1
|
Stark R, Dempsey H, Kleeman E, Sassi M, Osborne-Lawrence S, Sheybani-Deloui S, Rushby HJ, Mirth CK, Austin-Muttitt K, Mullins J, Zigman JM, Davies JS, Andrews ZB. Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism. Mol Metab 2024; 89:102025. [PMID: 39236785 PMCID: PMC11471258 DOI: 10.1016/j.molmet.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism. METHODS We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. RESULTS OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion. CONCLUSIONS OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Kleeman
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Martina Sassi
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sepideh Sheybani-Deloui
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Helen J Rushby
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Karl Austin-Muttitt
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jonathan Mullins
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Pholtaisong J, Chaiyaratana N, Aporntewan C, Mutirangura A. Mononucleotide A-repeats may Play a Regulatory Role in Endothermic Housekeeping Genes. Evol Bioinform Online 2022; 18:11769343221110656. [PMID: 35860694 PMCID: PMC9290108 DOI: 10.1177/11769343221110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Coding and non-coding short tandem repeats (STRs) facilitate a great diversity of phenotypic traits. The imbalance of mononucleotide A-repeats around transcription start sites (TSSs) was found in 3 mammals: H. sapiens, M. musculus, and R. norvegicus. Principal Findings: We found that the imbalance pattern originated in some vertebrates. A similar pattern was observed in mammals and birds, but not in amphibians and reptiles. We proposed that the enriched A-repeats upstream of TSSs is a novel hallmark of endotherms or warm-blooded animals. Gene ontology analysis indicates that the primary function of upstream A-repeats involves metabolism, cellular transportation, and sensory perception (smell and chemical stimulus) through housekeeping genes. Conclusions: Upstream A-repeats may play a regulatory role in the metabolic process of endothermic animals.
Collapse
Affiliation(s)
- Jatuphol Pholtaisong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Nachol Chaiyaratana
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.,Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
4
|
Pizzoli SFM, Monzani D, Mazzocco K, Maggioni E, Pravettoni G. The Power of Odor Persuasion: The Incorporation of Olfactory Cues in Virtual Environments for Personalized Relaxation. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:652-661. [PMID: 34752166 PMCID: PMC9069654 DOI: 10.1177/17456916211014196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Olfaction is the most ancient sense and is directly connected with emotional areas in the brain. It gives rise to perception linked to emotion both in everyday life and in memory-recall activities. Despite its emotional primacy in perception and its role in sampling the real physical world, olfaction is rarely used in clinical psychological settings because it relies on stimuli that are difficult to deliver. However, recent developments in virtual-reality tools are creating novel possibilities for the engagement of the sense of smell in this field. In this article, we present the relevant features of olfaction for relaxation purposes and then discuss possible future applications of involving olfaction in virtual-reality interventions for relaxation. We also discuss clinical applications, the potential of new tools, and current obstacles and limitations.
Collapse
Affiliation(s)
- Silvia Francesca Maria Pizzoli
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Dario Monzani
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Ketti Mazzocco
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Emanuela Maggioni
- Sussex Computer Human Interaction (SCHI) Lab, Creative Technology Research Group, School of Engineering and Informatics, University of Sussex
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| |
Collapse
|