plentiful catalytically active metal sites. Additionally, due to the absorption and charge separation performance of AgNPs, the CSA exhibited excellent photothermal performance in the second near-infrared (NIR-II, 1064 nm) region and enhanced the photocatalytic ROS level in cancer cells. Owing to the inhibition of TrxR activity, GSH depletion, high peroxidase-mimicking activity of CSA, and abundant ROS generation, CSA displays remarkable and specific inhibition of tumor growth.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Danjie Song
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chuanye Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fang Wang
- Institute of Clinical Pharmacy, Jining No. 1 People's Hospital, Shandong First Medical University, Jining 272000, Shandong, China
| |
Collapse
|
6
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
8
|
Ma M. Role of Hypoxia in Mesenchymal Stem Cells from Dental Pulp: Influence, Mechanism and Application. Cell Biochem Biophys 2024; 82:535-547. [PMID: 38713403 PMCID: PMC11344735 DOI: 10.1007/s12013-024-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Mesenchymal stem cells (MSCs) from dental pulp (DP-MSCs), which include dental pulp stem cells (DPSCs) isolated from permanent teeth and stem cells from human exfoliated deciduous teeth (SHED), have emerged as highly promising cell sources for tissue regeneration, due to their high proliferative rate, multi-lineage differentiation capability and non-invasive accessibility. DP-MSCs also exert extensive paracrine effects through the release of extracellular vesicles (EVs) and multiple trophic factors. To be noted, the microenvironment, commonly referred to as the stem cell niche, plays a crucial role in shaping the functionality and therapeutic effects of DP-MSCs, within which hypoxia has garnered considerable attention. Extensive research has demonstrated that hypoxic conditions profoundly impact DP-MSCs. Specifically, hypoxia promotes DP-MSC proliferation, survival, stemness, migration, and pro-angiogenic potential while modulating their multi-lineage differentiation capacity. Furthermore, hypoxia stimulates the paracrine activities of DP-MSCs, leading to an increased production of EVs and soluble factors. Considering these findings, hypoxia preconditioning has emerged as a promising approach to enhance the therapeutic potential of DP-MSCs. In this comprehensive review, we provide a systematic overview of the influence of hypoxia on DP-MSCs, shedding light on the underlying mechanisms involved. Moreover, we also discuss the potential applications of hypoxia-preconditioned DP-MSCs or their secretome in tissue regeneration. Additionally, we delve into the methodologies employed to simulate hypoxic environments. This review aims to promote a comprehensive and systematic understanding of the hypoxia-induced effects on DP-MSCs and facilitate the refinement of regenerative therapeutic strategies based on DP-MSCs.
Collapse
Affiliation(s)
- Muyuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Lv T, Fan X, He C, Zhu S, Xiong X, Yan W, Liu M, Xu H, Shi R, He Q. SLC7A11-ROS/αKG-AMPK axis regulates liver inflammation through mitophagy and impairs liver fibrosis and NASH progression. Redox Biol 2024; 72:103159. [PMID: 38642501 PMCID: PMC11047786 DOI: 10.1016/j.redox.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
The changes of inflammation and metabolism are two features in nonalcoholic steatohepatitis (NASH). However, how they interact to regulate NASH progression remains largely unknown. Our works have demonstrated the importance of solute carrier family 7 member 11 (SLC7A11) in inflammation and metabolism. Nevertheless, whether SLC7A11 regulates NASH progression through mediating inflammation and metabolism is unclear. In this study, we found that SLC7A11 expression was increased in liver samples from patients with NASH. Upregulated SLC7A11 level was also detected in two murine NASH models. Functional studies showed that SLC7A11 knockdown or knockout had augmented steatohepatitis with suppression of inflammatory markers in mice. However, overexpression of SLC7A11 dramatically alleviated diet-induced NASH pathogenesis. Mechanically, SLC7A11 decreased reactive oxygen species (ROS) level and promoted α-ketoglutarate (αKG)/prolyl hydroxylase (PHD) activity, which activated AMPK pathway. Furthermore, SLC7A11 impaired expression of NLRP3 inflammasome components through AMPK-mitophagy axis. IL-1β release through NLRP3 inflammasome recruited myeloid cells and promoted hepatic stellate cells (HSCs) activation, which contributed to the progression of liver injury and fibrosis. Anti-IL-1β and anakinra might attenuate the hepatic inflammatory response evoked by SLC7A11 knockdown. Moreover, the upregulation of SLC7A11 in NASH was contributed by lipid overload-induced JNK-c-Jun pathway. In conclusions, SLC7A11 acts as a protective factor in controlling the development of NASH. Upregulation of SLC7A11 is protective by regulating oxidation, αKG and energy metabolism, decreasing inflammation and fibrosis.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chang He
- Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suwei Zhu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaofeng Xiong
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Yan
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Qin He
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
10
|
Zhao Y, Xu L, Feng Z, Yin S, Feng W, Yan H. Regulation of Photophysical Behaviors in Hyperbranched Aggregation-Induced Emission Polymers for Reactive Oxygen Species Scavenging. Biomacromolecules 2024; 25:2635-2644. [PMID: 38478586 DOI: 10.1021/acs.biomac.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Developing nonconjugated materials with large Stokes shifts is highly desired. In this work, three kinds of hyperbranched aggregation-induced emission (AIE) polymers with tunable n/π electronic effects were synthesized. HBPSi-CBD contains alkenyl groups in the backbone and possesses a promoted n-π* transition and red-shifted emission wavelength with a large Stokes shift of 186 nm. Experiments and theoretical simulations confirmed that the planar π electrons in the backbone are responsible for the red-shifted emission due to the strong through-space n···π interactions and restricted backbone motions. Additionally, the designed HBPSi-CBD could be utilized as an ROS scavenger after coupling with l-methionine. The HBPSi-Met exhibits remarkable ROS scavenging properties with a scavenging capacity of 77%. This work not only gains further insight into the structure-property relationship of nonconjugated hyperbranched AIE polymers but also provides a promising ROS-scavenging biomaterial for the treatment of ROS-related diseases.
Collapse
Affiliation(s)
- Yan Zhao
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Lei Xu
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Zhixuan Feng
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Sha Yin
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710003, China
| | - Weixu Feng
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| | - Hongxia Yan
- School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Xi'an 710129, China
| |
Collapse
|
11
|
Zhao H, Zhao H, Li M, Tang Y, Xiao X, Cai Y, He F, Huang H, Zhang Y, Li J. Twin defect-rich Pt ultrathin nanowire nanozymes alleviate inflammatory skin diseases by scavenging reactive oxygen species. Redox Biol 2024; 70:103055. [PMID: 38290385 PMCID: PMC10844124 DOI: 10.1016/j.redox.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Nanozymes with superior antioxidant properties offer new hope for treating oxidative stress-related inflammatory skin diseases. However, lacking sufficient catalytic activity or having complex material designs limit the application of current metallic nanozymes in inflammatory skin diseases. Here, we report a simple and effective twin-defect platinum nanowires (Pt NWs) enzyme with multiple mimetic enzymes and broad-spectrum ROS scavenging capability for the treatment of inflammatory skin diseases in mice (including psoriasis and rosacea). Pt NWs with simultaneous superoxide dismutase, glutathione peroxidase and catalase mimetic enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low doses and significantly improve treatment outcomes in psoriasis- and rosacea-like mice. Meanwhile, these ultrasmall sizes of Pt NWs allow the nanomaterials to effectively penetrate the skin and do not produce significant biotoxicity. Therefore, Pt NWs have potential applications in treating diseases related to oxidative stress or inflammation.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
13
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
14
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
15
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
16
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Chen JX, Li L, Cantrell AC, Williams QA, Zeng H. High Glucose Activates Prolyl Hydroxylases and Disrupts HIF-α Signaling via the P53/TIGAR Pathway in Cardiomyocyte. Cells 2023; 12:1060. [PMID: 37048134 PMCID: PMC10093703 DOI: 10.3390/cells12071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of hypoxia tolerance has emerged as a novel therapeutic strategy for the treatment of ischemic diseases. The disruption of hypoxic signaling by hyperglycemia has been shown to contribute to diabetic cardiomyopathy. In this study, we explored the potential molecular mechanisms by which high glucose (HG) impairs hypoxia-inducible factor-α (HIF-α) signaling in cardiomyocytes. The exposure of H9c2 cell lines to HG resulted in time- and concentration-dependent decreases in HIF-1α and HIF-2α expression together with an increase in prolyl hydroxylase-1,2 (PHD1 and PHD2) expression, the main regulators of HIF-α destabilization in the heart. The exposure of H9c2 cells to normal glucose (5.5 mM) and high glucose (15, 30, and 45 mM) led to dose-dependent increases in p53 and TIGAR and a decrease in SIRT3 expression. The pretreatment of H9c2 with p53 siRNA to knockdown p53 attenuated PHD1 and PHD2 expression, thus significantly enhancing HIF-1α and HIF-2α expression in H9c2 cells under HG conditions. Interestingly, pretreatment with p53 siRNA altered H9c2 cell metabolism by reducing oxygen consumption rate and increasing glycolysis. Similarly, pretreatment with TIGAR siRNA blunted HG-induced PHD1 and PHD2 expression. This was accompanied by an increase in HIF-1α and HIF-2α expression with a reduction in oxygen consumption rate in H9c2 cells. Furthermore, pretreatment with adenovirus-SIRT3 (Ad-SIRT3) significantly reduced the HG-induced expression of p53 and PHDs and increased HIF-1α levels in H9c2 cells. Ad-SIRT3 treatment also regulated PHDs-HIF-1α levels in the hearts of diabetic db/db mice. Our study revealed a novel role of the HG-induced disruption of PHDs-HIF-α signaling via upregulating p53 and TIGAR expression. Therefore, the p53/TIGAR signaling pathway may be a novel target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.-X.C.)
| |
Collapse
|
18
|
Tian J, Yang F, Bao X, Jiang Q, Li Y, Yao K, Yin Y. Dietary Alpha-Ketoglutarate Supplementation Improves Bone Growth, Phosphorus Digestion, and Growth Performance in Piglets. Animals (Basel) 2023; 13:569. [PMID: 36830356 PMCID: PMC9951703 DOI: 10.3390/ani13040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Phosphorus (P) pollution from modern swine production is a major environmental problem. Dietary interventions to promote bone growth can improve the utilization of dietary P, and thereby reduce its emission. Recent in vitro studies have shown that alpha-ketoglutarate (AKG) exerts a pro-osteogenic effect on osteoblast cells. This study aimed to evaluate the effects of AKG supplementation on bone growth, P and Ca digestion, and the gut microbial profile in piglets. Thirty-two piglets were randomly assigned into two dietary groups. The piglets were fed a basic diet containing 10 g/kg AKG or 10 g/kg maize starch (control) for 28 days. On days 21-28, titanium dioxide was used as an indicator to determine the apparent digestibility of P. AKG supplementation improved the bone mineral density, length, weight, and geometrical and strength properties of the femur and tibia. Furthermore, AKG supplementation increased apparent ileal and total tract digestibility of P. Colonic microbiota analysis results showed that AKG supplementation increased α-diversity and beneficial bacteria, including Lactobacillus and Clostridium butyricum, and decreased nitrogen fixation and chemoheterotrophy. Together, AKG supplementation improves bone growth, the utilization of dietary P, and the colonic microbial profile, which may provide a nutritional strategy for diminishing P pollution originating from the pig industry.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| |
Collapse
|
19
|
Liu J, Jia B, Li Z, Li W. Reactive oxygen species-responsive polymer drug delivery systems. Front Bioeng Biotechnol 2023; 11:1115603. [PMID: 36815896 PMCID: PMC9932603 DOI: 10.3389/fbioe.2023.1115603] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Applying reactive polymer materials sensitive to biological stimuli has recently attracted extensive research interest. The special physiological effects of reactive oxygen species (ROS) on tumors or inflammation and the application of ROS-responsive polymers as drug-delivery systems in organisms have attracted much attention. ROS is a vital disease signal molecule, and the unique accumulation of ROS-responsive polymers in pathological sites may enable ROS-responsive polymers to deliver payload (such as drugs, ROS-responsive prodrugs, and gene therapy fragments) in a targeted fashion. In this paper, the research progress of ROS-responsive polymers and their application in recent years were summarized and analyzed. The research progress of ROS-responsive polymers was reviewed from the perspective of nanoparticle drug delivery systems, multi-responsive delivery systems, and ROS-responsive hydrogels. It is expected that our work will help understand the future development trends in this field.
Collapse
Affiliation(s)
- Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Boyan Jia
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| |
Collapse
|
20
|
Tian J, Bao X, Yang F, Tang X, Jiang Q, Li Y, Yao K, Yin Y. Elevation of Intracellular Alpha-Ketoglutarate Levels Inhibits Osteoclastogenesis by Suppressing the NF-κB Signaling Pathway in a PHD1-Dependent Manner. Nutrients 2023; 15:nu15030701. [PMID: 36771407 PMCID: PMC9921543 DOI: 10.3390/nu15030701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Age-related osteoporosis, a high-prevalence disease in the aged population, is generally attributed to the excessive activity of osteoclasts. Most approved drugs treat osteoporosis by inhibition of osteoclasts. Although in vivo studies have shown that alpha-ketoglutarate (AKG), an intermediate in the TCA cycle, can ameliorate age-related osteoporosis, the effects of AKG on osteoclastogenesis and the underlying mechanism of its action have not been studied yet. Here, we showed that the elevation of intracellular AKG levels by supplementing dimethyl AKG (DM-AKG, a cell-permeable derivative of AKG) inhibits the receptor activator of NF-κB ligand (RANKL)-induced osteoclasts differentiation from primary bone marrow-derived macrophages (BMMs) and RAW264.7 cells in vitro. We further found that DM-AKG treatment suppresses NF-κB signaling and oxidative phosphorylation (OXPHOS) during RANKL-induced osteoclastogenesis in RAW264.7 cells. Interestingly, dimethyl oxalylglycine (DMOG), an AKG competitive inhibitor of AKG-dependent prolyl hydroxylases (PHDs), antagonizes the suppression of the RANKL-activated NF-κB signaling pathway caused by DM-AKG treatment. Furthermore, blocked PHD1 expression (also known as EglN2), instead of PHD2 or PHD3, was confirmed to reverse the DM-AKG treatment-induced suppression of the RANKL-activated NF-κB signaling pathway. Accordingly, blocked PHD1 expression antagonized the inhibitory effects of DM-AKG on osteoclastogenesis. Together, our finding suggests that the elevation of intracellular AKG levels inhibits osteoclastogenesis by suppressing RANKL-activated NF-κB signaling in a PHD1-dependent manner, which may provide a novel nutritional strategy for osteoporosis treatment.
Collapse
Affiliation(s)
- Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xuetai Bao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Fan Yang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiongzhuo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| | - Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
- Correspondence: (Q.J.); (K.Y.)
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
- Correspondence: (Q.J.); (K.Y.)
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China
| |
Collapse
|
21
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
22
|
Chan YY, Mbenza NM, Chan MC, Leung IKH. Assays to Study Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (PHD2), a Key Human Oxygen Sensing Protein. Methods Mol Biol 2023; 2648:187-206. [PMID: 37039992 DOI: 10.1007/978-1-0716-3080-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Molecular oxygen is essential for all multicellular life forms. In humans, the hypoxia-inducible factor (HIF) prolyl hydroxylase domain-containing enzymes (PHDs) serve as important oxygen sensors by regulating the activity of HIF, the master regulator that mediates cellular oxygen homeostasis, in an oxygen-dependent manner. In normoxia, PHDs catalyze the prolyl hydroxylation of HIF, which leads to its degradation and prevents cellular hypoxic response to be triggered. PHDs are current inhibition targets for the potential treatments of a number of diseases. In this chapter, we discuss in vitro and cell-based methods to study the modulation of PHD2, the most important human PHD isoform in normoxia and mild hypoxia. These include the production and purification of recombinant PHD2, the use of mass spectrometry to follow PHD2-catalyzed reactions and the studies of HIF stabilization in cells by immunoblotting.
Collapse
Affiliation(s)
- Yan Ying Chan
- Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naasson M Mbenza
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mun Chiang Chan
- Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Ivanhoe K H Leung
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
23
|
Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat Commun 2022; 13:7739. [PMID: 36517520 PMCID: PMC9751304 DOI: 10.1038/s41467-022-35472-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular accumulation of reactive oxygen species (ROS) leads to oxidative stress, which is closely associated with many diseases. Introducing artificial organelles to ROS-imbalanced cells is a promising solution, but this route requires nanoscale particles for efficient cell uptake and micro-scale particles for long-term cell retention, which meets a dilemma. Herein, we report a deoxyribonucleic acid (DNA)-ceria nanocomplex-based dynamic assembly system to realize the intracellular in-situ construction of artificial peroxisomes (AP). The DNA-ceria nanocomplex is synthesized from branched DNA with i-motif structure that responds to the acidic lysosomal environment, triggering transformation from the nanoscale into bulk-scale AP. The initial nanoscale of the nanocomplex facilitates cellular uptake, and the bulk-scale of AP supports cellular retention. AP exhibits enzyme-like catalysis activities, serving as ROS eliminator, scavenging ROS by decomposing H2O2 into O2 and H2O. In living cells, AP efficiently regulates intracellular ROS level and resists GSH consumption, preventing cells from redox dyshomeostasis. With the protection of AP, cytoskeleton integrity, mitochondrial membrane potential, calcium concentration and ATPase activity are maintained under oxidative stress, and thus the energy of cell migration is preserved. As a result, AP inhibits cell apoptosis, reducing cell mortality through ROS elimination.
Collapse
|
24
|
Cellular Mechanisms Mediating the Antinociceptive Effect of Botulinum Toxin A in a Rodent Model of Trigeminal Irritation by a Foreign Body. THE JOURNAL OF PAIN 2022; 23:2070-2079. [PMID: 36087907 DOI: 10.1016/j.jpain.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
Although numerous studies have described botulinum toxin type A (BTX-A) efficacy against trigeminal neuralgia (TN), the underlying cellular mechanisms remain unclear. We have investigated cellular mechanisms that mediate the antinociceptive effect of BTX-A in a rodent model of TN produced by compression of the trigeminal nerve root (TNR). Anesthetized male Sprague-Dawley rats were fixed in a stereotaxic instrument and compression of the TNR was then achieved with a 4% agar solution. This model produced a significant mechanical allodynia and increased the expression of hypoxia-inducible factor (HIF)-1α and cytokines levels including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the trigeminal ganglion (TG) by postoperative day (POD) 7. Single or double treatments with a high BTX-A dose (3 U/kg) led to significantly prolonged antinociceptive effects. Furthermore, a single treatment with BTX-A (3 U/kg) significantly suppressed the upregulation of HIF-1α expression and IL-1β, IL-6, and TNF-α concentrations in the TG. Intraganglionic injection of PX-12, a HIF-1α inhibitor, led to significant anti-allodynic effects and lowered the IL-1β, IL-6, and TNF-α levels in the TG. These findings indicate that the antinociceptive effect of BTX-A is mediated via HIF-1α associated cytokines modulation in the TG and is therefore a potentially relevant treatment strategy for TN. PERSPECTIVE: The antinociceptive properties of BTX-A in a rat model of trigeminal neuralgia are mediated through the regulation of the HIF-1α associated cytokine pathway in the trigeminal ganglion. BTX-A is therefore a potentially effective treatment strategy for trigeminal neuralgia.
Collapse
|
25
|
Sonoda K, Ujike S, Katayama A, Suzuki N, Kawaguchi SI, Tsujita T. Improving lipophilicity of 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid increases its efficacy to activate hypoxia-inducible factors. Bioorg Med Chem 2022; 73:117039. [PMID: 36198217 DOI: 10.1016/j.bmc.2022.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Hypoxia-inducible factor (HIF) activators aid the treatment of renal anemia and ischemia. Recently, PyrzA (5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid), a HIF activator by PHD inhibition without a 2-oxoglutarate moiety was reported. However, PyrzA has low lipophilicity, and it was necessary to improve its solubility by synthesizing derivatives. In this study, we synthesized and evaluated a higher lipophilic derivative of PyrzA and found that it exhibited higher HIF activity and stabilizing ability at low concentrations compared to Roxadustat, a commercially available HIF activator.
Collapse
Affiliation(s)
- Kento Sonoda
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine; Applied Oxygen Physiology Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.
| |
Collapse
|
26
|
Lin W, Hu K, Li C, Pu W, Yan X, Chen H, Hu H, Deng H, Zhang J. A Multi-Bioactive Nanomicelle-Based "One Stone for Multiple Birds" Strategy for Precision Therapy of Abdominal Aortic Aneurysms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204455. [PMID: 36085560 DOI: 10.1002/adma.202204455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abdominal aortic aneurysm (AAA) remains a lethal aortic disease in the elderly. Currently, no effective drugs can be clinically applied to prevent the development of AAA. Herein, a "one stone for multiple birds" strategy for AAA therapy is reported. As a proof of concept, three bioactive conjugates are designed and synthesized, which can assemble into nanomicelles. Cellularly, these nanomicelles significantly inhibit migration and activation of inflammatory cells as well as protect vascular smooth muscle cells (VSMCs) from induced oxidative stress, calcification and apoptosis, with the best effect for nanomicelles (TPTN) derived from a conjugate defined as TPT. After intravenous delivery, TPTN efficiently accumulates in the aneurysmal tissue of AAA rats, showing notable distribution in neutrophils, macrophages and VSMCs, all relevant to AAA pathogenesis. Whereas three examined nanomicelles effectively delay expansion of AAA in rats, TPTN most potently prevents AAA growth by simultaneously normalizing the pro-inflammatory microenvironment and regulating multiple pathological cells. TPTN is effective even at 0.2 mg kg-1 . Besides, TPTN can function as a bioactive nanoplatform for site-specifically delivering and triggerably releasing anti-aneurysmal drugs, affording synergistic therapeutic effects. Consequently, TPTN is a promising multi-bioactive nanotherapy and bioresponsive targeting delivery nanocarrier for effective therapy of AAA and other inflammatory vascular diseases.
Collapse
Affiliation(s)
- Wenjie Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xinhao Yan
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi Province, 723000, China
| | - Haiyan Chen
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Houyuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
27
|
Zhang J, Si J, Liang R, Lu Y, Shang H, Li X, Sun S, Wu LA. Ligand-gated ion channel P2X7 regulates hypoxia-induced factor-1α mediated pain induced by dental pulpitis in the medullary dorsal horn. Front Mol Neurosci 2022; 15:1015751. [PMID: 36385758 PMCID: PMC9644926 DOI: 10.3389/fnmol.2022.1015751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Dental pulpitis often induces severe pain, and the molecular immune response is remarkable in both peripheral and central nervous system. Accumulating evidence indicates that activated microglia in the medullary dorsal horn (MDH) contribute to dental pulpitis induced pain. The P2X7 receptor plays an important role in driving pain and inflammatory processes, and its downstream target hypoxia-induced factor-1α (HIF-1α) has a crucial role in maintaining inflammation. However, the relationship between P2X7 and HIF-1α in dental inflammatory pain remains unclear. This study demonstrated that the degree of inflammation in the dental pulp tissue became more severe in a time-dependent manner by establishing a rat dental pulpitis model via pulp exposure. Meanwhile, the expression of P2X7, HIF-1α, IL-1β, and IL-18 in the MDH increased most on the seventh day when the pain threshold was the lowest in the dental pulpitis model. Furthermore, lipopolysaccharides (LPS) increased P2X7-mediated HIF-1α expression in microglia. Notably, the suppression of P2X7 caused less IL-1β and IL-18 release and lower HIF-1α expression, and P2X7 antagonist Brilliant Blue G (BBG) could alleviate pain behaviors of the dental pulpitis rats. In conclusion, our results provide further evidence that P2X7 is a key molecule, which regulates HIF-1α expression and inflammation in dental pulpitis-induced pain.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jialin Si
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Rongrong Liang
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yuxin Lu
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Hongwei Shang
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Xinwei Li
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shukai Sun
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Shukai Sun,
| | - Li-an Wu
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Li-an Wu,
| |
Collapse
|
28
|
Amara R, Zeineh N, Monga S, Weizman A, Gavish M. The Effect of the Classical TSPO Ligand PK 11195 on In Vitro Cobalt Chloride Model of Hypoxia-like Condition in Lung and Brain Cell Lines. Biomolecules 2022; 12:1397. [PMID: 36291606 PMCID: PMC9599342 DOI: 10.3390/biom12101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial translocator protein (TSPO) is a modulator of the apoptotic pathway involving reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) collapse, activation of caspases, and eventually initiation of the apoptotic process. In this in vitro study, H1299 lung cells and BV-2 microglial cells were exposed to the hypoxia-like effect of CoCl2 with or without PK 11195. Exposing the H1299 cells to 0.5 mM CoCl2 for 24 h resulted in decreases in cell viability (63%, p < 0.05), elevation of cardiolipin peroxidation levels (38%, p < 0.05), mitochondrial membrane potential depolarization (13%, p < 0.001), and apoptotic cell death (117%, p < 0.05). Pretreatment with PK 11195 (25 µM) exhibited significant protective capacity on CoCl2-induced alterations in the mentioned processes. Exposure of BV-2 cells to increasing concentrations of CoCl2 (0.3, 0.5, 0.7 mM) for 4 h resulted in alterations in the same cellular processes. These alterations were obtained in a dose-dependent manner, except the changes in caspases 3 and 9. The novel ligands as well as PK 1195 attenuated the in vitro hypoxia-like effects of CoCl2. It appears that the TSPO ligand PK 11195 can prevent CoCl2-induced cellular damage in both non-neuronal and brain cell lines, and they may offer a novel approach to the treatment of hypoxia-related lung and brain diseases in some cases that fail to respond to conventional therapies.
Collapse
Affiliation(s)
- Rula Amara
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Nidal Zeineh
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sheelu Monga
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Research Unit, Geha Mental Health Center and Felsenstein Medical Research Center, Petah Tikva 4910002, Israel
| | - Moshe Gavish
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
29
|
Ruan W, Ma X, Bang IH, Liang Y, Muehlschlegel JD, Tsai KL, Mills TW, Yuan X, Eltzschig HK. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022; 10:1939. [PMID: 36009485 PMCID: PMC9405579 DOI: 10.3390/biomedicines10081939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite increasing availability and more successful interventional approaches to restore coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic, thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional consequences of HIF stabilization include increases in extracellular production and signaling effects of adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy for patients with acute myocardial infarction, or undergoing cardiac surgery.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinxin Ma
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - In Hyuk Bang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jochen Daniel Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
30
|
Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, Zhang H, Du Y, Wei H. A Valence‐Engineered Self‐Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angew Chem Int Ed Engl 2022; 61:e202201101. [DOI: 10.1002/anie.202201101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Wang
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
| | - Chaoqun Cheng
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
| | - Sheng Zhao
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yihong Zhang
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
| | - Wanling Liu
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
| | - Xiaozhi Zhao
- Department of Urology Drum Tower Hospital Medical School of Nanjing University Institute of Urology Nanjing University Nanjing Jiangsu 210008 China
| | - He Zhang
- Department of Periodontology Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu 210093 China
| | - Jun Pu
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Shuo Zhang
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
- Collaborative Innovation Center of Advanced Microstructures and Institute of Materials Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Huigang Zhang
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
- Collaborative Innovation Center of Advanced Microstructures and Institute of Materials Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Hui Wei
- College of Engineering and Applied Sciences Nanjing National Laboratory of Microstructures Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing Jiangsu 210023 China
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
31
|
Lee S, Lee J, Batjikh I, Yu H, Kang SH. Ultrasensitive Hypoxia Sensing at the Single-Molecule Level via Super-Resolution Quantum Dot-Linked Immunosandwich Assay. ACS Sens 2022; 7:1372-1380. [PMID: 35437012 DOI: 10.1021/acssensors.1c02572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activated hypoxia-inducible factor-1alpha (HIF-1α) plays an important role in the adaptive response of tumor cells to oxygen changes through the transcriptional activation of genes that regulate important biological processes required for tumor survival and progression. In this study, we developed an ultrasensitive hypoxia sensor based on read-out with quantum dots on a gold nanodisc (quantum dot-linked immunosandwich assay, QLISA) with excellent selectivity for HIF-1α. The immunoassay platform was established by comparing the immune response results using Qdot525 as a detection nanoprobe instead of a fluorescent dye (Alexa488) (fluorescent-linked immunosandwich assay, FLISA). In addition, using three-dimensional total internal reflection fluorescence microscopy, the platform was optically sectioned along the z-axis at 10 nm intervals to compare the height difference between the nanodisc and the nanoprobe following the QLISA and FLISA procedures and to localize the target location. Here, the super-resolution QLISA (srQLISA)-based hypoxia sensor exhibited high accuracy and precision for the detection of HIF-1α-extracted samples in cancer spheroids compared with the super-resolution FLISA (srFLISA) method. The developed nanobiosensor method demonstrated a wide dynamic linear detection range of 32.2 zM-8.0 pM with a limit of detection of 16 zM under optimal experimental conditions for HIF-1α, an approximate 106-fold enhanced detection sensitivity compared with the conventional enzyme-linked immunosorbent assay method based on absorbance. The detection of HIF-1α using the newly developed srQLISA sensor allows for independently predicting tumor progression and early cancer onset increases in the microvasculature density of tumor lesions.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Junghwa Lee
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Indra Batjikh
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyunung Yu
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
32
|
Sonoda K, Bogahawatta S, Katayama A, Ujike S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi SI, Tsujita T. Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacol Transl Sci 2022; 5:362-372. [PMID: 35592438 PMCID: PMC9112412 DOI: 10.1021/acsptsci.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-α (HIF-α) activation has shown promising results in the treatment of ischemia, such as stroke, myocardial infarction, and chronic kidney disease. A number of HIF-α activators have been developed to improve the symptoms of these diseases. Many feature 2-oxoglutarate (2-OG) scaffolds that interact with the active centers of prolyl hydroxylase domain-containing proteins (PHDs), displacing the coenzyme 2-OG. This stabilizes HIF-α. Therefore, the specificity of the 2-OG analogs is not high. Here, we identified 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (PyrzA) among over 10 000 compounds as a novel HIF activator that does not contain a 2-OG scaffold. In cultured cells, PyrzA enhanced HIF-α stability and upregulated the expression of HIF target genes. Interestingly, PyrzA decreased HIF-1α prolyl hydroxylation, suggesting that PyrzA may activate HIF to prevent the degradation of HIF-α. These results indicate that PyrzA stabilizes HIF via a novel mechanism and could be a potential HIF activator candidate.
Collapse
Affiliation(s)
- Kento Sonoda
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Sudarma Bogahawatta
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Sae Kuroki
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Naho Kitagawa
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kohichi Hirotsuru
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
33
|
Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, Zhang H, Du Y, Wei H. A Valence‐Engineered Self‐Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Quanyi Liu
- CAS CIAC: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences SKLEAC CHINA
| | | | | | | | - He Zhang
- Nanjing University Medical School Affiliated Stomatological Hospital: Nanjing Stomatological Hospital MED SCHOOL CHINA
| | - Jun Pu
- Anhui University CHEM CHINA
| | | | | | - Yan Du
- CIAC: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences SKLEAC CHINA
| | - Hui Wei
- Nanjing University Biomedical Engineering 22 Hankou Rd 210093 Nanjing CHINA
| |
Collapse
|
34
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Wolf D, Muralidharan A, Mohan S. Role of prolyl hydroxylase domain proteins in bone metabolism. Osteoporos Sarcopenia 2022; 8:1-10. [PMID: 35415275 PMCID: PMC8987327 DOI: 10.1016/j.afos.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022] Open
Abstract
Cellular metabolism requires dissolved oxygen gas. Because evolutionary refinements have constrained mammalian dissolved oxygen levels, intracellular oxygen sensors are vital for optimizing the bioenergetic and biosynthetic use of dissolved oxygen. Prolyl hydroxylase domain (PHD) homologs 1-3 (PHD1/2/3) are molecular oxygen dependent non-heme dioxygenases whose enzymatic activity is regulated by the concentration of dissolved oxygen. PHD oxygen dependency has evolved into an important intracellular oxygen sensor. The most well studied mechanism of PHD oxygen-sensing is its regulation of the hypoxia-inducible factor (HIF) hypoxia signaling pathway. Heterodimeric HIF transcription factor activity is regulated post-translationally by selective PHD proline hydroxylation of its HIF1α subunit, accelerating HIF1α ubiquitination and proteasomal degradation, preventing HIF heterodimer assembly, nuclear accumulation, and activation of its target oxygen homeostasis genes. Phd2 has been shown to be the key isoform responsible for HIF1α subunit regulation in many cell types and accordingly disruption of the Phd2 gene results in embryonic lethality. In bone cells Phd2 is expressed in high abundance and tightly regulated. Conditional disruption of the Phd1, Phd2 and/or Phd3 gene in various bone cell types using different Cre drivers reveals a major role for PHD2 in skeletal growth and development. In this review, we will summarize the state of current knowledge on the role and mechanism of action of PHD2 as oxygen sensor in regulating bone metabolism.
Collapse
Affiliation(s)
- David Wolf
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department Biochemistry and Orthopedic Surgery, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
36
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
37
|
Hypoxic preconditioning in renal ischaemia-reperfusion injury: a review in pre-clinical models. Clin Sci (Lond) 2021; 135:2607-2618. [PMID: 34878507 DOI: 10.1042/cs20210615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and chronic kidney disease, which consists of cellular damage and renal dysfunction. AKI is a major complication that is of particular concern after cardiac surgery and to a lesser degree following organ transplantation in the immediate post-transplantation period, leading to delayed graft function. Because effective therapies are still unavailable, several recent studies have explored the potential benefit of hypoxic preconditioning (HPC) on IRI. HPC refers to the acquisition of increased organ tolerance to subsequent ischaemic or severe hypoxic injury, and experimental evidences suggest a potential benefit of HPC. There are three experimental forms of HPC, and, for better clarity, we named them as follows: physical HPC, HPC via treated-cell administration and stabilised hypoxia-inducible factor (HIF)-1α HPC, or mimicked HPC. The purpose of this review is to present the latest developments in the literature on HPC in the context of renal IRI in pre-clinical models. The data we compiled suggest that preconditional activation of hypoxia pathways protects against renal IRI, suggesting that HPC could be used in the treatment of renal IRI in transplantation.
Collapse
|
38
|
Angelini A, Saha PK, Jain A, Jung SY, Mynatt RL, Pi X, Xie L. PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes. Cell Rep 2021; 37:109767. [PMID: 34610308 PMCID: PMC8658754 DOI: 10.1016/j.celrep.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and β-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA β-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Yang YW, Meng X, Meng YY, Tang HK, Cheng MH, Zhang ZQ, Xu WQ, Long W. ceRNA regulatory network of FIH inhibitor as a radioprotector for gastrointestinal toxicity by activating the HIF-1 pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:173-185. [PMID: 34458003 PMCID: PMC8368776 DOI: 10.1016/j.omtn.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Given the relentless renewal ability of intestinal crypt-base stem cells, small intestine in the gastrointestinal (GI) tract is more vulnerable to radiation-induced disruption. Through promoting epithelial integrity and reducing intracellular reactive oxygen species (ROS) levels, hypoxia-inducible factors (HIFs) have been proved to exhibit radioprotective effects in the GI tract. Therefore, enhancing stability or transcriptional activity of HIFs might be a therapeutic strategy for developing radioprotectors. Factor inhibiting HIF (FIH or HIF-1AN) can hamper transcriptional capacity of HIF-1α via interacting with Asn803 in its C-terminal domain. Previously, we discovered promoting HIF-1α transcriptional activity in vitro by FIH inhibitor-N-oxalyl-D-phenylalanine (NOFD) exerts radioprotection on cells. However, the radioprotective effect of FIH inhibitor on the GI tract and its competing endogenous RNA (ceRNA) regulatory network from the FIH/HIF axis has never been addressed. Here we verified radioprotection of NOFD for the GI tract by an animal model and performed whole-transcriptome analysis to fully elucidate the radioprotective mechanism from the FIH/HIF axis against GI syndrome. We identified two novel circular RNAs (circRNAs) (circRNA_2909 and circRNA_0323) and two long non-coding RNAs (lncRNAs) (NONMMUT140549.1 and NONMMUT148249.1) that promote expression of HIF1A and NOS2 in the HIF-1 pathway by sponging microRNAs (miRNAs), especially mmu-miR-92a-1-5p. The de-repression of HIF-1α transcriptional capacity by inhibiting FIH proteomic activity suggests a new therapeutic strategy in alleviating radiation-induced GI syndrome.
Collapse
Affiliation(s)
- Yu-Wei Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xin Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yuan-Yuan Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hai-Kang Tang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Ming-Hui Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Zi-Qi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Wen-Qing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
40
|
Jafari SM, Masoum S, Tafreshi SAH. A microlagal-based carbonaceous sensor for enzymatic determination of glucose in blood serum. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother 2021; 142:111990. [PMID: 34388528 DOI: 10.1016/j.biopha.2021.111990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/11/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound that can be obtained by separation, chemical synthesis and biotransformation from birch. BA has antitumour activity, and its mechanisms of action mainly include the induction of mitochondrial oxidative stress; the regulation of specificity protein transcription factors, and the inhibition of signal transducer and activator of transcription 3 and nuclear factor-κB signalling pathways. In addition, BA can increase the sensitivity of cancer cells to other chemotherapy drugs. Recent studies have shown that BA plays an anticancer role in several kinds of tumour diseases. In this article, the anticancer mechanism of BA and its application in the treatment of tumour diseases are reviewed.
Collapse
|
42
|
Rehman A, John P, Bhatti A. Biogenic Selenium Nanoparticles: Potential Solution to Oxidative Stress Mediated Inflammation in Rheumatoid Arthritis and Associated Complications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2005. [PMID: 34443836 PMCID: PMC8401564 DOI: 10.3390/nano11082005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammation-mediated disorder having systematic complications. RA triggers a self-directed inflammatory and immunological cascade that culminates in joint destruction. Though a range of treatment options are available, none of them are without adverse effects and this has led researchers to search for alternative solutions. Nanomedicine has emerged as a powerful therapeutic alternative, and selenium (Se) is an essential micronutrient trace element that has a crucial role in human health and disease. Selenium nanoparticles (SeNPs) derived from biological sources, such as plants, bacteria, fungi, and proteins, have exhibited remarkable candidate properties and toxicological profiles, and hence have shown potential to be used as antirheumatic agents. The potential of SeNPs can be attributed to the effect of functional groups bound to them, concentration, and most importantly to their nano range size. The antirheumatic effect of SeNPs is considerable due to its potential in amelioration of oxidative stress-mediated inflammation via downregulation of radical and nonradical species, markers of inflammation, and upregulation of inherent antioxidant defenses. The size and concentration impact of SeNPs has been shown in the subsequent antioxidant and anti-inflammatory properties. Moreover, the article emphasizes the role of these biogenic SeNPs as a notable option in the nanomedicine arena that needs to be further studied as a prospective remedial alternative to cure RA and medication-related adverse events.
Collapse
Affiliation(s)
| | - Peter John
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.R.); (A.B.)
| | | |
Collapse
|
43
|
Zenk SF, Hauck S, Mayer D, Grieshober M, Stenger S. Stabilization of Hypoxia-Inducible Factor Promotes Antimicrobial Activity of Human Macrophages Against Mycobacterium tuberculosis. Front Immunol 2021; 12:678354. [PMID: 34149713 PMCID: PMC8206807 DOI: 10.3389/fimmu.2021.678354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a key oxygen sensor that controls gene expression patterns to adapt cellular metabolism to hypoxia. Pharmacological inhibition of prolyl-hydroxylases stabilizes HIFs and mimics hypoxia, leading to increased expression of more than 300 genes. Whether the genetic program initialized by HIFs affects immune responses against microbial pathogens, is not well studied. Recently we showed that hypoxia enhances antimicrobial activity against Mycobacterium tuberculosis (Mtb) in human macrophages. The objective of this study was to evaluate whether the oxygen sensor HIF is involved in hypoxia-mediated antimycobacterial activity. Treatment of Mtb-infected macrophages with the prolyl-hydroxylase inhibitor Molidustat reduced the release of TNFα and IL-10, two key cytokines involved in the immune response in tuberculosis. Molidustat also interferes with the p38 MAP kinase pathway. HIF-stabilization by Molidustat also induced the upregulation of the Vitamin D receptor and human β defensin 2, which define an antimicrobial effector pathway in human macrophages. Consequently, these immunological effects resulted in reduced proliferation of virulent Mtb in human macrophages. Therefore, HIFs may be attractive new candidates for host-directed therapies against infectious diseases caused by intracellular bacteria, including tuberculosis.
Collapse
Affiliation(s)
- Sebastian F Zenk
- Institute of Medical Microbiology and Infection Control, University Hospital Ulm, Ulm, Germany
| | - Sebastian Hauck
- Institute of Medical Microbiology and Infection Control, University Hospital Ulm, Ulm, Germany
| | - Daniel Mayer
- Institute of Medical Microbiology and Infection Control, University Hospital Ulm, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Infection Control, University Hospital Ulm, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Infection Control, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
44
|
Richardson NL, O'Malley LJ, Weissberger D, Tumber A, Schofield CJ, Griffith R, Jones NM, Hunter L. Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorg Med Chem 2021; 38:116115. [PMID: 33862469 DOI: 10.1016/j.bmc.2021.116115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Prolyl hydroxylase (PHD) enzymes play a critical role in the cellular responses to hypoxia through their regulation of the hypoxia inducible factor α (HIF-α) transcription factors. PHD inhibitors show promise for the treatment of diseases including anaemia, cardiovascular disease and stroke. In this work, a pharmacophore-based virtual high throughput screen was used to identify novel potential inhibitors of human PHD2. Two moderately potent new inhibitors were discovered, with IC50 values of 4 μM and 23 μM respectively. Cell-based studies demonstrate that these compounds exhibit protective activity in neuroblastoma cells, suggesting that they have the potential to be developed into clinically useful neuroprotective agents.
Collapse
Affiliation(s)
- Nicole L Richardson
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Laura J O'Malley
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Renate Griffith
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Nicole M Jones
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia.
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
45
|
Zhang Z, Deng M, Huang J, Wu J, Li Z, Xing M, Wang J, Guo Q, Zou W. Microglial annexin A3 downregulation alleviates bone cancer-induced pain through inhibiting the Hif-1α/vascular endothelial growth factor signaling pathway. Pain 2021; 161:2750-2762. [PMID: 32569086 DOI: 10.1097/j.pain.0000000000001962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone cancer-induced pain (BCP) is a challenging clinical problem because traditional therapies are often only partially effective. Annexin A3 (ANXA3) is highly expressed in microglia in the spinal cord, and its expression is upregulated during BCP. However, the roles of microglial ANXA3 in the development and maintenance of BCP and the underlying molecular mechanisms remain unclear. This study was performed on male mice using a metastatic lung BCP model. Adeno-associated virus shANXA3 (AAV-shANXA3) was injected intrathecally 14 days before and 7 days after bone cancer induction, and relevant pain behaviors were assessed by measuring the paw withdrawal mechanical threshold, paw withdrawal thermal latency, and spontaneous hind limb lifting. ANXA3 protein expression was downregulated in microglial N9 cells by lentiviral transfection (LV-shANXA3). ANXA3, hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor (VEGF) expression levels, and Hif-1α transactivation activity regulated by ANXA3 were measured. As a result, ANXA3 was expressed in microglia, and its expression significantly increased during BCP. ANXA3 knockdown reversed pain behaviors but did not prevent pain development. Moreover, ANXA3 knockdown significantly reduced Hif-1α and VEGF expression levels in vitro and in vivo. And overexpression of Hif-1α or VEGF blocked the effects of AAV-shANXA3 on BCP. ANXA3 knockdown in N9 cells significantly decreased the p-PKC protein expression in the cocultured neurons. Finally, ANXA3 overexpression significantly increased Hif-1α transactivation activity in 293T cells. Therefore, microglial ANXA3 downregulation alleviates BCP by inhibiting the Hif-1α/VEGF signaling pathway, which indicates that ANXA3 may be a potential target for the treatment of BCP.
Collapse
Affiliation(s)
- Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
47
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
48
|
Li Y, Yang J, Sun X. Reactive Oxygen Species-Based Nanomaterials for Cancer Therapy. Front Chem 2021; 9:650587. [PMID: 33968899 PMCID: PMC8100441 DOI: 10.3389/fchem.2021.650587] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology advances in cancer therapy applications have led to the development of nanomaterials that generate cytotoxic reactive oxygen species (ROS) specifically in tumor cells. ROS act as a double-edged sword, as they can promote tumorigenesis and proliferation but also trigger cell death by enhancing intracellular oxidative stress. Various nanomaterials function by increasing ROS production in tumor cells and thereby disturbing their redox balance, leading to lipid peroxidation, and oxidative damage of DNA and proteins. In this review, we outline these mechanisms, summarize recent progress in ROS-based nanomaterials, including metal-based nanoparticles, organic nanomaterials, and chemotherapy drug-loaded nanoplatforms, and highlight their biomedical applications in cancer therapy as drug delivery systems (DDSs) or in combination with chemodynamic therapy (CDT), photodynamic therapy (PDT), or sonodynamic therapy (SDT). Finally, we discuss the advantages and limitations of current ROS-mediated nanomaterials used in cancer therapy and speculate on the future progress of this nanotechnology for oncological applications.
Collapse
Affiliation(s)
- Yingbo Li
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jie Yang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Ju C, Wang M, Tak E, Kim B, Emontzpohl C, Yang Y, Yuan X, Kutay H, Liang Y, Hall DR, Dar WA, Bynon JS, Carmeliet P, Ghoshal K, Eltzschig HK. Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance. J Clin Invest 2021; 131:140300. [PMID: 33792566 PMCID: PMC8011886 DOI: 10.1172/jci140300] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatic ischemia and reperfusion (IR) injury contributes to the morbidity and mortality associated with liver transplantation. microRNAs (miRNAs) constitute a family of noncoding RNAs that regulate gene expression at the posttranslational level through the repression of specific target genes. Here, we hypothesized that miRNAs could be targeted to enhance hepatic ischemia tolerance. A miRNA screen in a murine model of hepatic IR injury pointed us toward the liver-specific miRNA miR122. Subsequent studies in mice with hepatocyte-specific deletion of miR122 (miR122loxP/loxP Alb-Cre+ mice) during hepatic ischemia and reperfusion revealed exacerbated liver injury. Transcriptional studies implicated hypoxia-inducible factor-1α (HIF1α) in the induction of miR122 and identified the oxygen-sensing prolyl hydroxylase domain 1 (PHD1) as a miR122 target. Further studies indicated that HIF1α-dependent induction of miR122 participated in a feed-forward pathway for liver protection via the enhancement of hepatic HIF responses through PHD1 repression. Moreover, pharmacologic studies utilizing nanoparticle-mediated miR122 overexpression demonstrated attenuated liver injury. Finally, proof-of-principle studies in patients undergoing orthotopic liver transplantation showed elevated miR122 levels in conjunction with the repression of PHD1 in post-ischemic liver biopsies. Taken together, the present findings provide molecular insight into the functional role of miR122 in enhancing hepatic ischemia tolerance and suggest the potential utility of pharmacologic interventions targeting miR122 to dampen hepatic injury during liver transplantation.
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Huban Kutay
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - David R. Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wasim A. Dar
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J. Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, and
- Center for Cancer Biology, Department of Oncology, Katholieke University Leuven, Leuven, Belgium
| | - Kalpana Ghoshal
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| |
Collapse
|
50
|
A multifunctional nano system based on DNA and CeO 2 for intracellular imaging of miRNA and enhancing photodynamic therapy. Talanta 2021; 221:121554. [PMID: 33076110 DOI: 10.1016/j.talanta.2020.121554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023]
Abstract
An increased content of reactive oxygen species (ROS) is a primary feature of tumor cells. When the new homeostasis established by cancer cells with a high ROS level is destroyed, this leads to oxidative stress and apoptosis. In this study, a composite nanosystem was designed in which the DNA structure with the functions of miRNA detection and drug delivery is connected to CeO2 nanoclusters that exhibit enzyme-like activity to enable them to load drugs together. In addition, based on the concept of sequential catalysis, we used CeO2 to decompose H2O2 into O2 with low cytotoxicity, which provides raw materials for the photodynamic therapy (PDT) of the Cy5 fluorescent group modified on the DNA. Subsequently, this is transformed into highly cytotoxic free radicals (OH), and we used PDT to further stimulate the therapeutic ability of doxorubicin (DOX) to improve its effectiveness in killing cancer cells. This composite nanosystem can perform fluorescence detection for miRNA-21 in vitro, intracellular fluorescence imaging, and PDT treatment, and can enhance the effect of DOX.
Collapse
|