1
|
McCarthy ME, Filz von Reiterdank I, Parfitt van Pallandt OH, Taggart MS, Charlès L, Uygun K, Lellouch AG, Cetrulo CL, Uygun BE. Decellularization of Human Digits: A Step Towards Off-the-Shelf Composite Allograft Transplantation. Bioengineering (Basel) 2025; 12:383. [PMID: 40281743 PMCID: PMC12025325 DOI: 10.3390/bioengineering12040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
The field of reconstructive surgery faces significant challenges in addressing limb loss and disfigurement, with current organ preservation methods limited by short storage times. Decellularization offers a promising solution for generating engineered alternatives for reconstructive surgery by removing cellular material while preserving the extracellular matrix (ECM) and providing scaffolds for tissue regeneration. In this study, we developed a robust protocol for decellularizing whole digits from long-term freezer storage, achieving the successful removal of cellular material with intact ECM. Digit angiography confirmed the preservation of vascular integrity, facilitating future perfusion for recellularization. Quantitative analysis revealed significantly lower DNA content in decellularized tissues, indicating effective decellularization. Furthermore, extracellular matrix analysis showed the preservation of collagen, elastin, and glycosaminoglycans (GAGs) contents. Histological examination confirmed the reduction in cellularity and maintenance of tissue architecture in decellularized digits. Mechanical strength testing of decellularized digit tendons proved consistent with that of native digits. Our findings highlight the potential of decellularized digits as versatile platforms for tissue engineering and regenerative medicine. Moving forward, further optimization of protocols and collaborative efforts are essential for translating these findings into clinical practice, offering innovative solutions for reconstructive surgery and limb transplantation.
Collapse
Affiliation(s)
- Michelle E. McCarthy
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of General Surgery, Beth Israel Lahey Hospital and Medical Center, Burlington, MA 01805, USA
| | - Irina Filz von Reiterdank
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Oliver H. Parfitt van Pallandt
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - McLean S. Taggart
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Laura Charlès
- Shriners Children’s Boston, Boston, MA 02114, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, 75674 Paris, France
| | - Korkut Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Shriners Children’s Boston, Boston, MA 02114, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, 75006 Paris, France
- Division of Plastic and Reconstructive Surgery, Cedars Sinai Hospital, Los Angeles, CA 90048, USA
| | - Curtis L. Cetrulo
- Shriners Children’s Boston, Boston, MA 02114, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Division of Plastic and Reconstructive Surgery, Cedars Sinai Hospital, Los Angeles, CA 90048, USA
| | - Basak E. Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| |
Collapse
|
2
|
Ren H, Huang D, Qiu M, Xue L, Zhu S, Gan J, Chen C, Chen D, Wang J. Microfluidic 3D printing hydrogels based on fish liver decellularized extracellular matrix for liver regeneration. SMART MEDICINE 2024; 3:e20240056. [PMID: 39776591 PMCID: PMC11669779 DOI: 10.1002/smmd.20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Liver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans. Additionally, microfluidic-assisted 3D printing technology enables precise modulation of the composition and architecture of hydrogels to fulfill clinical requirements. Benefiting from the natural source of materials, the hydrogels exhibit excellent biocompatibility and cellular proliferation capacity for incorporating induced pluripotent stem cell-derived hepatocytes (iPSC-heps). Furthermore, the macroscopic architecture and biomechanical environment of hydrogels foster optimal functional expression of iPSC-heps. Importantly, post-transplantation, the hydrogels significantly enhance survival rates and liver function in mice with acute liver failure, promoting liver regeneration and repair. These findings suggest that microfluidic 3D printed hydrogels represent promising candidates for liver transplantation and functional recovery.
Collapse
Affiliation(s)
- Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Danqing Huang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Shaoshi Zhu
- College of MedicineUniversity of IllinoisChicagoIllinoisUSA
| | - Jingjing Gan
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Cheng Chen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dayu Chen
- School of PharmacyFaculty of MedicineMacau University of Science and TechnologyMacauChina
- Department of PharmacyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
3
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
5
|
Gupta S, Sharma A, Petrovski G, Verma RS. Vascular reconstruction of the decellularized biomatrix for whole-organ engineering-a critical perspective and future strategies. Front Bioeng Biotechnol 2023; 11:1221159. [PMID: 38026872 PMCID: PMC10680456 DOI: 10.3389/fbioe.2023.1221159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Whole-organ re-engineering is the most challenging goal yet to be achieved in tissue engineering and regenerative medicine. One essential factor in any transplantable and functional tissue engineering is fabricating a perfusable vascular network with macro- and micro-sized blood vessels. Whole-organ development has become more practical with the use of the decellularized organ biomatrix (DOB) as it provides a native biochemical and structural framework for a particular organ. However, reconstructing vasculature and re-endothelialization in the DOB is a highly challenging task and has not been achieved for constructing a clinically transplantable vascularized organ with an efficient perfusable capability. Here, we critically and articulately emphasized factors that have been studied for the vascular reconstruction in the DOB. Furthermore, we highlighted the factors used for vasculature development studies in general and their application in whole-organ vascular reconstruction. We also analyzed in detail the strategies explored so far for vascular reconstruction and angiogenesis in the DOB for functional and perfusable vasculature development. Finally, we discussed some of the crucial factors that have been largely ignored in the vascular reconstruction of the DOB and the future directions that should be addressed systematically.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
6
|
Mir TA, Alzhrani A, Nakamura M, Iwanaga S, Wani SI, Altuhami A, Kazmi S, Arai K, Shamma T, Obeid DA, Assiri AM, Broering DC. Whole Liver Derived Acellular Extracellular Matrix for Bioengineering of Liver Constructs: An Updated Review. Bioengineering (Basel) 2023; 10:1126. [PMID: 37892856 PMCID: PMC10604736 DOI: 10.3390/bioengineering10101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional cellular growth, proliferation and spatial morphogenetic processes that culminate in the development of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomaterials are currently available to construct biomimetic cell culture environments to investigate hepatic cell-matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction, herein we showcased the latest updates in the field of liver decellularization-recellularization technologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review concludes with a discussion of the challenges and future prospects of liver-specific decellularized materials in the direction of translational research.
Collapse
Affiliation(s)
- Tanveer Ahmed Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Alaa Alzhrani
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shadil Ibrahim Wani
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Abdullah Altuhami
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Shadab Kazmi
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kenchi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Talal Shamma
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Dalia A. Obeid
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Abdullah M. Assiri
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
7
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
8
|
Zhou Q, Guo B, Chen D, Yao H, Liang X, Xin J, Shi D, Ren K, Yang H, Jiang J, Li J. Dynamic Alterations of Metabolites Revealed the Vascularization Progression of Bioengineered Liver. Biotechnol Bioeng 2022; 119:2857-2867. [PMID: 35864592 DOI: 10.1002/bit.28189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Vascularization is a critical but challenging process in developing functional bioengineered liver with the decellularized liver scaffolds (DLSs), and the process is accompanied by cell-specific metabolic alterations. To elucidate the dynamic alterations of metabolites during vascularization, rat DLSs were vascularized with human umbilical vein endothelial cells, and a liquid chromatography mass spectrometry-based metabolomics was performed on culture supernatants collected at 0, 1, 3, 7, 14 and 21 days. Overall, 1698 peak pairs or metabolites were detected in the culture supernatants, with 309 metabolites being positively identified. The orthogonal partial least-squares discriminant analysis and functional enrichment analysis revealed three phases that could be clearly discriminated, including phase D1 (cell proliferation and migration), phase D3D7 (vascular lumen formation), and phase D14D21 (functional endothelial barrier formation). Seventy-two common differentially abundant metabolites of known identity were detected in these three phases when compared to day 0. Of these metabolites, a high level of beta-Alanine indicated a better degree of vascularization, and 14 days of in-vitro dynamic culture is required to develop a functionalized vascular structure. These results enriched our understanding of the metabolic mechanism of DLS vascularization, and indicated that beta-Alanine could function as a potential predictor of the patency of vascularized bioengineered livers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Heng Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.,Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.,Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.,Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.,Precision Medicine Center of Taizhou Central Hospital, Taizhou University Medical School, Taizhou, China
| |
Collapse
|
9
|
Ergun C, Parmaksiz M, Vurat MT, Elçin AE, Elçin YM. Decellularized liver ECM-based 3D scaffolds: Compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological evaluations. Int J Biol Macromol 2022; 200:110-123. [PMID: 34971643 DOI: 10.1016/j.ijbiomac.2021.12.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) is involved in many critical cellular interactions through its biological macromolecules. In this study, a macroporous 3D scaffold originating from decellularized bovine liver ECM (dL-ECM), with defined compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological properties was developed. First, protocols were determined that effectively remove cells and DNA while ECM retains biological macromolecules collagen, elastin, sGAGs in tissue. Rheological analysis revealed the elastic properties of pepsin-digested dL-ECM. Then, dL-ECM hydrogel was neutralized, molded, formed into macroporous (~100-200 μm) scaffolds in aqueous medium at 37 °C, and lyophilized. The scaffolds had water retention ability, and were mechanically stable for at least 14 days in the culture medium. The findings also showed that increasing the dL-ECM concentration from 10 mg/mL to 20 mg/mL resulted in a significant increase in the mechanical strength of the scaffolds. The hemolysis test revealed high in vitro hemocompatibility of the dL-ECM scaffolds. Studies investigating the viability and proliferation status of human adipose stem cells seeded over a 2-week culture period have demonstrated the suitability of dL-ECM scaffolds as a cell substrate. Prospective studies may reveal the extent to which 3D dL-ECM sponges have the potential to create a biomimetic environment for cells.
Collapse
Affiliation(s)
- Can Ergun
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Stem Cell Institute, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
10
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Zuñiga-Aguilar E, Ramírez-Fernández O. Fibrosis and hepatic regeneration mechanism. Transl Gastroenterol Hepatol 2022; 7:9. [PMID: 35243118 PMCID: PMC8826211 DOI: 10.21037/tgh.2020.02.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/10/2020] [Indexed: 11/26/2023] Open
Abstract
Liver cirrhosis is the final stage of continuous hepatic inflammatory activity derived by viral, metabolic or autoimmune origin. In the last years, cirrhosis was considered a unique and static condition; recently was accepted some patients subgroups with different liver injury degrees that coexist under the same diagnosis, with implications about the natural disease history. The liver growth factor (LGF) is a potent in vivo and in vitro mitogenic agent and an inducer of hepatic regeneration (HR) through the hepatocytes DNA synthesis. The clinical implications of the LGF levels in cirrhosis, are not clear and even with having a fundamental role in the liver regeneration processes, the studies suggest that it could be a cirrhosis severity marker, in acute liver failure and in chronic hepatitis. Its role as predictor of mortality in fulminant hepatic insufficiency patients has been suggested. HR is one of the most enigmatic and fascinating biological phenomena. The rapid volume and liver function restoration after a major hepatectomy (>70%) or severe hepatocellular damage and its strict regulation of tissue damage response after the cessation, is an exclusive property of the liver. HR is the clinical applications fundament, such as extensive hepatic resections (>70% of the liver parenchyma), segmental transplantation or living donor transplantation, sequential hepatectomies, isolated portal embolization or associated with in situ hepatic transection, temporary artificial support in acute liver failure and the possible cell therapy clinical applications.
Collapse
Affiliation(s)
- Esmeralda Zuñiga-Aguilar
- Universidad Autonoma de Ciudad Juárez, Depto de Ingeniería Eléctrica y Computación, Ciudad Juárez, Chih., México
| | - Odin Ramírez-Fernández
- Tecnologico Nacional de Mexico, Depto. De Ciencias Basicas, Tlalnepantla de Baz, Mexico
- Facultad de Medicina, HIPAM, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| |
Collapse
|
12
|
Yao J, Yu Y, Nyberg SL. Induced Pluripotent Stem Cells for the Treatment of Liver Diseases: Novel Concepts. Cells Tissues Organs 2022; 211:368-384. [PMID: 32615573 PMCID: PMC7775900 DOI: 10.1159/000508182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Millions of people worldwide with incurable liver disease die because of inadequate treatment options and limited availability of donor organs for liver transplantation. Regenerative medicine as an innovative approach to repairing and replacing cells, tissues, and organs is undergoing a major revolution due to the unprecedented need for organs for patients around the world. Induced pluripotent stem cells (iPSCs) have been widely studied in the field of liver regeneration and are considered to be the most promising candidate therapies. This review will conclude the current state of efforts to derive human iPSCs for potential use in the modeling and treatment of liver disease.
Collapse
Affiliation(s)
- Jia Yao
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Clinical Research and Project Management Office, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing, China
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Corresponding Author: Scott L. Nyberg, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA, Tel: Rochester, MN 55905, USA, Fax: (507) 284-2511,
| |
Collapse
|
13
|
Lupon E, Lellouch AG, Acun A, Andrews AR, Oganesyan R, Goutard M, Taveau CB, Lantieri LA, Cetrulo CL, Uygun BE. Engineering Vascularized Composite Allografts Using Natural Scaffolds: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:677-693. [PMID: 34238047 DOI: 10.1089/ten.teb.2021.0102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Vascularized Composite Allotransplantation refers to the transplantation of multiple tissues as a functional unit from a deceased donor to a recipient with a severe injury. These grafts serve as potential replacements for traumatic tissue losses. The main problems are the consequences of the long immunosuppressive drugs medications and the lake of compatible donor. To avoid these limitations, decellularization/recellularization constitute an attractive approach. The aim of decellularization/recellularization technology is to develop immunogenic free biological substitutes that will restore, maintain, or improve tissue and organ's function. METHODS A PubMed search was performed for articles on decellularization and recellularization of composite tissue allografts between March and February 2021, with no restrictions in publication year. The selected reports were evaluated in terms of decellularization protocols, assessment of decellularized grafts, and evaluation of their biocompatibility and repopulation with cells both in vitro and in vivo. RESULTS The search resulted in a total of 88 articles. Each article was reviewed, 77 were excluded and the remaining 11 articles reported decellularization of 12 different vascular composite allografts in humans (four), large animals (three), and small animals (rodents) (five). The decellularization protocol for vascularized composite allotransplantation varies slightly between studies, but majority of the reports employ 1% sodium dodecyl sulfate as the main reagent for decellularization. The immunological response of the decellularized scaffolds remains poorly evaluated. Few authors have been able to attempt the recellularization and transplantation of these scaffolds. Successful transplantation seems to require prior recellularization. CONCLUSION Decellularization/recellularization is a promising, growing, emerging developing research field in vascular composite allotransplantation.
Collapse
Affiliation(s)
- Elise Lupon
- University Toulouse III Paul Sabatier, Department of Plastic Surgery, Toulouse, Occitanie, France.,Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Alexandre G Lellouch
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Aylin Acun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Alec R Andrews
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Ruben Oganesyan
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| | - Marion Goutard
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Corentin B Taveau
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Laurent A Lantieri
- Hospital European George Pompidou, 55647, Department of Plastic Surgery, Paris, Île-de-France, France;
| | - Curtis L Cetrulo
- Massachusetts General Hospital, Harvard Medical School, Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Boston, Massachusetts, United States.,Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, 2348, Division of Plastic and Reconstructive Surgery, Boston, Massachusetts, United States;
| | - Basak E Uygun
- Shriners Hospitals for Children Boston, 24172, Boston, Massachusetts, United States.,Massachusetts General Hospital, Harvard Medical School, Center for Engineering in Medicine and Surgery, Boston, Massachusetts, United States;
| |
Collapse
|
14
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
Acun A, Oganesyan R, Uygun K, Yeh H, Yarmush ML, Uygun BE. Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials 2021; 270:120689. [PMID: 33524812 DOI: 10.1016/j.biomaterials.2021.120689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The only treatment available for end stage liver diseases is orthotopic liver transplantation. Although there is a big donor scarcity, many donor livers are discarded as they do not qualify for transplantation. Alternatively, decellularization of discarded livers can potentially render them transplantable upon recellularization and functional testing. The success of this approach will heavily depend on the quality of decellularized scaffolds which might show variability due to factors including age. Here we assessed the age-dependent differences in liver extracellular matrix (ECM) using rat and human livers. We show that the liver matrix has higher collagen and glycosaminoglycan content and a lower growth factor content with age. Importantly, these changes lead to deterioration in primary hepatocyte function potentially due to ECM stiffening and integrin-dependent signal transduction. Overall, we show that ECM changes with age and these changes significantly affect cell function thus donor age should be considered as an important factor for bioengineering liver substitutes.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Ben Hamouda S, Vargas A, Boivin R, Miglino MA, da Palma RK, Lavoie JP. Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells. J Equine Vet Sci 2020; 96:103313. [PMID: 33349413 DOI: 10.1016/j.jevs.2020.103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
17
|
Gelatin Promotes Cell Retention Within Decellularized Heart Extracellular Matrix Vasculature and Parenchyma. Cell Mol Bioeng 2020; 13:633-645. [PMID: 33281992 DOI: 10.1007/s12195-020-00634-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Recellularization of organ decellularized extracellular matrix (dECM) offers a potential solution for organ shortage in allograft transplantation. Cell retention rates have ranged from 10 to 54% in varying approaches for reseeding cells in whole organ dECM scaffolds. We aimed to improve recellularization by using soluble gelatin as a cell carrier to deliver endothelial cells to the coronary vasculature and cardiomyocytes to the parenchyma in a whole decellularized rat heart. Methods Rat aortic endothelial cells (RAECs) were perfused over decellularized porcine aorta in low (1%) and high (5%) concentrations of gelatin to assess attachment to a vascular dECM model. After establishing cell viability and proliferation in 1% gelatin, we used 1% gelatin as a carrier to deliver RAECs and neonatal rat cardiomyocytes (NRCMs) to decellularized adult rat hearts. Immediate cell retention in the matrix was quantified, and recellularized hearts were evaluated for visible contractions up to 35 days after recellularization. Results We demonstrated that gelatin increased RAEC attachment to decellularized porcine aorta; blocking integrin receptors reversed this effect. In the whole rat heart gelatin (1%) increased retention of both RAECs and NRCMs respectively, compared with the control group (no gelatin). Gelatin was associated with visible contractions of NRCMs within hearts (87% with gelatin vs. 13% control). Conclusions Gelatin was an effective cell carrier for increasing cell retention and contraction in dECM. The gelatin-cell-ECM interactions likely mediated by integrin.
Collapse
|
18
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110521. [PMID: 32228899 DOI: 10.1016/j.msec.2019.110521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Worldwide research on electrospinning enabled it as a versatile technique for producing nanofibers with specified physio-chemical characteristics suitable for diverse biomedical applications. In the case of tissue engineering and regenerative medicine, the nanofiber scaffolds' characteristics are custom designed based on the cells and tissues specific needs. This fabrication technique is also innovated for the production of nanofibers with special micro-structure and secondary structure characteristics such as porous fibers, hollow structure, and core- sheath structure. This review attempts to critically and succinctly capture the vast number of developments reported in the literature over the past two decades. We then discuss their applications as scaffolds for induction of cells growth and differentiation or as architecture for being used as graft for tissue engineering. The special nanofibers designed for improving regeneration of several tissues including heart, bone, central nerve system, spinal cord, skin and ocular tissue are introduced. We also discuss the potential of the electrospinning in drug delivery applications, which is a critical factor for cell culture, tissue formation and wound healing applications.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
19
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Hyaluronan-Based Grafting Strategies for Liver Stem Cell Therapy and Tracking Methods. Stem Cells Int 2019; 2019:3620546. [PMID: 31354838 PMCID: PMC6636496 DOI: 10.1155/2019/3620546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion is essential for survival, it plays important roles in physiological cell functions, and it is an innovative target in regenerative medicine. Among the molecular interactions and the pathways triggered during cell adhesion, the binding of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, to hyaluronic acid (HA), a major component of the extracellular matrix, is a crucial step. Cell therapy has emerged as a promising treatment for advanced liver diseases; however, so far, it has led to low cell engraftment and limited cell repopulation of the target tissue. Currently, different strategies are under investigation to improve cell grafting in the liver, including the use of organic and inorganic biomatrices that mimic the microenvironment of the extracellular matrix. Hyaluronans, major components of stem cell niches, are attractive candidates for coating stem cells since they improve viability, proliferation, and engraftment in damaged livers. In this review, we will discuss the new strategies that have been adopted to improve cell grafting and track cells after transplantation.
Collapse
|
21
|
Advances in Hepatic Tissue Bioengineering with Decellularized Liver Bioscaffold. Stem Cells Int 2019; 2019:2693189. [PMID: 31198426 PMCID: PMC6526559 DOI: 10.1155/2019/2693189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application. The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been made as this technique has evolved from studies in animal models to human livers. As the field develops and this promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior to clinical application.
Collapse
|
22
|
Impact of Percoll purification on isolation of primary human hepatocytes. Sci Rep 2019; 9:6542. [PMID: 31024069 PMCID: PMC6484008 DOI: 10.1038/s41598-019-43042-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/12/2019] [Indexed: 01/21/2023] Open
Abstract
Research and therapeutic applications create a high demand for primary human hepatocytes. The limiting factor for their utilization is the availability of metabolically active hepatocytes in large quantities. Centrifugation through Percoll, which is commonly performed during hepatocyte isolation, has so far not been systematically evaluated in the scientific literature. 27 hepatocyte isolations were performed using a two-step perfusion technique on tissue obtained from partial liver resections. Cells were seeded with or without having undergone the centrifugation step through 25% Percoll. Cell yield, function, purity, viability and rate of bacterial contamination were assessed over a period of 6 days. Viable yield without Percoll purification was 42.4 × 106 (SEM ± 4.6 × 106) cells/g tissue. An average of 59% of cells were recovered after Percoll treatment. There were neither significant differences in the functional performance of cells, nor regarding presence of non-parenchymal liver cells. In five cases with initial viability of <80%, viability was significantly increased by Percoll purification (71.6 to 87.7%, p = 0.03). Considering our data and the massive cell loss due to Percoll purification, we suggest that this step can be omitted if the initial viability is high, whereas low viabilities can be improved by Percoll centrifugation.
Collapse
|
23
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
24
|
Chen Y, Devalliere J, Bulutoglu B, Yarmush ML, Uygun BE. Repopulation of intrahepatic bile ducts in engineered rat liver grafts. TECHNOLOGY 2019; 7:46-55. [PMID: 31388515 PMCID: PMC6684151 DOI: 10.1142/s2339547819500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered liver grafts for transplantation with sufficient hepatic function have been developed both in small and large animal models using the whole liver engineering approach. However, repopulation of the bile ducts in the whole liver scaffolds has not been addressed yet. In this study, we show the feasibility of repopulating the bile ducts in decellularized rat livers. Biliary epithelial cells were introduced into the bile ducts of the decellularized liver scaffolds with or without hepatocytes in the parenchymal space. The recellularized grafts were cultured under perfusion for up to 2 days and histological analysis revealed that the biliary epithelial cells formed duct-like structures, with the viable hepatocyte mass residing in the parenchymal space, in an arrangement highly comparable to the native tissue. The grafts were viable and functional as confirmed by both albumin and urea assay results and the gene expression analysis of biliary epithelial cells in recellularized liver grafts. This study provides the proof-of-concept results for rat liver grafts co-populated with parenchymal and biliary epithelial cells.
Collapse
Affiliation(s)
- Yibin Chen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Julie Devalliere
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
25
|
Jahandideh S, Khatami S, Eslami Far A, Kadivar M. Anti-inflammatory effects of human embryonic stem cell-derived mesenchymal stem cells secretome preconditioned with diazoxide, trimetazidine and MG-132 on LPS-induced systemic inflammation mouse model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1178-1187. [PMID: 29929400 DOI: 10.1080/21691401.2018.1481862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Systemic inflammatory response syndrome is a complex pathophysiologic and immunologic response to an insult. Sepsis is a life-threatening condition happening when the body's response to infection causes injury to its own tissues and organs. Stem cell therapy is a new approach to modulate immune responses. Mesenchymal stem cells (MSCs) establish a regenerative niche by secreting secretome and modulating immune responses. MSC secretome can be leveraged for therapeutic applications if production of secretary molecules were optimized. Pharmacological preconditioning using small molecules can increase survival of MSCs after transplantation. The aim of this study was to investigate the effect of secretome of human embryonic-derived mesenchymal stem cells (hESC-MSCs) preconditioned with MG-132,Trimetazidine (TMZ) and Diazoxide (DZ) on immunomodulatory efficiency of these cells in Lipo polysaccharide (LPS) challenged mice models. Mice were injected intraperitoneally with LPS and groups of animals were intraperitoneally given 1 ml 30× secretome 6 h after LPS injection. Serum levels of biochemical parameters were then measured by an auto analyser and serum inflammatory cytokine levels were analysed using commercially available RayBio Mouse Inflammation Antibody Array. Ultimately, histopathology and survival studies were conducted. The results showed that TMZ and DZ-conditioned medium significantly increasing the survival and improvement of histopathological score. We found that MG-132-conditioned medium failed to show significant outcomes. This study demonstrated that human MSC secretome has the potential to control inflammation.
Collapse
Affiliation(s)
- Saeed Jahandideh
- a Department of Biochemistry , Pasteur Institute of Iran , Tehran , Iran
| | - Shohreh Khatami
- a Department of Biochemistry , Pasteur Institute of Iran , Tehran , Iran
| | - Ali Eslami Far
- b Department of Clinical Research , Pasteur Institute of Iran , Tehran , Iran
| | - Mehdi Kadivar
- a Department of Biochemistry , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
26
|
Ridola L, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Alvaro D. Cholangiocytes: Cell transplantation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1516-1523. [PMID: 28735098 DOI: 10.1016/j.bbadis.2017.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide. SCOPE OF REVIEW To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs). MAJOR CONCLUSIONS Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits. GENERAL SIGNIFICANCE The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Lorenzo Ridola
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Maria Consiglia Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Division of Gastroenterology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
27
|
Mußbach F, Dahmen U, Dirsch O, Settmacher U. [Liver engineering as a new source of donor organs : A systematic review]. Chirurg 2018; 87:504-13. [PMID: 25986672 DOI: 10.1007/s00104-015-0015-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Organ engineering is a new strategy to cope with the shortage of donor organs. A functional scaffold from explanted organs is prepared by removing all cellular components (decellularization) and the reseeding (repopulation) of the organ scaffold to generate a functional organ in vitro for transplantation. This technique was also applied to the liver (liver engineering). OBJECTIVES Outline of the current state of the art and resulting approaches for future research strategies. MATERIAL AND METHODS Systematic review according to the PRISMA guidelines: a PubMed-based literature search (search terms liver, decellularization), selection of relevant articles based on predetermined criteria for relevance (e.g. decellularization, repopulation and transplantation), extraction and critical appraisal of data and results concerning the conditions for decellularization, repopulation and transplantation. RESULTS Decellularization was successfully performed in small and large animal models. Hepatocytes as well as stem cells and hepatic cell lines were applied for repopulation and 7 publications could show the successful transplantation of acellular and repopulated organ scaffolds. The current scientific need for further studies concerning the source of donor organs, optimization of the decellularization process, the cell type for the reseeding process and the establishment of the optimal conditions for the repopulation of the scaffold is still tremendous. For successful recellularization of the liver three goals need to be achieved: (1) reseeding of the organ scaffold with a sufficient amount of parenchymal cells, (2) endothelialization of the vascular tree to ensure the supply of oxygen and nutrients to parenchymal cells and (3) an appropriate epithelialization of the biliary tree. In order to progress to clinical trials a suitable transplantation model to verify the function of the organ constructs must be established. CONCLUSION Liver engineering using biological cell-free organ scaffolds represents a scientific and ethical challenge. The existing results emphasize the potential of this new and promising strategy to create organs for transplantation in the future.
Collapse
Affiliation(s)
- F Mußbach
- Experimentelle Transplantationschirurgie, Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Drackendorfer Straße 1, 07747, Jena, Deutschland
| | - U Dahmen
- Experimentelle Transplantationschirurgie, Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Drackendorfer Straße 1, 07747, Jena, Deutschland.
| | - O Dirsch
- Institut für Pathologie, Dr. Panofsky-Haus, Klinikum Chemnitz gGmbH, Chemnitz, Deutschland
| | - U Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| |
Collapse
|
28
|
Gao CY, Huang ZH, Jing W, Wei PF, Jin L, Zhang XH, Cai Q, Deng XL, Yang XP. Directing osteogenic differentiation of BMSCs by cell-secreted decellularized extracellular matrixes from different cell types. J Mater Chem B 2018; 6:7471-7485. [DOI: 10.1039/c8tb01785a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-secreted decellularized extracellular matrixes (D-ECM) are promising for conferring bioactivity and directing cell fate to facilitate tissue regeneration.
Collapse
Affiliation(s)
- Chen-Yuan Gao
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhao-Hui Huang
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Wei Jing
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Peng-Fei Wei
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Le Jin
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xue-Hui Zhang
- Department of Dental Materials
- Peking University School and Hospital of Stomatology
- Beijing 100081
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xu-Liang Deng
- Department of Geriatric Dentistry
- Peking University School and Hospital of Stomatology
- Beijing 100081
- P. R. China
| | - Xiao-Ping Yang
- State Key Laboratory of Organic–Inorganic Composites and Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
29
|
Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol Commun 2017; 2:131-141. [PMID: 29404520 PMCID: PMC5796330 DOI: 10.1002/hep4.1136] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
The term “liver tissue engineering” summarizes one of the ultimate goals of modern biotechnology: the possibility of reproducing in total or in part the functions of the liver in order to treat acute or chronic liver disorders and, ultimately, create a fully functional organ to be transplanted or used as an extracorporeal device. All the technical approaches in the area of liver tissue engineering are based on allocating adult hepatocytes or stem cell‐derived hepatocyte‐like cells within a three‐dimensional structure able to ensure their survival and to maintain their functional phenotype. The hosting structure can be a construct in which hepatocytes are embedded in alginate and/or gelatin or are seeded in a pre‐arranged scaffold made with different types of biomaterials. According to a more advanced methodology termed three‐dimensional bioprinting, hepatocytes are mixed with a bio‐ink and the mixture is printed in different forms, such as tissue‐like layers or spheroids. In the last decade, efforts to engineer a cell microenvironment recapitulating the dynamic native extracellular matrix have become increasingly successful, leading to the hope of satisfying the clinical demand for tissue (or organ) repair and replacement within a reasonable timeframe. Indeed, the preclinical work performed in recent years has shown promising results, and the advancement in the biotechnology of bioreactors, ex vivo perfusion machines, and cell expansion systems associated with a better understanding of liver development and the extracellular matrix microenvironment will facilitate and expedite the translation to technical applications. (Hepatology Communications 2018;2:131–141)
Collapse
Affiliation(s)
- Giuseppe Mazza
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Walid Al-Akkad
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Krista Rombouts
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| | - Massimo Pinzani
- University College London, Division of Medicine, Institute for Liver and Digestive Health Royal Free Hospital London United Kingdom
| |
Collapse
|
30
|
Wang Y, Nicolas CT, Chen HS, Ross JJ, De Lorenzo SB, Nyberg SL. Recent Advances in Decellularization and Recellularization for Tissue-Engineered Liver Grafts. Cells Tissues Organs 2017; 204:125-136. [PMID: 28972946 DOI: 10.1159/000479597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Liver transplantation from deceased or living human donors remains the only proven option for patients with end-stage liver disease. However, the shortage of donor organs is a significant clinical concern that has led to the pursuit of tissue-engineered liver grafts generated from decellularized liver extracellular matrix and functional cells. Investigative efforts on optimizing both liver decellularization and recellularization protocols have been made in recent decades. In the current review, we briefly summarize these advances, including the generation of high-quality liver extracellular matrix scaffolds, evaluation criteria for quality control, modification of matrix for enhanced properties, and reseeding strategies. These efforts to optimize the methods of decellularization and recellularization lay the groundwork towards generating a transplantable, human-sized liver graft for the treatment of patients with severe liver disease.
Collapse
Affiliation(s)
- Yujia Wang
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
31
|
Díaz Jaime F, Berenguer M. Pushing the donor limits: Deceased donor liver transplantation using organs from octogenarian donors. Liver Transpl 2017; 23:S22-S26. [PMID: 28779558 DOI: 10.1002/lt.24841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Francia Díaz Jaime
- Hepatology and Liver Transplantation Unit, Department of Gastroenterology, La Fe University Hospital, Valencia, Spain
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit, Department of Gastroenterology, La Fe University Hospital, Valencia, Spain.,Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Network Center for Biomedical Research in Hepatic and Digestive Diseases, Madrid, Spain.,Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
32
|
Yesmin S, Paget MB, Murray HE, Downing R. Bio-scaffolds in organ-regeneration: Clinical potential and current challenges. Curr Res Transl Med 2017; 65:103-113. [PMID: 28916449 DOI: 10.1016/j.retram.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Abstract
Cadaveric organ transplantation represents the definitive treatment option for end-stage disease but is restricted by the shortage of clinically-viable donor organs. This limitation has, in part, driven current research efforts for in vitro generation of transplantable tissue surrogates. Recent advances in organ reconstruction have been facilitated by the re-purposing of decellularized whole organs to serve as three-dimensional bio-scaffolds. Notably, studies in rodents indicate that such scaffolds retain native extracellular matrix components that provide appropriate biochemical, mechanical and physical stimuli for successful tissue/organ reconstruction. As such, they support the migration, adhesion and differentiation of reseeded primary and/or pluripotent cell populations, which mature and achieve functionality through short-term conditioning within specialized tissue bioreactors. Whilst these findings are encouraging, significant challenges remain to up-scale the present technology to accommodate human-sized organs and thereby further the translation of this approach towards clinical use. Of note, the diverse structural and cellular composition of large mammalian organ systems mean that a "one-size fits all" approach cannot be adopted either to the methods used for their decellularization or the cells required for subsequent re-population, to create fully functional entities. The present review seeks to highlight the clinical potential of decellularized organ bio-scaffolds as a route to further advance the field of tissue- and organ-regeneration, and to discuss the challenges which are yet to be addressed if such a technology is ever to become a credible rival to conventional organ allo-transplantation.
Collapse
Affiliation(s)
- S Yesmin
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - M B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| | - H E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK.
| | - R Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, WR5 1HN, UK
| |
Collapse
|
33
|
Yan L, Guo Y, Qi J, Zhu Q, Gu L, Zheng C, Lin T, Lu Y, Zeng Z, Yu S, Zhu S, Zhou X, Zhang X, Du Y, Yao Z, Lu Y, Liu X. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles. J Neurosci Methods 2017. [PMID: 28634148 DOI: 10.1016/j.jneumeth.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. NEW METHOD In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. RESULTS The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. COMPARISON WITH EXISTING METHODS The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. CONCLUSIONS Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Yongze Guo
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Computational Science, Guangzhou 510080, PR China.
| | - Jian Qi
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Canbin Zheng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Tao Lin
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Yutong Lu
- National Supercomputer Center in GuangZhou, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Zitao Zeng
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Computational Science, Guangzhou 510080, PR China.
| | - Sha Yu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Computational Science, Guangzhou 510080, PR China.
| | - Shuang Zhu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Xiang Zhou
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Xi Zhang
- National Supercomputer Center in GuangZhou, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yunfei Du
- National Supercomputer Center in GuangZhou, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Zhi Yao
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| | - Yao Lu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Computational Science, Guangzhou 510080, PR China.
| | - Xiaolin Liu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangdong, Guangzhou 510080, PR China.
| |
Collapse
|
34
|
Wen X, Huan H, Wang X, Chen X, Wu L, Zhang Y, Liu W, Bie P, Xia F. Sympathetic neurotransmitters promote the process of recellularization in decellularized liver matrix via activating the IL-6/Stat3 pathway. Biomed Mater 2016; 11:065007. [PMID: 27811394 DOI: 10.1088/1748-6041/11/6/065007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recellularized liver, as an approach for hepatic tissue engineering, is an effective alternative to orthotopic liver transplantation for end-stage hepatic failure. When compared with normal liver, recellularized liver has a disparity in hepatocyte viability and function, owing to the difficulty of fully simulating the microenvironment of liver. Although the sympathetic nervous system (SNS) is considered an important constituent of liver function, few studies have examined the effect of the SNS on hepatic tissue engineering. It is imperative to explore the regulation of the SNS on a tissue-like configuration to obtain an intact recellularized liver with better hepatic function. We have observed that various subtypes of adrenergic receptors (ARs) are expressed on the hepatocyte membrane. Salbutamol, an agonist of β2-AR, promoted cell proliferation, albumin secretion and urea synthesis in the recellularized liver. Cytokines were screened in isoprenaline/salbutamol-treated recellularized liver, and the expression of IL-6 was significantly increased. Isoprenaline or salbutamol especially promoted the expression of Stat 3 and phosphorylated Stat 3, contributing to the activation of IL-6/Stat 3 signalling in promoting hepatocyte proliferation and recellularized liver function. This study suggests that activation of β2-AR accelerated hepatocyte proliferation and improved recellularized liver function by mediating the IL-6/Stat 3 signalling pathway, indicating that nervous system regulation may be an essential component contributing to the complexity of recellularized liver in tissue engineering.
Collapse
Affiliation(s)
- Xudong Wen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, Peoples's Republic of China. General Surgery Center, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083, Peoples's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Horner R, Kluge M, Gassner J, Nösser M, Major RD, Reutzel-Selke A, Leder AK, Struecker B, Morgul MH, Pratschke J, Sauer IM, Raschzok N. Hepatocyte Isolation After Laparoscopic Liver Resection. Tissue Eng Part C Methods 2016; 22:839-46. [DOI: 10.1089/ten.tec.2016.0187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Rosa Horner
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Martin Kluge
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Joseph Gassner
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Maximilian Nösser
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Rebeka Dalma Major
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Annekatrin K. Leder
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Benjamin Struecker
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Mehmet H. Morgul
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Experimental Surgery and Regenerative Medicine, Charité—Universitätsmedizin, Berlin, Germany
- BIH Charité Clinican Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
36
|
Mußbach F, Settmacher U, Dirsch O, Xie C, Dahmen U. Bioengineered Livers: A New Tool for Drug Testing and a Promising Solution to Meet the Growing Demand for Donor Organs. Eur Surg Res 2016; 57:224-239. [PMID: 27459202 DOI: 10.1159/000446211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/15/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Organ engineering is a new innovative strategy to cope with two problems: the need for physiological models for pharmacological research and donor organs for transplantation. A functional scaffold is generated from explanted organs by removing all cells (decellularization) by perfusing the organ with ionic or nonionic detergents via the vascular system. Subsequently the acellular scaffold is reseeded with organ-specific cells (repopulation) to generate a functional organ. SUMMARY This review gives an overview of the state of the art describing the decellularization process, the subsequent quality assessment, the repopulation techniques and the functional assessment. It emphasizes the use of scaffolds as matrix for culturing human liver cells for drug testing. Further, it highlights the techniques for transplanting these engineered scaffolds in allogeneic or xenogeneic animals in order to test their biocompatibility and use as organ grafts. Key Messages: The first issue is the so-called decellularization, which is best explored and resulted in a multitude of different protocols. The most promising approach seems to be the combination of pulsatile perfusion of the liver with Triton X-100 and SDS via hepatic artery and portal vein. Widely accepted parameters of quality control include the quantitative assessment of the DNA content and the visualization of eventually remaining nuclei confirmed by HE staining. Investigations regarding the composition of the extracellular matrix focused on histological determination of laminin, collagen, fibronectin and elastin and remained qualitatively. Repopulation is the second issue which is addressed. Selection of the most suitable cell type is a highly controversial topic. Currently, the highest potential is seen for progenitor and stem cells. Cells are infused into the scaffold and cultured under static conditions or in a bioreactor allowing dynamic perfusion of the scaffold. The quality of repopulation is mainly assessed by routine histology and basic functional assays. These promising results prompted to consider the use of a liver scaffold repopulated with human cells for pharmacological research. Transplantation of the (repopulated) scaffold is the third topic which is not yet widely addressed. Few studies report the heterotopic transplantation of repopulated liver tissue without vascular anastomosis. Even fewer studies deal with the heterotopic transplantation of a scaffold or a repopulated liver lobe. However, observation time was still limited to hours, and long-term graft survival has not been reported yet. These exciting results emphasize the potential of this new and promising strategy to create physiological models for pharmacological research and to generate liver grafts for the transplant community to treat organ failure. However, the scientific need for further development in the field of liver engineering is still tremendous.
Collapse
Affiliation(s)
- Franziska Mußbach
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
37
|
Geerts S, Ozer S, Jaramillo M, Yarmush ML, Uygun BE. Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization. Tissue Eng Part C Methods 2016; 22:671-8. [PMID: 27169332 DOI: 10.1089/ten.tec.2015.0571] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver engineering.
Collapse
Affiliation(s)
- Sharon Geerts
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, The Shriners Hospitals for Children , Boston, Massachusetts
| | - Sinan Ozer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, The Shriners Hospitals for Children , Boston, Massachusetts
| | - Maria Jaramillo
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, The Shriners Hospitals for Children , Boston, Massachusetts
| | - Martin L Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, The Shriners Hospitals for Children , Boston, Massachusetts
| | - Basak E Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, The Shriners Hospitals for Children , Boston, Massachusetts
| |
Collapse
|
38
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
39
|
Wu X, Wang Y, Wu Q, Li Y, Li L, Tang J, Shi Y, Bu H, Bao J, Xie M. Genipin-crosslinked, immunogen-reduced decellularized porcine liver scaffold for bioengineered hepatic tissue. Tissue Eng Regen Med 2015; 12:417-426. [DOI: 10.1007/s13770-015-0006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
41
|
Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F, Enquist LW, Jia X, McAlpine MC. 3D Printed Anatomical Nerve Regeneration Pathways. ADVANCED FUNCTIONAL MATERIALS 2015; 25:6205-6217. [PMID: 26924958 PMCID: PMC4765385 DOI: 10.1002/adfm.201501760] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An imaging-coupled 3D printing methodology for the design, optimization, and fabrication of a customized nerve repair technology for complex injuries is presented. The custom scaffolds are deterministically fabricated via a microextrusion printing principle which enables the simultaneous incorporation of anatomical geometries, biomimetic physical cues, and spatially controlled biochemical gradients in a one-pot 3D manufacturing approach.
Collapse
Affiliation(s)
- Blake N. Johnson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States, Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karen Z. Lancaster
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Junyun He
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Maneesh K. Gupta
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Lin Kong
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Esteban A. Engel
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Kellin D. Krick
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Alex Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Fanben Meng
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Lynn W. Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States, Department of Biomedical Engineering, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael C. McAlpine
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Wang LR, Lin YQ, Wang JT, Pan LL, Huang KT, Wan L, Zhu GQ, Liu WY, Braddock M, Zheng MH. Recent advances in re-engineered liver: de-cellularization and re-cellularization techniques. Cytotherapy 2015; 17:1015-1024. [PMID: 25981396 DOI: 10.1016/j.jcyt.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/08/2015] [Accepted: 04/03/2015] [Indexed: 01/26/2023]
Abstract
Allogeneic transplantation is the definitive treatment for patients with end-stage liver disease but is limited by donor shortage and very high cost. Through de-cellularization and re-cellularization methods, re-engineered liver may provide a promising alternative for treating patients with end-stage liver disease. To achieve this, the prevention of the native extracellular matrix ultrastructure plays a central role in de-cellularization protocol; the re-seeding cell types, as well as re-seeding strategies, need more explorations in re-cellularization protocol. Some success of this approach has been published in a rat model; however, the re-engineered liver remains functional in vivo for only several hours, which suggests that the recent protocol may be far from the ideal target. This Review highlights the challenges still to be overcome and presents an overview and summary of methods of de-cellularization and re-cellularization strategies, together with a view on future directions that may lead to the regeneration of a functional liver.
Collapse
Affiliation(s)
- Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ka-Te Huang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Wan
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
43
|
Lin YQ, Wang LR, Wang JT, Pan LL, Zhu GQ, Liu WY, Braddock M, Zheng MH. New advances in liver decellularization and recellularization: innovative and critical technologies. Expert Rev Gastroenterol Hepatol 2015; 9:1183-1191. [PMID: 26220044 DOI: 10.1586/17474124.2015.1058155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Techniques for producing decellularized scaffolds for use in liver tissue engineering are emerging as promising methods for tissue reconstruction. In this article, the authors present an overview of liver decellularization methods developed and applied in recent years. These include the widespread use of various perfusion methods for the generation of a 3D scaffold, which may function as a template for either cell recellularization or direct biological application. The authors evaluate methods for scaffold production and explore some factors that may affect the decellularization process. In addition to tissue engineering, this overview includes a description of other potential applications for a decellularized liver scaffold. The authors also introduce the concept of fabrication of fragile biomaterial architecture and finally review the cell types applied to liver scaffold engineering.
Collapse
Affiliation(s)
- Yi-Qian Lin
- a 1 Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bruinsma BG, Kim Y, Berendsen TA, Ozer S, Yarmush ML, Uygun BE. Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts. J Clin Transl Res 2015. [PMID: 30873444 PMCID: PMC4607069 DOI: 10.18053/jctres.201501.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Tissue–engineered liver grafts may offer a viable alternative to orthotopic liver transplantation and help overcome the donor organ shortage. Decellularized liver matrices (DLM) have a preserved vasculature and sustain hepatocellular function in culture, but graft survival after transplantation remains limited due to thrombogenicity of the matrix. Aim: To evaluate the effect of heparin immobilization on DLM thrombogenicity. Methods: Heparin was immobilized on DLMs by means of layer-by-layer deposition. Grafts with 4 or 8 bilayers and 2 or 4 g/L of heparin were recellularized with primary rat hepatocytes and maintained in culture for 5 days. Hemocompatibility of the graft was assessed by ex vivo diluted whole-blood perfusion and heterotopic transplantation. Results: Heparin was deposited throughout the matrix and the heparin content in the graft was higher with increasing number of bilayers and concentration of heparin. Recellularization and in vitro albumin and urea production were unaffected by heparinization. Resistance to blood flow during ex vivo perfusion was lower with increased heparinization and, macroscopically, no clots were visible in grafts with 8 bilayers. Following transplantation, flow through the graft was limited in all groups. Histological evidence of thrombosis was lower in heparinized DLMs, but transplantation of DLM grafts was not improved. Conclusions: Layer-by-layer deposition of heparin on a DLM is an effective method of immobilizing heparin throughout the graft and does not impede recellularization or hepatocellular function in vitro. Thrombogenicity during ex vivo blood perfusion was reduced in heparinized grafts and optimal with 8 bilayers, but transplantation remained unsuccessful with this method. Relevance for patients: Tissue engineered liver grafts may offer a viable solution to dramatic shortages in donor organs
Collapse
Affiliation(s)
- Bote G Bruinsma
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States.,Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yeonhee Kim
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States
| | - Tim A Berendsen
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States
| | - Sinan Ozer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States
| | - Basak E Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, Massachusetts, United States
| |
Collapse
|
45
|
Bao J, Wu Q, Sun J, Zhou Y, Wang Y, Jiang X, Li L, Shi Y, Bu H. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep 2015; 5:10756. [PMID: 26030843 PMCID: PMC5377232 DOI: 10.1038/srep10756] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
Whole-liver perfusion-decellularization is an attractive scaffold-preparation technique for producing clinical transplantable liver tissue. However, the scaffold's poor hemocompatibility poses a major obstacle. This study was intended to improve the hemocompatibility of perfusion-decellularized porcine liver scaffold via immobilization of heparin. Heparin was immobilized on decellularized liver scaffolds (DLSs) by electrostatic binding using a layer-by-layer self-assembly technique (/h-LBL scaffold), covalent binding via multi-point attachment (/h-MPA scaffold), or end-point attachment (/h-EPA scaffold). The effect of heparinization on anticoagulant ability and cytocompatibility were investigated. The result of heparin content and release tests revealed EPA technique performed higher efficiency of heparin immobilization than other two methods. Then, systematic in vitro investigation of prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT), platelet adhesion and human platelet factor 4 (PF4, indicates platelet activation) confirmed the heparinized scaffolds, especially the /h-EPA counterparts, exhibited ultralow blood component activations and excellent hemocompatibility. Furthermore, heparin treatments prevented thrombosis successfully in DLSs with blood perfusion after implanted in vivo. Meanwhile, after heparin processes, both primary hepatocyte and endothelial cell viability were also well-maintained, which indicated that heparin treatments with improved biocompatibility might extend to various hemoperfusable whole-organ scaffolds' preparation.
Collapse
Affiliation(s)
- Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiu Sun
- Department of General Surgery, The first people’s hospital of Yibin, Yibin, 644000, China
| | - Yongjie Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015; 33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
This review examines important robust methods for sustained, steady-state, in vitro culture. To achieve 'physiologically relevant' tissues in vitro additional complexity must be introduced to provide suitable transport, cell signaling, and matrix support for cells in 3D environments to achieve stable readouts of tissue function. Most tissue engineering systems draw conclusions on tissue functions such as responses to toxins, nutrition, or drugs based on short-term outcomes with in vitro cultures (2-14 days). However, short-term cultures limit insight with physiological relevance because the cells and tissues have not reached a steady-state.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
47
|
Yu Y, Wang X, Nyberg SL. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment. J Clin Med 2014; 3:997-1017. [PMID: 26237490 PMCID: PMC4449640 DOI: 10.3390/jcm3030997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/14/2023] Open
Abstract
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL) devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs) technology brings together the potential benefits of embryonic stem cells (ESCs) (i.e., self-renewal, pluripotency) and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs) can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs) can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province 210029, China.
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| | - Scott L Nyberg
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
48
|
Jeffries EM, Nakamura S, Lee KW, Clampffer J, Ijima H, Wang Y. Micropatterning Electrospun Scaffolds to Create Intrinsic Vascular Networks. Macromol Biosci 2014; 14:1514-20. [DOI: 10.1002/mabi.201400306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/21/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Eric M. Jeffries
- Department of Bioengineering; McGowan Institute for Regenerative Medicine; Pittsburgh PA 15261 USA
| | - Shintaro Nakamura
- Department of Chemical Engineering; Faculty of Engineering; Graduate School; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Kee-Won Lee
- Department of Bioengineering; McGowan Institute for Regenerative Medicine; Pittsburgh PA 15261 USA
| | - Jimmy Clampffer
- Department of Bioengineering; McGowan Institute for Regenerative Medicine; Pittsburgh PA 15261 USA
| | - Hiroyuki Ijima
- Department of Chemical Engineering; Faculty of Engineering; Graduate School; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yadong Wang
- Department of Bioengineering; McGowan Institute for Regenerative Medicine; Pittsburgh PA 15261 USA
| |
Collapse
|
49
|
Yu Y, Wang X, Nyberg SL. Application of Induced Pluripotent Stem Cells in Liver Diseases. CELL MEDICINE 2014; 7:1-13. [PMID: 26858888 DOI: 10.3727/215517914x680056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from therapy involving hepatocyte transplantation. Liver transplantation is presently the only proven treatment for many medically refractory liver diseases including end-stage liver failure and inherited metabolic liver disease. However, the shortage in transplantable livers prevents over 40% of listed patients per year from receiving a liver transplant; many of these patients die before receiving an organ offer or become too sick to transplant. Therefore, new therapies are needed to supplement whole-organ liver transplantation and reduce mortality on waiting lists worldwide. Furthermore, the remarkable regenerative capacity of hepatocytes in vivo is exemplified by the increasing number of innovative cell-based therapies and animal models of human liver disorders. Induced pluripotent stem cells (iPSCs) have similar properties to those of embryonic stem cells (ESCs) but bypass the ethical concerns of embryo destruction. Therefore, generation of hepatocyte-like cells (HLCs) using iPSC technology may be beneficial for the treatment of severe liver diseases, screening of drug toxicities, basic research of several hepatocytic disorders, and liver transplantation. Here we briefly summarize the growing number of potential applications of iPSCs for treatment of liver disease.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, China; †Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, China; †Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Scott L Nyberg
- ‡ Division of Experimental Surgery, Mayo Clinic College of Medicine , Rochester, MN , USA
| |
Collapse
|
50
|
Moran EC, Dhal A, Vyas D, Lanas A, Soker S, Baptista PM. Whole-organ bioengineering: current tales of modern alchemy. Transl Res 2014; 163:259-67. [PMID: 24486135 DOI: 10.1016/j.trsl.2014.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
End-stage organ disease affects millions of people around the world, to whom organ transplantation is the only definitive cure available. However, persistent organ shortage and the resulting widespread transplant backlog are part of a disturbing reality and a common burden felt by thousands of patients on waiting lists in almost every country where organ transplants are performed. Several alternatives and potential solutions to this problem have been sought in past decades, but one seems particularly promising now: whole-organ bioengineering. This review describes briefly the evolution of organ transplantation and the development of decellularized organ scaffolds and their application to organ bioengineering. This modern alchemy of generating whole-organ scaffolds and recellularizing them with multiple cell types in perfusion bioreactors is paving the way for a new revolution in transplantation medicine. Furthermore, although the first generation of bioengineered organs still lacks true clinical value, it has created a number of novel tissue and organ model platforms with direct application in other areas of science (eg, developmental biology and stem cell biology, drug discovery, physiology and metabolism). In this review, we describe the current status and numerous applications of whole-organ bioengineering, focusing also on the multiple challenges that researchers have to overcome to translate these novel technologies fully into transplantation medicine.
Collapse
Affiliation(s)
- Emma C Moran
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Abritee Dhal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Dipen Vyas
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Angel Lanas
- University of Zaragoza, Zaragoza, Spain; IIS Aragón, CIBERehd, Zaragoza, Spain
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Pedro M Baptista
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC; Aragon Health Sciences Institute, Zaragoza, Spain.
| |
Collapse
|