1
|
Li Y, Cai M, Qin Y, Dai X, Liang L, Li Z, Wen X, Jin H, Yang C, Chen Z. MTHFD2 promotes osteoclastogenesis and bone loss in rheumatoid arthritis by enhancing CKMT1-mediated oxidative phosphorylation. BMC Med 2025; 23:124. [PMID: 40016725 PMCID: PMC11866863 DOI: 10.1186/s12916-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by disrupted bone homeostasis. This study investigated the effect and underlying mechanisms of one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) on osteoclast differentiation and bone loss in RA. METHODS The expression of MTHFD2 was examined in CD14 + monocytes and murine bone marrow-derived macrophages (BMMs). RNA-sequencing was performed to evaluate the regulatory mechanisms of MTHFD2 on osteoclastogenesis. Extracellular flux assay, JC-1 staining, and transmission electron microscopy were used to detect mitochondrial function and energy metabolism changes during osteoclast formation. Collagen-induced arthritis (CIA) mice were used to evaluate the therapeutic effect of MTHFD2 knockdown on bone loss. Bone volume and osteoclast counts were quantified by μCT and histomorphometry. RESULTS Elevated MTHFD2 was observed in RA patients and CIA mice with a positive correlation to bone resorption parameters. During osteoclast formation, MTHFD2 was significantly upregulated in both human CD14 + monocytes and murine BMMs. The application of MTHFD2 inhibitor and MTHFD2 knockdown suppressed osteoclastogenesis, while MTHFD2 overexpression promoted osteoclast differentiation in vitro. RNA-sequencing revealed that MTHFD2 inhibition blocked oxidative phosphorylation (OXPHOS) in osteoclasts, leading to decreased adenosine triphosphate (ATP) production and mitochondrial membrane potential without affecting mitochondrial biogenesis. Mechanistically, inhibition of MTHFD2 downregulated the expression of mitochondrial creatine kinase 1 (CKMT1), which in turn affected phosphocreatine energy shuttle and OXPHOS during osteoclastogenesis. Further, a therapeutic strategy to knock down MTHFD2 in knee joint in vivo ameliorated bone loss in CIA mice. CONCLUSIONS Our findings demonstrate that MTHFD2 is upregulated in RA with relation to joint destruction. MTHFD2 promotes osteoclast differentiation and arthritic bone erosion by enhancing mitochondrial energy metabolism through CKMT1. Thus, targeting MTHFD2 may provide a potential new therapeutic strategy for tackling osteoclastogenesis and bone loss in RA.
Collapse
Affiliation(s)
- Yujing Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Minglong Cai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yi Qin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaojuan Dai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Liyuan Liang
- The MED-X Institute, Center for Cancer Precision Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Zhenyu Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xi Wen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huizhi Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chao Yang
- Department of Rheumatology and Immunology and The MED-X institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China.
| | - Zhu Chen
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Lee Y, Lee HJ, Kim KJ, Shin HB, Shin YA, Jin H, Ham JR, Choi SY, Lee MJ, Lee MK, Son YJ. "Betaone" barley water extract suppresses ovariectomy-induced osteoporosis in vivo and RANKL-induced osteoclast differentiation in vitro. PLoS One 2025; 20:e0317894. [PMID: 39982961 PMCID: PMC11844866 DOI: 10.1371/journal.pone.0317894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/05/2025] [Indexed: 02/23/2025] Open
Abstract
Betaone is a variety of barley developed by the Korea Rural Development Administration. This study investigated the anti-osteoporosis effects of Betaone barley water extract (B1W) on ovariectomy (OVX)-induced bone loss in mice. To elucidate its mechanism, the effect of B1W on osteoclasts was assessed by measuring the protein expression of nuclear factor-activated T cells c1 (NFATc1), the expression of genes involved in osteoclast differentiation, and bone pit assays. B1W (300 mg/kg/day) significantly increased bone mineral density and bone volume fraction, but decreased trabecular separation compared to the OVX group. B1W also showed a trend towards decreasing serum C-telopeptide of collagen type 1 levels in OVX mice. Additionally, B1W reduced the expression of NFATc1 and downregulated the mRNA expression levels of various marker genes such as c-Fos, tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated Ig-like receptor (OSCAR). B1W reduced the osteoclast activity in the receptor activator of nuclear factor-κB ligand (RANKL)-treated osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Based on the results, B1W can be considered a useful candidate for a therapeutic agent for treating conditions of bone loss and could also be used as an ingredient in health supplements.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Nutritional Science & Food Management, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyun-Jin Lee
- The DABOM Inc, Seodaemun-gu, Seoul, Republic of Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Han-Byeol Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Yoon-A Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Holim Jin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Ju Ri Ham
- Mokpo Marin Food-Industry Research Center, Mokpo-si, Jeollanam-do, Republic of Korea
| | - Soo-Young Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Mi-Ja Lee
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration (RDA), Wanju-si, Jeollabuk-do, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| |
Collapse
|
3
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhang L, Jiao G, You Y, Li X, Liu J, Sun Z, Li Q, Dai Z, Ma J, Zhou H, Li G, Meng C, Chen Y. Arginine methylation of PPP1CA by CARM1 regulates glucose metabolism and affects osteogenic differentiation and osteoclastic differentiation. Clin Transl Med 2023; 13:e1369. [PMID: 37649137 PMCID: PMC10468565 DOI: 10.1002/ctm2.1369] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The imbalance between osteoblasts and osteoclasts may lead to osteoporosis. Osteoblasts and osteoclasts have different energy requirements, with aerobic glycolysis being the prominent metabolic feature of osteoblasts, while osteoclast differentiation and fusion are driven by oxidative phosphorylation. METHODS By polymerase chain reaction as well as Western blotting, we assayed coactivator-associated arginine methyltransferase 1 (CARM1) expression in bone tissue, the mouse precranial osteoblast cell line MC3T3-E1 and the mouse monocyte macrophage leukaemia cell line RAW264.7, and expression of related genes during osteogenic differentiation and osteoclast differentiation. Using gene overexpression (lentivirus) and loss-of-function approach (CRISPR/Cas9-mediated knockout) in vitro, we examined whether CARM1 regulates osteogenic differentiation and osteoblast differentiation by metabolic regulation. Transcriptomic assays and metabolomic assays were used to find the mechanism of action of CARM1. Furthermore, in vitro methylation assays were applied to clarify the arginine methylation site of PPP1CA by CARM1. RESULTS We discovered that CARM1 reprogrammed glucose metabolism in osteoblasts and osteoclasts from oxidative phosphorylation to aerobic glycolysis, thereby promoting osteogenic differentiation and inhibiting osteoclastic differentiation. In vivo experiments revealed that CARM1 significantly decreased bone loss in osteoporosis model mice. Mechanistically, CARM1 methylated R23 of PPP1CA, affected the dephosphorylation of AKT-T450 and AMPK-T172, and increased the activities of phosphofructokinase-1 and pructose-2,6-biphosphatase3, causing an up-regulation of glycolytic flux. At the same time, as a transcriptional coactivator, CARM1 regulated the expression of pyruvate dehydrogenase kinase 3, which resulted in the inhibition of pyruvate dehydrogenase activity and inhibition of the tricarboxylic acid cycle, leading to a subsequent decrease in the flux of oxidative phosphorylation. CONCLUSIONS These findings reveal for the first time the mechanism by which CARM1 affects both osteogenesis and osteoclast differentiation through metabolic regulation, which may represent a new feasible treatment strategy for osteoporosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of MicroorthopaedicsAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanShandongChina
- Department of Spine SurgeryAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Guangjun Jiao
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| | - Yunhao You
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Xiang Li
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Jincheng Liu
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Zhenqian Sun
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Qinghui Li
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Zihan Dai
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Jinlong Ma
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
- Department of OrthopaedicsThe First Clinical College of Shandong UniversityJinanShandongChina
| | - Hongming Zhou
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of Spine SurgeryLinyi Central HospitalLinyiShandongChina
| | - Gang Li
- Department of MicroorthopaedicsAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanShandongChina
| | - Chunyang Meng
- Department of Spine SurgeryAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Yunzhen Chen
- Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
5
|
Lee Y, Kantayos V, Kim JS, Rha ES, Son YJ, Baek SH. Inhibitory Effects of Protopanaxadiol-Producing Transgenic Rice Seed Extracts on RANKL-Induced Osteoclast Differentiation. Life (Basel) 2022; 12:1886. [PMID: 36431021 PMCID: PMC9694809 DOI: 10.3390/life12111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Osteoporosis is a disease in which bones are weakened and fractured easily because of various factors. It is mainly observed in elderly and postmenopausal women, and it continues to carry high economic costs in aging societies. Normal bone maintains a healthy state through a balanced process of osteoclast suppression and osteoblast activation; (2) Methods: In this study, osteoclast inhibition was induced by inhibiting osteoclast differentiation using ginseng protopanaxadiol-enriched rice (PPD-rice) seed extract. To analyze the effect of PPD-rice extract on the inhibition of osteoclast differentiation, bone marrow macrophages extracted from mice were treated with PPD-rice and Dongjin seed (non-transformed rice) extracts and analyzed for the inhibition of osteoclast differentiation; (3) Results: The results illustrated that PPD-rice extract reduced the transcription and translation of NFATc1, a modulator of osteoclast formation, decreased the mRNA expression of various osteoclast differentiation marker genes, and reduced osteoclast activity. Moreover, the bone resorptive activity of osteoclasts was diminished by PPD-rice extract on Osteo Assay plates; (4) Conclusions: Based on these results, PPD-rice extract is a useful candidate therapeutic agent for suppressing osteoclasts, an important component of osteoporosis, and it could be used as an ingredient in health supplements.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Vipada Kantayos
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Eui-Shik Rha
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
6
|
Lee Y, Lee HJ, Shin HB, Ham JR, Lee MK, Lee MJ, Son YJ. Triphenyl hexene, an active substance of Betaone barley water extract, inhibits RANKL-induced osteoclast differentiation and LPS-induced osteoporosis. J Funct Foods 2022; 92:105037. [DOI: 10.1016/j.jff.2022.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Kovar H, Bierbaumer L, Radic-Sarikas B. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Cells 2020; 9:E972. [PMID: 32326412 PMCID: PMC7227004 DOI: 10.3390/cells9040972] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
YAP and TAZ are intracellular messengers communicating multiple interacting extracellular biophysical and biochemical cues to the transcription apparatus in the nucleus and back to the cell/tissue microenvironment interface through the regulation of cytoskeletal and extracellular matrix components. Their activity is negatively and positively controlled by multiple phosphorylation events. Phenotypically, they serve an important role in cellular plasticity and lineage determination during development. As they regulate self-renewal, proliferation, migration, invasion and differentiation of stem cells, perturbed expression of YAP/TAZ signaling components play important roles in tumorigenesis and metastasis. Despite their high structural similarity, YAP and TAZ are functionally not identical and may play distinct cell type and differentiation stage-specific roles mediated by a diversity of downstream effectors and upstream regulatory molecules. However, YAP and TAZ are frequently looked at as functionally redundant and are not sufficiently discriminated in the scientific literature. As the extracellular matrix composition and mechanosignaling are of particular relevance in bone formation during embryogenesis, post-natal bone elongation and bone regeneration, YAP/TAZ are believed to have critical functions in these processes. Depending on the differentiation stage of mesenchymal stem cells during endochondral bone development, YAP and TAZ serve distinct roles, which are also reflected in bone tumors arising from the mesenchymal lineage at different developmental stages. Efforts to clinically translate the wealth of available knowledge of the pathway for cancer diagnostic and therapeutic purposes focus mainly on YAP and TAZ expression and their role as transcriptional co-activators of TEAD transcription factors but rarely consider the expression and activity of pathway modulatory components and other transcriptional partners of YAP and TAZ. As there is a growing body of evidence for YAP and TAZ as potential therapeutic targets in several cancers, we here interrogate the applicability of this concept to bone tumors. To this end, this review aims to summarize our current knowledge of YAP and TAZ in cell plasticity, normal bone development and bone cancer.
Collapse
Affiliation(s)
- Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa Bierbaumer
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| |
Collapse
|
9
|
Liu FL, Chen CL, Lai CC, Lee CC, Chang DM. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153195. [PMID: 32200293 DOI: 10.1016/j.phymed.2020.153195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Areca nut has anti-inflammatory, antiparasitic, antihypertensive, and antidepressant properties. The pathological hallmarks of inflammatory joint diseases are an increased number of osteoclasts and impaired differentiation of osteoblasts, which may disrupt the bone remodeling balance and eventually lead to bone loss. PURPOSE The present study assessed the effects of arecoline, the main alkaloid found in areca nut, on osteoclast and osteoblast differentiation and function. METHOD M-CSF/RANKL-stimulated murine bone marrow-derived macrophages (BMMs) were incubated with several concentrations of arecoline, and TRAP staining and pit formation were assessed to monitor osteoclast formation. Quantitative real-time RT-PCR and western blot analyses were used to analyze the expression of osteoclast-associated genes and signaling pathways. The effects of arecoline on bone were investigated in an in vivo mouse model of lipopolysaccharide (LPS)-induced trabecular bone loss after oral administration of arecoline. Alizarin red S staining and assays to measure ALP activity and the transcription level of osteoblast-related genes were used to evaluate the effects of arecoline on osteoblast differentiation and bone mineralization. RESULTS In a dose-dependent manner, arecoline at concentrations of 50-100 μM reduced both the development of TRAP-positive multinucleated osteoclasts and the formation of resorption pits in M-CSF/RANKL-stimulated BMMs. In M-CSF/RANKL-stimulated BMMs, arecoline also suppressed the expression and translocation of c-Fos and NFATcl, and osteoclast differentiated-related genes via interference with the AKT, MAPK, and NF-kB activation pathways. Femur bone loss and microcomputed tomography parameters were recovered by oral administration of arecoline in the mouse LPS-induced bone loss model. Lastly, arecoline increased ALP activity, bone mineralization, and the expression of osteoblast differentiation-related genes, such as ALP and Runx2, in MC3T3-E1 cells. CONCLUSION Our data suggest that arecoline may attenuate or prevent bone loss by suppressing osteoclastogenesis and promoting osteoblastogenesis. These findings provide evidence supporting arecoline's use as a potential therapeutic agent in bone-loss disorders and diseases.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Biobank Management Center of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chih Lai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Deh-Ming Chang
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Kim KJ, Lee Y, Son SR, Lee H, Son YJ, Lee MK, Lee M. Water Extracts of Hull-less Waxy Barley ( Hordeum vulgare L.) Cultivar 'Boseokchal' Inhibit RANKL-induced Osteoclastogenesis. Molecules 2019; 24:3735. [PMID: 31623242 PMCID: PMC6832910 DOI: 10.3390/molecules24203735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a disease that leads to reduced bone mineral density. The increase in patient and medical costs because of global aging is recognized as a problem. Decreased bone mass is a common symptom of bone diseases such as Paget's disease, rheumatoid arthritis, and multiple myeloma. Osteoclasts, which directly affect bone mass, show a marked increase in differentiation and activation in the aforementioned diseases. Moreover, these multinucleated cells made from monocytes/macrophages under the influence of RANKL and M-CSF, are the only cells capable of resorbing bones. In this study, we found that the water extracts of Boseokchal (BSC-W) inhibited osteoclast differentiation in vitro and investigated its inhibitory mechanism. BSC-W was obtained by extracting flour of Boseokchal using hexane and water. To osteoclast differentiation, bone marrow-derived macrophage cells (BMMs) were cultured with the vehicle (0.1% DMSO) or BSC-W in the presence of M-CSF and RANKL for 4 days. Cytotoxicity was measured by CCK-8. Gene expression of cells was confirmed by real-time PCR. Protein expression of cells was observed by western blot assay. Bone resorption activity of osteoclast evaluated by bone pit formation assay using an Osteo Assay Plate. BSC-W inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner without exerting a cytotoxic effect on BMMs. BSC-W decreased the transcriptional and translational expression of c-Fos and NFATc1, which are regulators of osteoclastogenesis and reduced the mRNA expression level of TRAP, DC-STAMP, and cathepsin K, which are osteoclast differentiation marker. Furthermore, BSC-W reduced the resorption activity of osteoclasts. Taken together, our results indicate that BSC-W is a useful candidate for health functional foods or therapeutic agents that can help treat bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - So-Ri Son
- Department of Biomedical Science and technology, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Hyunjin Lee
- Department of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Jeonnam, Suncheon 57922, Korea.
| | - Mija Lee
- Department of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| |
Collapse
|
11
|
Aoun S, Bennour H. A novel hydroxy-bisphosphonic acid prodrug as a candidate for the delivery of ibuprofen to bone. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1671454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sameh Aoun
- Organic Chemistry Department, Université Libre de Tunis, Tunis, Tunisia
| | - Haythem Bennour
- Organic Chemistry Department, Université Libre de Tunis, Tunis, Tunisia
| |
Collapse
|
12
|
Kim M, Kang JH, Oh GH, Park MH. Ishige sinicola extract stimulates osteoblast proliferation and differentiation via the bone morphogenetic protein 2/runt-related gene 2 signalling pathway. Z NATURFORSCH C 2019; 74:167-174. [PMID: 31085751 DOI: 10.1515/znc-2018-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/16/2019] [Indexed: 12/17/2023]
Abstract
Osteoporosis is one of the most common bone diseases, occurring due to an imbalance between bone formation and bone resorption. The aim of this study was to investigate the effects of Ishige sinicola, a brown alga, on osteoblast differentiation through the activation of the bone morphogenetic protein 2 (BMP-2)/runt-related transcription factor 2 (Runx2) signalling pathway in MC3T3-E1 cells. A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining, and expression analysis of osteoblastic genes were carried out to assess MC3T3-E1 cell proliferation and osteoblastic differentiation. We found that I. sinicola extract (ISE) increased cell proliferation in a dose-dependent manner. Ishige sinicola extract markedly promoted ALP activity and mineralization. Alizarin red S staining demonstrated that ISE treatment tended to increase extracellular matrix calcium accumulation. Moreover, ISE up-regulated the osteoprotegerin/receptor activator of nuclear factor κB ligand ratio. Ishige sinicola extract also increased the protein expression levels of type 1 collagen, ALP, osteocalcin, osterix, BMP-2, and Runx2. Therefore, ISE showed potential in stimulating osteoblastic bone formation, and it might be useful for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea
| | - Jeong Hyeon Kang
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea
| | - Geun Hye Oh
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea
| | - Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea, Phone: +82-51-999-5908, Fax: +82-51-999-5457
| |
Collapse
|
13
|
Yu X, Shen G, Ren H, Zhang Z, Shang Q, Zhao W, Huang J, Yang Z, Liang D, Jiang X. TGFβ-induced factor homeobox 2 blocks osteoblastic differentiation through targeting pSmad3/HDAC4/H4ac/Runx2 axis. J Cell Physiol 2019; 234:21284-21293. [PMID: 31066043 DOI: 10.1002/jcp.28733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
Abstract
TGFβ-induced factor homeobox 2 (Tgif2) has been reported as a functional role in cell homeostasis and a key activator of osteoclastogenesis and bone loss, as well. In the present study, we aimed to investigate the potential role of Tgif2 on osteogenic differentiation. Tgif2 expression was assessed during the osteogenic differentiation process of bone marrow-derived mesenchymal stem cells (BMSCs) and primary calvarial osteoblasts (OBs). The expression of Tgif2 in BMSCs and OBs increased by using lentivirus-mediated gene overexpression (OE). The effect of Tgif2 on osteogenic differentiation was compared between Tgif2 negative control (Tgif2-NC) and Tgif2-OE group in BMSCs/OBs via performing alkaline phosphatase (ALP) assay, mineralization assay, and gene expression analysis of some osteogenic markers. To investigate the molecular mechanism, the direct interaction of histone deacetylase 4 (HDAC4) and pSmad3, acetylated histone H4 (H4ac), and Runx2-binding site of the Ocn promoter was confirmed by performing co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assay, respectively. The results showed that Tgif2 abundantly expressed in BMSCs and primary calvarial OBs, but decreased after osteogenic induction. In vitro, osteogenic differentiation was significantly inhibited with Tgif2 overexpression in both BMSCs and OBs, as well as the expression levels of osteogenic markers (Runx2, Sp7, Alp, and Ocn). Moreover, we found that Tgif2 overexpression significantly promoted the interaction of pSmad3 with HDAC4 in differentiated OBs, and sequentially decreased the abundance of H4ac at the Runx2-binding site of the Ocn promoter. These findings indicated that Tgif2 might block osteoblastic differentiation in vitro through targeting pSmad3/HDAC4/H4ac/Runx2 axis.
Collapse
Affiliation(s)
- Xiang Yu
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Srinivasaiah S, Musumeci G, Mohan T, Castrogiovanni P, Absenger-Novak M, Zefferer U, Mostofi S, Bonyadi Rad E, Grün NG, Weinberg AM, Schäfer U. A 300 μm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Eng Part C Methods 2019; 25:197-212. [DOI: 10.1089/ten.tec.2018.0368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sriveena Srinivasaiah
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Giuseppe Musumeci
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Tamilselvan Mohan
- Institute of Chemistry, University of Graz, Graz, Austria
- Laboratory for Characterization and Processing, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Paola Castrogiovanni
- Human Anatomy and Histology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Ulrike Zefferer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Sepideh Mostofi
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | - Ehsan Bonyadi Rad
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nicole Gabriele Grün
- Department of Orthopedics and Trauma Surgery, Medical University of Graz, Graz, Austria
| | | | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Seda M, Peskett E, Demetriou C, Bryant D, Moore GE, Stanier P, Jenkins D. Analysis of transgenic zebrafish expressing the Lenz-Majewski syndrome gene PTDSS1 in skeletal cell lineages. F1000Res 2019; 8:273. [PMID: 31231513 PMCID: PMC6557000 DOI: 10.12688/f1000research.17314.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.
Collapse
Affiliation(s)
- Marian Seda
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Emma Peskett
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | - Dale Bryant
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Gudrun E. Moore
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Philip Stanier
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Dagan Jenkins
- GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
16
|
Effects of Sympathetic Activity on Human Skeletal Homeostasis: Clinical Evidence from Pheochromocytoma. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-019-9257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Wei G, Liang T, Wei C, Nong X, Lu Q, Zhao J. Daidzin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents LPS‐induced bone loss in vivo. J Cell Biochem 2018; 120:5304-5314. [DOI: 10.1002/jcb.27806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Gejin Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
- Department of Orthopedics, No.303 hospital of PLA Guangxi China
| | - Tihong Liang
- Department of Orthopedics Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Chengming Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Xiaolian Nong
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Qiteng Lu
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Jinmin Zhao
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| |
Collapse
|
18
|
Johnson L, Almeida-da-Silva CLC, Takiya CM, Figliuolo V, Rocha GM, Weissmüller G, Scharfstein J, Coutinho-Silva R, Ojcius DM. Oral infection of mice with Fusobacterium nucleatum results in macrophage recruitment to the dental pulp and bone resorption. Biomed J 2018; 41:184-193. [PMID: 30080658 PMCID: PMC6138822 DOI: 10.1016/j.bj.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/01/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum is a Gram-negative anaerobic bacterium associated with periodontal disease. Some oral bacteria, like Porphyromonas gingivalis, evade the host immune response by inhibiting inflammation. On the other hand, F. nucleatum triggers inflammasome activation and release of danger-associated molecular patterns (DAMPs) in infected gingival epithelial cells. METHODS In this study, we characterized the pro-inflammatory response to F. nucleatum oral infection in BALB/c mice. Western blots and ELISA were used to measure cytokine and DAMP (HMGB1) levels in the oral cavity after infection. Histology and flow cytometry were used to observe recruitment of immune cells to infected tissue and pathology. RESULTS Our results show increased expression and production of pro-inflammatory cytokines during infection. Furthermore, we observe that F. nucleatum infection leads to recruitment of macrophages in different tissues of the oral cavity. Infection also contributes to osteoclast recruitment, which could be involved in the observed bone resorption. CONCLUSIONS Overall, our findings suggest that F. nucleatum infection rapidly induces inflammation, release of DAMPs, and macrophage infiltration in gingival tissues and suggest that osteoclasts may drive bone resorption at early stages of the inflammatory process.
Collapse
Affiliation(s)
- Larry Johnson
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Figliuolo
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Miranda Rocha
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmüller
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Cai L, Zhang D, Liu W, Cui Y, Jing J, Xie J, Zhou X. Effects of parathyroid hormone (1-34) on the regulation of the lysyl oxidase family in ovariectomized mice. RSC Adv 2018; 8:30629-30641. [PMID: 35546858 PMCID: PMC9087977 DOI: 10.1039/c8ra04574g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis (OP) is a highly prevalent chronic disease. The anabolic agent parathyroid hormone (PTH) is often prescribed for the treatment of OP to strengthen bone quality and decrease the risk of fracture, although the specific mechanisms are still unclear. Lysyl oxidase (LOX) can stabilize the organic matrix through catalyzing the cross-linking of collagen and elastin. In this study, we established osteoporotic models via ovariectomizing C57BL/6J mice and treating them with PTH. We further aimed to determine the expression changes of the LOX family, impacted by PTH, in ovariectomized mice. We observed that bone mass was reduced and bone microstructure was deteriorative in ovariectomized mice. And PTH attenuated the microstructural damage and accelerated bone remodeling, as confirmed via μCT and HE staining. Serum levels of copper and zinc indirectly proved the results. The expression levels of five members of the LOX family all declined in ovariectomized mice compared to in sham-operated control mice (p < 0.05), and the daily injection of PTH successfully reversed the low expression of LOXs in OP. The current study examined expression changes of LOXs in osteoporotic mice and PTH-treated osteoporotic mice for the first time, and provided an important piece of evidence that the aberrant expression of LOXs had intimate associations with the occurrence and development of OP. And LOXs may act as the downstream effectors of PTH, contributing to unbalanced bone metabolism and damaged bone microstructure. Consequently, LOXs may act as promising therapeutic targets for OP. LOX family is a potential target in ovariectomized osteoporosis (OP).![]()
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Jing Xie
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| |
Collapse
|
20
|
Chen H, Guo T, Wang D, Qin R. Vaccaria hypaphorine impairs RANKL-induced osteoclastogenesis by inhibition of ERK, p38, JNK and NF-κB pathway and prevents inflammatory bone loss in mice. Biomed Pharmacother 2017; 97:1155-1163. [PMID: 29136954 DOI: 10.1016/j.biopha.2017.11.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023] Open
Abstract
Osteoclasts are sole bone-resorbing cells which exert a profound effect on skeletal metabolism. The search for medicines that affect the differentiation and function of osteoclasts is crucial in developing therapies for osteoclast-based diseases. Vaccaria hypaphorine, the main active compound of the traditionally used Chinese herb Vaccaria segetalis, has anti-inflammatory activity. The present study demonstrated for the first time that vaccaria hypaphorine could significantly inhibit the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastic differentiation in vitro and alleviate lipopolysaccharide (LPS)-induced bone loss in vivo. Further study showed that vaccaria hypaphorine decreased osteoclastogenesis in a dose-dependent manner. Furthermore, vaccaria hypaphorine was confirmed to inhibit osteoclasts differentiation at early stage but not at later stage. Pit formation assay and F-actin ring staining showed that vaccaria hypaphorine inhibited the bone-resorbing activity of osteoclasts. Mechanistically, vaccaria hypaphorine impaired RANKL-induced osteoclastogenesis through reduction of extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinase (JNK) and NF-κB p65 phosphorylation. Taken together, our results provided evidences that vaccaria hypaphorine might be considered as potential therapeutic agent for treating osteoclast-based bone loss.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Tongya Guo
- Department of Bone and Joint Surgery, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Dianrong Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Rujie Qin
- Department of Spine Surgery, The First People's Hospital of Lianyungang, No.182, Tongguan North Road, Lianyungang, Jiangsu 222002, P.R. China.
| |
Collapse
|
21
|
Solis-Moruno M, de Manuel M, Hernandez-Rodriguez J, Fontsere C, Gomara-Castaño A, Valsera-Naranjo C, Crailsheim D, Navarro A, Llorente M, Riera L, Feliu-Olleta O, Marques-Bonet T. Potential damaging mutation in LRP5 from genome sequencing of the first reported chimpanzee with the Chiari malformation. Sci Rep 2017; 7:15224. [PMID: 29123202 PMCID: PMC5680330 DOI: 10.1038/s41598-017-15544-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The genus Pan is the closest related to humans (Homo sapiens) and it includes two species: Pan troglodytes (chimpanzees) and Pan paniscus (bonobos). Different characteristics, some of biomedical aspect, separate them from us. For instance, some common human medical conditions are rare in chimpanzees (menopause, Alzheimer disease) although it is unclear to which extent longevity plays an active role in these differences. However, both humans and chimpanzees present similar pathologies, thus, understanding traits in chimpanzees can help unravel the molecular basis of human conditions. Here, we sequenced the genome of Nico, a central chimpanzee diagnosed with a particular biomedical condition, the Chiari malformation. We performed a variant calling analysis comparing his genome to 25 whole genomes from healthy individuals (bonobos and chimpanzees), and after predicting the effects of the genetic variants, we looked for genes within the OMIM database. We found a novel, private, predicted as damaging mutation in Nico in LRP5, a gene related to bone density alteration pathologies, and we suggest a link between this mutation and his Chiari malformation as previously shown in humans. Our results reinforce the idea that a comparison between humans and chimpanzees can be established in this genetic frame of common diseases.
Collapse
Affiliation(s)
- Manuel Solis-Moruno
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain.
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
| | - Alba Gomara-Castaño
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | | | - Dietmar Crailsheim
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, 08028, Spain
| | - Miquel Llorente
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Laura Riera
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Olga Feliu-Olleta
- Fundació Mona, Carretera C-25, s/n, Riudellots de la Selva, 17457, Girona, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, 08003, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain.
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, 08028, Spain.
| |
Collapse
|
22
|
Kim BJ, Kwak MK, Ahn SH, Kim H, Lee SH, Song KH, Suh S, Kim JH, Koh JM. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone. J Clin Endocrinol Metab 2017; 102:2711-2718. [PMID: 28582552 DOI: 10.1210/jc.2017-00169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/25/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. OBJECTIVE To clarify the link between the sympathetic nervous system and the skeleton in humans. DESIGN, SETTING, AND PATIENTS Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. RESULTS After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. CONCLUSIONS This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seong Hee Ahn
- Department of Endocrinology, Inha University School of Medicine, Incheon 22332, Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kee-Ho Song
- Division of Endocrinology and Metabolism, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Sunghwan Suh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Busan 49201, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
23
|
Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, Kronenberg HM, McBride HJ, Gradinaru V. Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med 2017; 9:9/387/eaah6518. [DOI: 10.1126/scitranslmed.aah6518] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
|
24
|
Wu MH, Lee TH, Lee HP, Li TM, Lee IT, Shieh PC, Tang CH. Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2 production in osteoblasts. Biomedicine (Taipei) 2017; 7:2. [PMID: 28474578 PMCID: PMC5439337 DOI: 10.1051/bmdcn/2017070102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a common skeletal disorder, resulting from an imbalance in bone resorption relative to formation. Bone morphogenetic protein (BMP) is a key regulator in bone formation and osteoblastic differentiation. Hence, compounds that promote BMP expression may be suitable candidates for osteoporosis treatment. This study examined the effects of the traditional Chinese medicinal agent, Kuei-Lu-Er-Xian-Jiao (KLEXJ), on BMP-2 production in osteoblasts. We found that KLEXJ extract promoted osteoblastic differentiation marker ALP activity and increased BMP-2 production; pretreatment with PI3K and Akt inhibitors, or small interfering RNA (siRNA), reduced these effects. KLEXJ also enhanced PI3K and Akt phosphorylation. Treatment of osteoblastic cells with NF-κB inhibitors (TPCK or PDTC) markedly inhibited KLEXJ-enhancement of ALP activity and BMP-2 production. KLEXJ also significantly promoted p65 phosphorylation, while treatment with PI3K and Akt inhibitors antagonized KLEXJ-enhanced p65 phosphorylation. Thus, KLEXJ enhances ALP activity and BMP-2 production of osteoblasts through the PI3K/Akt/ NF-κB signaling pathway and hence may be suitable in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan - Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 407, Taiwan
| | - Ting-Hsuan Lee
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Hsiang-Ping Lee
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Te-Mao Li
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - I-Tee Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan - Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan - Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Po-Chuen Shieh
- School of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan - Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
| |
Collapse
|
25
|
Qin S, He NB, Yan HL, Dong Y. Characterization of MicroRNA Expression Profiles in Patients with Giant Cell Tumor. Orthop Surg 2017; 8:212-9. [PMID: 27384730 DOI: 10.1111/os.12231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/13/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Giant cell tumors of bone (GCTs) are bone destructive neoplasms, the bone resorption being mediated by osteoclasts. Given that microRNAs are crucially involved in tumorigenesis and the modulation of cell fate and behavior, they are promising candidates for regulation of osteoclastogenesis. However, no reliable miRNAs profile for GCT is available. Our study aimed to evaluate osteoclastogenesis-related miRNA expression in GCTs of Chinese patients. METHODS From January 2013 to December 2014, 11 patients with GCTs were treated in our department and grouped into a GCT group. A control group comprising four patients with benign tumors of the iliac bone was established. The diagnoses were initially established by imaging examinations and intraoperative frozen sections and later confirmed by standard histologic examination. The GCT group (five male and six female patients) were aged from 17 to 61 years (mean, 32.9 years; SD, 12.8 years). Six patients with GCT underwent intralesional curettage surgery and the other five wide resection. According to Campanacci grading, four patients had Grade I tumors, three Grade II, and three Grade III. The average age of the control group was 28.75 years (SD, 14.24 years); all of them were diagnosed as having benign tumors and underwent iliac grafting. The morphology of the excised tissue was evaluated by examining standardized hematoxylin and eosin (HE) stained paraffin-embedded samples. In all, three osteoclastogenesis-related RNAs and 20 microRNAs (miRNAs) were extracted from the patients. The strength of expression was assessed by quantitative reverse transcription polymerase chain reaction (PCR ) and the results assessed by a Student's t test. RESULTS Examination of HE stained sections revealed that the higher the Campanacci grade, the more numerous and bigger the osteoclasts (P < 0.05). PCR results indicated large amounts of osteoclast-related mRNA (cathepsin K, tartrate-resistant acid phosphatase and matrix metalloproteinase9) in GCTs (P < 0.05). Expression of six miRNAs was significantly weaker in the GCT than the control group (P < 0.05). The expression of has-mir-16-5p and has-let-7a-5p was correlated with Campanacci grade in the GCT patients (P = 0.009 and 0.034, respectively). The expression of these two miRNAs may indicate severity of bone destruction. CONCLUSION Overall, the clinical utility of six novel miRNA markers for GCTs was demonstrated. Of these, strength of expression of hsa-mir-16-5p and hsa-let-7a-5p may indicate the grade of bone resorption.
Collapse
Affiliation(s)
- Shu Qin
- Department of Orthopaedic Surgery, Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Neng-Bin He
- Department of Orthopaedic Surgery, Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Liang Yan
- Department of Orthopaedic Surgery, Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dong
- Department of Orthopaedic Surgery, Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Liu FL, Chen CL, Lee CC, Wu CC, Hsu TH, Tsai CY, Huang HS, Chang DM. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation. Int J Med Sci 2017; 14:840-852. [PMID: 28824321 PMCID: PMC5562191 DOI: 10.7150/ijms.19268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022] Open
Abstract
The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB signaling pathways. This study evaluated the effects of niclosamide on osteoclast and osteoblast differentiation and function in vitro. In RANKL-induced murine osteoclast precursor cell RAW264.7 and M-CSF/RANKL-stimulated primary murine bone marrow-derived macrophages (BMM), niclosamide dose-dependently inhibited the formation of TRAP-positive multinucleated osteoclasts and resorption pits formation between 0.5uM and 1uM. In addition, niclosamide suppressed the expression of nuclear factor of activated T cells c1 (NFATc1) and osteoclast differentiated-related genes in M-CSF/ RANKL-stimulated BMM by interference with TRAF-6, Erk1/2, JNK and NF-κB activation pathways. However, the cytotoxic effects of niclosamide obviously appeared at the effective concentrations for inhibiting osteoclastogenesis (0.5-1uM) with increase of apoptosis through caspase-3 activation in osteoblast precursor cell line, MC3T3-E1. Niclosamide also inhibited ALP activity, bone mineralization and osteoblast differentiation-related genes expression in MC3T3-E1. Therefore, our findings suggest the new standpoint that niclosamide's effects on bones must be considered before applying it in any therapeutic treatment.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Teng-Hsu Hsu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Chang-Youh Tsai
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Hsu-Shan Huang
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
27
|
Adaba RI, Mann G, Raab A, Houssen WE, McEwan AR, Thomas L, Tabudravu J, Naismith JH, Jaspars M. Accurate quantification of modified cyclic peptides without the need for authentic standards. Tetrahedron 2016; 72:8603-8609. [PMID: 32818002 PMCID: PMC7115945 DOI: 10.1016/j.tet.2016.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a growing interest in the use of cyclic peptides as therapeutics, but their efficient production is often the bottleneck in taking them forward in the development pipeline. We have recently developed a method to synthesise azole-containing cyclic peptides using enzymes derived from different cyanobactin biosynthetic pathways. Accurate quantification is crucial for calculation of the reaction yield and for the downstream biological testing of the products. In this study, we demonstrate the development and validation of two methods to accurately quantify these compounds in the reaction mixture and after purification. The first method involves the use of a HPLC coupled in parallel to an ESMS and an ICPMS, hence correlating the calculated sulfur content to the amount of cyclic peptide. The second method is an NMR ERETIC method for quantifying the solution concentration of cyclic peptides. These methods make the quantification of new compounds much easier as there is no need for the use of authentic standards when they are not available.
Collapse
Affiliation(s)
- Rosemary I. Adaba
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| | - Greg Mann
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Andrea Raab
- TESLA, Department of Chemistry, University of Aberdeen, UK
| | - Wael E. Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Andrew R. McEwan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Louise Thomas
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jioji Tabudravu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| |
Collapse
|
28
|
Park CM, Kim HM, Kim DH, Han HJ, Noh H, Jang JH, Park SH, Chae HJ, Chae SW, Ryu EK, Lee S, Liu K, Liu H, Ahn JS, Kim YO, Kim BY, Soung NK. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model. Mol Cells 2016; 39:855-861. [PMID: 27927007 PMCID: PMC5223102 DOI: 10.14348/molcells.2016.0111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022] Open
Abstract
Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.
Collapse
Affiliation(s)
- Chan-Mi Park
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Department of Biochemistry, College of Nature science, Chungnam National University, Daejeon 34134,
Korea
| | - Hye-Min Kim
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Dong Hyun Kim
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Ho-Jin Han
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Haneul Noh
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
| | - Jae-Hyuk Jang
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Soo-Hyun Park
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907,
Korea
| | - Han-Jung Chae
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907,
Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods (CTCF2), Chonbuk National University Hospital, Jeonju 54907,
Korea
| | - Eun Kyoung Ryu
- Center of Magnetic Resonance Research, Korea Basic Science Institute, Cheongju 28119,
Korea
| | - Sangku Lee
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
| | - Kangdong Liu
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
| | - Haidan Liu
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
| | - Jong-Seog Ahn
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Young Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 27709,
Korea
| | - Bo-Yeon Kim
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| | - Nak-Kyun Soung
- World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116,
Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
29
|
Choi JH, Han Y, Kim YA, Jin SW, Lee GH, Jeong HM, Lee HS, Chung YC, Lee YC, Kim EJ, Lee KY, Jeong HG. Platycodin D Inhibits Osteoclastogenesis by Repressing the NFATc1 and MAPK Signaling Pathway. J Cell Biochem 2016; 118:860-868. [PMID: 27739107 DOI: 10.1002/jcb.25763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022]
Abstract
Platycodon grandiflorum root-derived saponins (Changkil saponins, CKS) are reported to have many pharmacological activities. In our latest research, CKS was proven to have a significant osteogenic effect. However, the detail molecular mechanism of CKS on osteoclastic differentiation has not been fully investigated. Administration of CKS considerably reduced OVX-induced bone loss, and ameliorated the reduction in plasma levels of alkaline phosphatase, calcium, and phosphorus observed in OVX mice. CKS also repressed the deterioration of bone trabecular microarchitecture. Interestingly, platycodin D, the most abundant and major pharmacological constituent of triterpenoid CKS, inhibited receptor activator of NF-κB ligand (RANKL)-induced activation of NF-κB, and ERK and p38 MAPK, ultimately repressing osteoclast differentiation. OVX-induced bone turnover was attenuated by CKS, possibly via repression of osteoclast differentiation by platycodin D, the active component of CKS. Platycodin D can be regarded as an antiosteoporotic candidate for treatment of osteoporosis diseases. J. Cell. Biochem. 118: 860-868, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Yong An Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Min Jeong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Young Chun Lee
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Eun Ju Kim
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Comparison of the alendronate and irradiation with a light-emitting diode (LED) on murine osteoclastogenesis. Lasers Med Sci 2016; 32:189-200. [DOI: 10.1007/s10103-016-2101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
|
31
|
Bhattarai G, Kook SH, Kim JH, Poudel SB, Lim SS, Seo YK, Lee JC. COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model. Bone 2016; 92:168-179. [PMID: 27612438 DOI: 10.1016/j.bone.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent enhancing tissue regeneration with increased angiogenesis. However, the effect of COMP-Ang1 on periodontitic tissue damages and the related mechanisms are not yet investigated. We initially explored whether a local delivery of COMP-Ang1 protects lipopolysaccharide (LPS)/ligature-induced periodontal destruction in rats. As the results, μCT and histological analyses revealed that COMP-Ang1 inhibits LPS-mediated degradation of periodontium. COMP-Ang1 also suppressed osteoclast number and the expression of osteoclast-specific and inflammation-related molecules in the inflamed region of periodontitis rats. Implanting a COMP-Ang1-impregnated scaffold into critical-sized mandible bone defects enhanced the amount of bone in the defects with increased expression of bone-specific markers. The addition of COMP-Ang1 prevented significantly osteoclast differentiation and activation in LPS-stimulated RAW264.7 macrophages and inhibited the phosphorylation of c-Jun, mitogen-activated protein kinases, and cAMP response element-binding protein in the cells. On contrary, COMP-Ang1 increased the level of phosphatidylinositol 3-kinase (PI3K) in LPS-exposed macrophages and a pharmacological PI3K inhibitor diminished the anti-osteoclastogenic effect of COMP-Ang1. Similarly, COMP-Ang1 blocked the expression of inflammation-related molecules in LPS-stimulated human periodontal ligament fibroblasts (hPLFs). Further, the COMP-Ang1 enhanced differentiation of hPLFs into osteoblasts by stimulating the expression of bone-specific markers, Tie2, and activator protein-1 subfamily. Collectively, our findings may support the therapeutic potentials of COMP-Ang1 in preventing inflammatory periodontal damages and in stimulating new bone growth.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea
| | - Jae-Hwan Kim
- Chonnam National University Dental Hospital, Kwangju 61186, South Korea
| | - Sher Bahadur Poudel
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Shin-Saeng Lim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University, Seoul 04620, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
32
|
Peffers MJ, Goljanek-Whysall K, Collins J, Fang Y, Rushton M, Loughlin J, Proctor C, Clegg PD. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq. PLoS One 2016; 11:e0160517. [PMID: 27533049 PMCID: PMC4988628 DOI: 10.1371/journal.pone.0160517] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for 'cell death and survival', 'cell morphology', and 'cell growth and proliferation'. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in 'skeletal system morphogenesis', 'regulation of cell proliferation' and 'regulation of transcription' suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - John Collins
- Thurston Arthritis Research Centre, School Of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27599
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Michael Rushton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - Carole Proctor
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
- Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK, NE4 5PL
| | - Peter David Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| |
Collapse
|
33
|
Camirand A, Goltzman D, Gupta A, Kaouass M, Panda D, Karaplis A. The Role of Parathyroid Hormone-Related Protein (PTHrP) in Osteoblast Response to Microgravity: Mechanistic Implications for Osteoporosis Development. PLoS One 2016; 11:e0160034. [PMID: 27463808 PMCID: PMC4963112 DOI: 10.1371/journal.pone.0160034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
Prolonged skeletal unloading through bedrest results in bone loss similar to that observed in elderly osteoporotic patients, but with an accelerated timeframe. This rapid effect on weight-bearing bones is also observed in astronauts who can lose up to 2% of their bone mass per month spent in Space. Despite the important implications for Spaceflight travelers and bedridden patients, the exact mechanisms involved in disuse osteoporosis have not been elucidated. Parathyroid hormone-related protein (PTHrP) regulates many physiological processes including skeletal development, and has been proposed as a mechanosensor. To investigate the role of PTHrP in microgravity-induced bone loss, trabecular and calvarial osteoblasts (TOs and COs) from Pthrp+/+ and -/- mice were subjected to actual Spaceflight for 6 days (Foton M3 satellite). Pthrp+/+, +/- and -/- osteoblasts were also exposed to simulated microgravity for periods varying from 6 days to 6 weeks. While COs displayed little change in viability in 0g, viability of all TOs rapidly decreased in inverse proportion to PTHrP expression levels. Furthermore, Pthrp+/+ TOs displayed a sharp viability decline after 2 weeks at 0g. Microarray analysis of Pthrp+/+ TOs after 6 days in simulated 0g revealed expression changes in genes encoding prolactins, apoptosis/survival molecules, bone metabolism and extra-cellular matrix composition proteins, chemokines, insulin-like growth factor family members and Wnt-related signalling molecules. 88% of 0g-induced expression changes in Pthrp+/+ cells overlapped those caused by Pthrp ablation in normal gravity, and pulsatile treatment with PTHrP1-36 not only reversed a large proportion of 0g-induced effects in Pthrp+/+ TOs but maintained viability over 6-week exposure to microgravity. Our results confirm PTHrP efficacy as an anabolic agent to prevent microgravity-induced cell death in TOs.
Collapse
Affiliation(s)
- Anne Camirand
- McGill University Health Centre, Montréal, Québec, Canada
| | - David Goltzman
- McGill University Health Centre, Montréal, Québec, Canada
| | - Ajay Gupta
- Department of Oncology, McGill University, Montreal, Québec, Canada
| | - Mohammadi Kaouass
- Department of Biology, Université Sainte-Anne, Pointe-de-l'Eglise, Nova Scotia, Canada
| | - Dibyendu Panda
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Andrew Karaplis
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
34
|
Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3284704. [PMID: 27313644 PMCID: PMC4904098 DOI: 10.1155/2016/3284704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
Abstract
Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.
Collapse
|
35
|
Lee Y, Bae KJ, Chon HJ, Kim SH, Kim SA, Kim J. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro. Mol Cells 2016; 39:389-94. [PMID: 27025387 PMCID: PMC4870186 DOI: 10.14348/molcells.2016.2300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Kyoung Jun Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Hae Jung Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Eulji University, Daejeon 34824,
Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824,
Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824,
Korea
| |
Collapse
|
36
|
Sashidhara KV, Singh LR, Choudhary D, Arun A, Gupta S, Adhikary S, Palnati GR, Konwar R, Trivedi R. Design, synthesis and in vitro evaluation of coumarin–imidazo[1,2-a]pyridine derivatives against cancer induced osteoporosis. RSC Adv 2016. [DOI: 10.1039/c6ra15674f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The potential of coumarin–imidazo[1,2-a]pyridine hybrids to prevent bone loss in patients with bone metastases is discussed.
Collapse
Affiliation(s)
- Koneni V. Sashidhara
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - L. Ravithej Singh
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | | - Ashutosh Arun
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Sulekha Adhikary
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Gopala Reddy Palnati
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Rituraj Konwar
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Ritu Trivedi
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| |
Collapse
|
37
|
Commercial Honeybush (Cyclopia spp.) Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages-An in vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13779-93. [PMID: 26516894 PMCID: PMC4661614 DOI: 10.3390/ijerph121113779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023]
Abstract
Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL), produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9), tartrate resistant acid phosphatase (TRAP) and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone.
Collapse
|
38
|
Mahdi AA, Rizvi SHM, Parveen A. Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases. Indian J Clin Biochem 2015; 31:127-37. [PMID: 27069320 DOI: 10.1007/s12291-015-0502-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| |
Collapse
|
39
|
Kim JY, Kwak SC, Ahn SJ, Baek JM, Jung ST, Yun KJ, Yoon KH, Oh J, Lee MS. Development of a novel frontal bone defect mouse model for evaluation of osteogenesis efficiency. J Biomed Mater Res A 2015; 103:3764-71. [PMID: 26053543 DOI: 10.1002/jbm.a.35521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 11/07/2022]
Abstract
The skull defect model is the existing representative osteogenesis model. The skull defect model involves monitoring osteogenesis patterns at the site of a skull defect, which has the advantages that identical defects can be induced across individual experimental animals and the results can be quantitatively evaluated. However, it can damage the cerebrum because it requires a complex surgery performed on the parietal bone. This study aims to develop a new osteogenesis model that compensates for the weak points of the existing model. Male 8-week-old imprinting control region mice were put under inhalational anesthesia, and the surgery area was disinfected with 70% ethanol prior to the creation of a 5-mm incision along the sagittal line between the glabella with a pair of scissors. The incised area was opened and, after we checked the positions of the inferior cerebral vein and the sagittal suture, a 21-gauge needle was used to make two symmetrical holes with respect to the sagittal suture 3 mm below the inferior cerebral vein and 2 mm on either side of the sagittal suture. After images were obtained using micro-computed tomography, the degree of osteogenesis was quantitatively analyzed. In addition, mRNA extracted from the site of the defect confirmed a significant increase in mRNA levels of collagen 1a, alkaline phosphatase, bone sialoprotein, osteocalcin, and Runx2, known markers for osteoblasts. The promotion of osteogenesis could be observed at the site of the defect, by histological analysis.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sung Chul Kwak
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), NeuMed Inc., Seoul, 130-701, Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sung Tae Jung
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Department of Computer Engineering, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Ki Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Department of Radiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Jaemin Oh
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Myeung Su Lee
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Institute for Skeletal Disease, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
| |
Collapse
|
40
|
Yan X, Hao X, Nie Q, Feng C, Wang H, Sun Z, Niu R, Wang J. Effects of fluoride on the ultrastructure and expression of Type I collagen in rat hard tissue. CHEMOSPHERE 2015; 128:36-41. [PMID: 25655816 DOI: 10.1016/j.chemosphere.2014.12.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
Long-term excessive fluoride (F) intake disrupts the balance of bone deposition and remodeling activities and is linked to skeletal fluorosis. Type I collagen, which is responsible for bone stability and cell biological functions, can be damaged by excessive F ingestion. In this study, Sodium fluoride (NaF) was orally administrated to rat at 150 mg L(-1) for 60 and 120 d. We examined the effects of excessive F ingestion on the ultrastructure and collagen morphology of bone in rats by using transmission electron microscopy (TEM). Furthermore, we investigated the effect of F consumption on the expression levels of COL1A1 and COL1A2 in the bone tissues of rats by using quantitative real time (qRT)-PCR, to elucidate the molecular mechanisms of F-induced collagen protein damage. Our results showed that F affected collagen I arrangement and produced ultrastructural changes in bone tissue. Meanwhile, the mRNA expression of COL1A1 and COL1A2 were reduced and the COL I protein levels decreased in the fluorosis group. We concluded that excessive F ingestion adversely affected collagen I arrangement and caused ultrastructural changes in bone tissue. Reduced COL1A1 mRNA expression and altered COL I protein levels may contribute to the skeletal damage resulting from F exposure.
Collapse
Affiliation(s)
- Xiaoyan Yan
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China; Department of Biology, Taiyuan Normal University (TYNU), Taiyuan 030031, People's Republic of China
| | - Xianhui Hao
- Department of Biology, Taiyuan Normal University (TYNU), Taiyuan 030031, People's Republic of China
| | - Qingli Nie
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Cuiping Feng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China.
| |
Collapse
|
41
|
Kim J, Lee H, Kang KS, Chun KH, Hwang GS. Cordyceps militaris Mushroom and Cordycepin Inhibit RANKL-Induced Osteoclast Differentiation. J Med Food 2015; 18:446-52. [DOI: 10.1089/jmf.2014.3215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jinhee Kim
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Hyejin Lee
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Ki Sung Kang
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Korea
| | - Gwi Seo Hwang
- Laboratory of Cell Differentiation Research, College of Korean Medicine, Gachon University, Seongnam, Korea
| |
Collapse
|
42
|
Dunne CF, Gibbons J, FitzPatrick DP, Mulhall KJ, Stanton KT. On the fate of particles liberated from hydroxyapatite coatings in vivo. Ir J Med Sci 2015; 184:125-33. [PMID: 25576323 DOI: 10.1007/s11845-014-1243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/21/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE Hydroxyapatite (HA) has been used as a coating for orthopaedic implants for over 30 years to help promote the fixation of orthopaedic implants into the surrounding bone. However, concerns exist about the fate of the hydroxyapatite coating and hydroxyapatite particles in vivo, especially in the wake of recent concerns about particulates from metal-on-metal bearings. METHODS Here, we assess the mechanisms of particle detachment from coated orthopaedic devices as well as the safety and performance concerns and biomedical implications arising from the liberation of the particles by review of the literature. FINDINGS The mechanisms that can result in the detachment of the HA coating from the implant can be mechanical or biochemical, or both. Mechanical mechanisms include implant insertion, abrasion, fatigue and micro-motion. Biochemical mechanisms that contribute to the liberation of HA particles include dissolution into extra-cellular fluid, cell-mediated processes and crystallisation of amorphous phases. The form the particles take once liberated is influenced by a number of factors such as coating method, the raw powder morphology, processing parameters, coating thickness and coating structure. CONCLUSIONS This review summarises and discusses each of these factors and concludes that HA is a safe biomimetic material to use as a coating and does not cause any problems in particulate form if liberated as debris from an orthopaedic implant.
Collapse
Affiliation(s)
- C F Dunne
- UCD School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
43
|
Chen CL, Liu FL, Lee CC, Chen TC, Ahmed Ali AA, Sytwu HK, Chang DM, Huang HS. Modified salicylanilide and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as novel inhibitors of osteoclast differentiation and bone resorption. J Med Chem 2014; 57:8072-85. [PMID: 25200306 DOI: 10.1021/jm5007897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of osteoclast formation is a potential strategy to prevent inflammatory bone resorption and to treat bone diseases. In the present work, the purpose was to discover modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as potential antiosteoclastogenic agents. Their inhibitory effects on RANKL-induced osteoclastogenesis from RAW264.7 cells were evaluated by TRAP stain assay. The most potent compounds, 1d and 5d, suppressed RANKL-induced osteoclast formation and TRAP activity dose-dependently. The cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds did not result from their cytotoxicity. Moreover, both compounds downregulated RANKL-induced NF-κB and NFATc1 in the nucleus, suppressed the expression of osteoclastogenesis-related marker genes during osteoclastogenesis, and prevented osteoclastic bone resorption but did not impair osteoblast differentiation in MC3T3-E1. Therefore, these modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-diones could be potential lead compounds for the development of a new class of antiresorptive agents.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei 110, Taiwan ROC
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim JY, Cheon YH, Kwak SC, Baek JM, Yoon KH, Lee MS, Oh J. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J Bone Miner Res 2014; 29:1541-53. [PMID: 25832436 DOI: 10.1002/jbmr.2183] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
Bone remodeling, a physiological process in which new bone is formed by osteoblasts and the preexisting bone matrix is resorbed by osteoclasts, is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this process can cause various pathological conditions, including osteoporosis. Emodin, a naturally occurring anthraquinone derivative found in Asian herbal medicines, has numerous beneficial pharmacologic effects, including anticancer and antidiabetic activities. However, the effect of emodin on the regulation of osteoblast and osteoclast activity has not yet been investigated. We show here that emodin is a potential target for osteoporosis therapeutics, as treatment with this agent enhances osteoblast differentiation and bone growth and suppresses osteoclast differentiation and bone resorption. In this study, emodin suppressed receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages (BMMs) and the bone-resorbing activity of mature osteoclasts by inhibiting RANKL-induced NF-κB, c-Fos, and NFATc1 expression. Emodin also increased ALP, Alizarin Red-mineralization activity, and the expression of osteoblastogenic gene markers, such as Runx2, osteocalcin (OCN), and ALP in mouse calvarial primary osteoblasts, as well as activated the p38-Runx2 pathway, which enhanced osteoblast differentiation. Moreover, mice treated with emodin showed marked attenuation of lipopolysaccharide (LPS)-induced bone erosion and increased bone-forming activity in a mouse calvarial bone formation model based on micro-computed tomography and histologic analysis of femurs. Our findings reveal a novel function for emodin in bone remodeling, and highlight its potential for use as a therapeutic agent in the treatment of osteoporosis that promotes bone anabolic activity and inhibits osteoclast differentiation.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim JM, Lee JE, Ho Ryu S, Suh PG. Chlormadinone acetate promotes osteoblast differentiation of human mesenchymal stem cells through the ERK signaling pathway. Eur J Pharmacol 2014; 726:1-8. [DOI: 10.1016/j.ejphar.2014.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
|
46
|
Xiao L, Ueno D, Catros S, Homer-Bouthiette C, Charles L, Kuhn L, Hurley MM. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. Endocrinology 2014; 155:965-74. [PMID: 24424065 PMCID: PMC3929728 DOI: 10.1210/en.2013-1919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repair of bone defects remains a significant clinical problem. Bone morphogenetic protein 2 (BMP2) is US Food and Drug Administration-approved for fracture healing but is expensive and has associated morbidity. Studies have shown that targeted overexpression of the 18-kDa low-molecular-weight fibroblast growth factor 2 isoform (LMW) by the osteoblastic lineage of transgenic mice increased bone mass. This study tested the hypotheses that overexpression of LMW would directly enhance healing of a critical size calvarial bone defect in mice and that this overexpression would have a synergistic effect with low-dose administration of BMP2 on critical size calvarial bone defect healing. Bilateral calvarial defects were created in LMW transgenic male mice and control/vector transgenic (Vector) male mice and scaffold with or without BMP2 was placed into the defects. New bone formation was assessed by VIVA-computed tomography of live animals over a 27-week period. Radiographic and computed tomography analysis revealed that at all time points, healing of the defect was enhanced in LMW mice compared with that in Vector mice. Although the very low concentration of BMP2 did not heal the defect in Vector mice, it resulted in complete healing of the defect in LMW mice. Histomorphometric and gene analysis revealed that targeted overexpression of LMW in osteoblast precursors resulted in enhanced calvarial defect healing due to increased osteoblast activity and increased canonical Wnt signaling.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine (L.X., C.H.-B., M.M.H.) and Department of Reconstructive Sciences (L.C., L.K.), University of Connecticut Health Center, Farmington, Connecticut 06030; Unit of Oral and Maxillofacial Implantology (D.U.), Tsurumi University School of Dental Medicine, Yokohama 230, Japan; and Inserm U1026 (S.C.), University of Bordeaux Segalen, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Lee SY, Lee KS, Yi SH, Kook SH, Lee JC. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production. PLoS One 2013; 8:e80873. [PMID: 24324641 PMCID: PMC3851776 DOI: 10.1371/journal.pone.0080873] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
Numerous studies have reported that inflammatory cytokines are important mediators for osteoclastogenesis, thereby causing excessive bone resorption and osteoporosis. Acteoside, the main active compound of Rehmannia glutinosa, which is used widely in traditional Oriental medicine, has anti-inflammatory and antioxidant potentials. In this study, we found that acteoside markedly inhibited osteoclast differentiation and formation from bone marrow macrophages (BMMs) and RAW264.7 macrophages stimulated by the receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL). Acteoside pretreatment also prevented bone resorption by mature osteoclasts in a dose-dependent manner. Acteoside (10 µM) attenuated RANKL-stimulated activation of p38 kinase, extracellular signal-regulated kinases, and c-Jun N-terminal kinase, and also suppressed NF-κB activation by inhibiting phosphorylation of the p65 subunit and the inhibitor κBα. In addition, RANKL-mediated increases in the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and in the production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were apparently inhibited by acteoside pretreatment. Further, oral acteoside reduced ovariectomy-induced bone loss and inflammatory cytokine production to control levels. Our data suggest that acteoside inhibits osteoclast differentiation and maturation from osteoclastic precursors by suppressing RANKL-induced activation of mitogen-activated protein kinases and transcription factors such as NF-κB, c-Fos, and NFATc1. Collectively, these results suggest that acteoside may act as an anti-resorptive agent to reduce bone loss by blocking osteoclast activation.
Collapse
Affiliation(s)
- Seung-Youp Lee
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk, South Korea
- Department of Orthodontics, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Keun-Soo Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Sea Hyun Yi
- Department of Orthodontics, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Sung-Ho Kook
- Department of Orthodontics, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Jeong-Chae Lee
- Department of Orthodontics, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, Chonbuk, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Chonbuk, South Korea
- * E-mail:
| |
Collapse
|
48
|
Zheng M, Ge Y, Li H, Yan M, Zhou J, Zhang Y. Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. INTERNATIONAL ORTHOPAEDICS 2013; 38:627-34. [PMID: 24305787 DOI: 10.1007/s00264-013-2184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was designed to investigate the potential effect of bergapten on lipopolysaccharide (LPS)-mediated osteoclast formation, bone resorption and osteoclast survival in vitro. METHODS After osteoclast precursor RAW264.7 cells were treated with bergapten (5, 20, 40 μmol/L) for 72 hours in the presence of LPS (100 ng/ml), osteoclastogenesis was identified by tartrate-resistant acid phosphatase (TRAP) staining, and the number of TRAP-positive multinucleated cells [TRAP(+)MNCs] per well were counted. To investigate the effect of bergapten on osteoclastic bone resorption, RAW264.7 cells were treated with bergapten for six days in the presence of LPS, and the area of bone resorption was analyzed with Image Pro-Plus. Next, we examined apoptosis of RAW264.7 cells after bergapten incubation for 48 hours by flow cytometer using annexin V/propidium iodide (PI) double labeling. Finally, osteoclast survival was observed by Hoechst 33342 labeling and Western blotting after bergapten treatment for 24 hours. RESULTS Data showed that bergapten (5-40 μmol/L) dose-dependently inhibited LPS-induced osteoclast formation and bone resorption. Treatment with bergapten triggered apoptotic death of osteoclast precursor RAW264.7 cells in a dose-dependent manner. Furthermore, bergapten significantly reduced the survival of mature osteoclast, as demonstrated by emergence of apoptotic nuclei and activation of apoptotic protein caspase 3/9. CONCLUSIONS These findings suggest that bergapten effectively prevents LPS-induced osteoclastogenesis, bone resorption and survival via apoptotic response of osteoclasts and their precursors. The study identifies bergapten as an inhibitor of osteoclast formation and bone resorption and provides evidence that bergapten might be beneficial as an alternative for prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Mingxia Zheng
- College of Medicine, Shaoxing University, Huancheng West Road 508, 312000, Shaoxing, China
| | | | | | | | | | | |
Collapse
|
49
|
Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Yea K, Lee SH, Koh JM, Kim GS. Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways. J Endocrinol Invest 2013; 36:876-82. [PMID: 23698732 DOI: 10.3275/8975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Afamin was recently identified as a novel osteoclast-derived coupling factor that can stimulate the in vitro and in vivo migration of preosteoblasts. AIM In order to understand in more detail the biological roles of afamin in bone metabolism, we investigated its effects on osteoclastic differentiation and bone resorption. METHODS Osteoclasts were differentiated from mouse bone marrow cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were considered as osteoclasts, and the resorption area was determined by incubating the cells on dentine discs. The intracellular cAMP level was determined using a direct enzyme immunoassay. Signaling pathways were investigated using western blot and RT-PCR. Recombinant afamin was administered exogenously to bone cell cultures. RESULTS Afamin stimulated both osteoclastogenesis and in vitro bone resorption. Consistently, the expressions of osteoclast differentiation markers were significantly increased by afamin. Although afamin mainly affected the late-differentiation stages of osteoclastogenesis, the expression levels of receptor activator of nuclear factor-κB ligand (RANKL)-dependent signals were not changed. Afamin markedly decreased the levels of intracellular cAMP with reversal by pretreatment with pertussis toxin (PTX), a specific inhibitor of Gi-coupled receptor signaling. In addition, PTX almost completely blocked afamin-stimulated osteoclastogenesis. Furthermore, pretreatment with KN93 and STO609 - Ca2+/cal - mo dulin-dependent protein kinase (CaMK) and CaMK kinase inhibitors, respectively - significantly prevented decreases in the intracellular cAMP level by afamin while attenuating afamin-stimulated osteoclastogenesis. CONCLUSION Afamin enhances osteoclastogenesis by decreasing intracellular cAMP levels via Gi-coupled receptor and CaMK pathways.
Collapse
Affiliation(s)
- B J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2- Dong, Songpa-Gu, Seoul 138-736, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu CM, Chen PC, Li TM, Fong YC, Tang CH. Si-Wu-tang extract stimulates bone formation through PI3K/Akt/NF-κB signaling pathways in osteoblasts. Altern Ther Health Med 2013; 13:277. [PMID: 24156308 PMCID: PMC4015792 DOI: 10.1186/1472-6882-13-277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/17/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Si-Wu-Tang (SWT), a Traditional Chinese Medicine (TCM) formula, is widely used for the treatment of gynopathies diseases such as menstrual discomfort, climacteric syndrome, dysmenorrhea, and other estrogen-related diseases. Recent studies have shown that SWT can treat primary dysmenorrhea, have anti-pruritic anti-inflammatory effects, and protect against radiation-induced bone marrow damage in an animal model. It has been reported that anti-inflammatory and anti-oxidant agents have the potential to treat osteoporosis by increasing bone formation and/or suppressing bone resorption. However, the effect of SWT on bone cell function has not yet been reported. METHODS Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)-2, and osteopontin (OPN) mRNA expression was analyzed by qPCR. The mechanism of action of SWT extract was investigated using western blotting. The in vivo anti-osteoporotic effect of SWT extract was assessed in ovariectomized mice. RESULTS Here, we report that SWT increases ALP, BMP-2, and OPN expression as well as bone mineralization. In addition, we show that the PI3K, Akt, and NF-κB signaling pathways may be involved in the SWT-mediated increase in gene expression and bone mineralization. Notably, treatment of mice with SWT extract prevented bone loss induced by ovariectomy in vivo. CONCLUSION SWT may be used to stimulate bone formation for the treatment of osteoporosis.
Collapse
|