1
|
Stankiewicz KH, Guiglielmoni N, Kitchen SA, Flot JF, Barott KL, Davies SW, Finnerty JR, Grace SP, Kaufman LS, Putnam HM, Rotjan RD, Sharp KH, Peters EC, Baums IB. Genomic comparison of the temperate coral Astrangia poculata with tropical corals yields insights into winter quiescence, innate immunity, and sexual reproduction. G3 (BETHESDA, MD.) 2025; 15:jkaf033. [PMID: 39964876 PMCID: PMC12005167 DOI: 10.1093/g3journal/jkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Facultatively symbiotic corals provide important experimental models to explore the establishment, maintenance, and breakdown of the mutualism between corals and members of the algal family Symbiodiniaceae. Here, we report the de novo chromosome-scale genome assembly and annotation of the facultatively symbiotic, temperate coral Astrangia poculata. Though widespread segmental/tandem duplications of genomic regions were detected, we did not find strong evidence of a whole-genome duplication event. Comparison of the gene arrangement between As. poculata and the tropical coral Acropora millepora revealed considerable conserved colinearity despite ∼415 million years of divergence. Gene families related to sperm hyperactivation and innate immunity, including lectins, were found to contain more genes in Ac. millepora relative to As. poculata. Sperm hyperactivation in Ac. millepora is expected given the extreme requirements of gamete competition during mass spawning events in tropical corals, while lectins are important in the establishment of coral-algal symbiosis. By contrast, gene families involved in sleep promotion, feeding suppression, and circadian sleep/wake cycle processes were expanded in As. poculata. These expanded gene families may play a role in As. poculata's ability to enter a dormancy-like state (winter quiescence) to survive freezing temperatures at the northern edges of the species' range.
Collapse
Affiliation(s)
- Kathryn H Stankiewicz
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Nadège Guiglielmoni
- Department of Marine Biology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jean-François Flot
- Department of Marine Biology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels—(IB), Brussels 1050, Belgium
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - John R Finnerty
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sean P Grace
- Department of Biology & Werth Center for Coastal and Marine Studies, Southern Connecticut State University, New Haven, CT 06515, USA
| | | | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Koty H Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Esther C Peters
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
2
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
3
|
Ouararhni K, Mietton F, Sabir JSM, Ibrahim A, Molla A, Albheyri RS, Zari AT, Bahieldin A, Menoni H, Bronner C, Dimitrov S, Hamiche A. Identification of a novel DNA oxidative damage repair pathway, requiring the ubiquitination of the histone variant macroH2A1.1. BMC Biol 2024; 22:188. [PMID: 39218869 PMCID: PMC11368025 DOI: 10.1186/s12915-024-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Collapse
Affiliation(s)
- Khalid Ouararhni
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Flore Mietton
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Annie Molla
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Raed S Albheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé Menoni
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Christian Bronner
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
- Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France.
| |
Collapse
|
4
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
5
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
6
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
7
|
Mat Lazim N, Yousaf A, Abusalah MAH, Sulong S, Mohd Ismail ZI, Mohamud R, Abu-Harirah HA, AlRamadneh TN, Hassan R, Abdullah B. The Epigenesis of Salivary Glands Carcinoma: From Field Cancerization to Carcinogenesis. Cancers (Basel) 2023; 15:2111. [PMID: 37046772 PMCID: PMC10093474 DOI: 10.3390/cancers15072111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Salivary gland carcinomas (SGCs) are a diverse collection of malignant tumors with marked differences in biological activity, clinical presentation and microscopic appearance. Although the etiology is varied, secondary radiation, oncogenic viruses as well as chromosomal rearrangements have all been linked to the formation of SGCs. Epigenetic modifications may also contribute to the genesis and progression of SGCs. Epigenetic modifications are any heritable changes in gene expression that are not caused by changes in DNA sequence. It is now widely accepted that epigenetics plays an important role in SGCs development. A basic epigenetic process that has been linked to a variety of pathological as well as physiological conditions including cancer formation, is DNA methylation. Transcriptional repression is caused by CpG islands hypermethylation at gene promoters, whereas hypomethylation causes overexpression of a gene. Epigenetic changes in SGCs have been identified, and they have been linked to the genesis, progression as well as prognosis of these neoplasms. Thus, we conduct a thorough evaluation of the currently known evidence on the involvement of epigenetic processes in SGCs.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anam Yousaf
- Department of Molecular Pathology Laboratory, Pakistan Kidney and Liver Institute and Research Centre, Lahore 54000, Pakistan
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Sarina Sulong
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zul Izhar Mohd Ismail
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Anatomy, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rohimah Mohamud
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hashem A. Abu-Harirah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Tareq Nayef AlRamadneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Rosline Hassan
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
8
|
Shan Z, Zhang Y, Bu J, Li H, Zhang Z, Xiong J, Zhu B. The patterns and participants of parental histone recycling during DNA replication in Saccharomyces cerevisiae. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2267-6. [PMID: 36914923 DOI: 10.1007/s11427-022-2267-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 03/14/2023]
Abstract
Epigenetic information carried by histone modifications not only reflects the state of gene expression, but also participates in the maintenance of chromatin states and the regulation of gene expression. Recycling of parental histones to daughter chromatin after DNA replication is vital to mitotic inheritance of epigenetic information and the maintenance of cell identity, because the locus-specific modifications of the parental histones need to be maintained. To assess the precision of parental histone recycling, we developed a synthetic local label-chasing system in budding yeast Saccharomyces cerevisiae. Using this system, we observed that parental histone H3 can be recycled to their original position, thereby recovering their position information after DNA replication at all tested loci, including heterochromatin boundary, non-transcribed region, and actively transcribed regions. Moreover, the recycling rate appears to be affected by local chromatin environment. We surveyed a number of potential regulatory factors and observed that histone H3-H4 chaperon Asf1 contributed to parental histone recycling, while the eukaryotic replisome-associated components Mcm2 and Dpb3 displayed compounding effects in this process. In addition, the FACT complex also plays a role in the recycling of parental histones and helps to stabilize the nucleosomes.
Collapse
Affiliation(s)
- Zhongqing Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiachen Bu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huizhi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Sun KY, Guo SM, Cheng GP, Yin Y, He X, Zhou LQ. Cleavage-embryo genes and transposable elements are regulated by histone variant H2A.X. J Reprod Dev 2021; 67:307-312. [PMID: 34393157 PMCID: PMC8568613 DOI: 10.1262/jrd.2021-065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mammalian preimplantation development, stimulation of zygotic genome activation (ZGA) and transposable elements (TEs) shapes totipotency profiling. A rare mouse embryonic stem cells (mESCs) subpopulation is capable of transiently entering a state resembling 2-cell stage embryos, with subtypes of TEs expressed and ZGA genes transiently activated. In this study, we found that deletion of H2A.X in mESCs led to a significant upregulation of ZGA genes and misregulated TEs. ChIP-seq analysis indicated a direct association of H2A.X at the Dux locus for silencing the Dux gene and its downstream ZGA genes in mESCs. We also demonstrated that histone variant H2A.X is highly enriched in human cleavage embryos when ZGA genes and TEs are active. Therefore, we propose that H2A.X plays an important role in regulating ZGA genes and TEs to establish totipotency.
Collapse
Affiliation(s)
- Kai-Yi Sun
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Gui-Ping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
11
|
French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer 2021; 148:2884-2897. [PMID: 33197277 PMCID: PMC8246550 DOI: 10.1002/ijc.33398] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Cancerous tumours contain a rare subset of cells with stem-like properties that are termed cancer stem cells (CSCs). CSCs are defined by their ability to divide both symmetrically and asymmetrically, to initiate new tumour growth and to tolerate the foreign niches required for metastatic dissemination. Accumulating evidence suggests that tumours arise from cells with stem-like properties, the generation of CSCs is therefore likely to be an initiatory event in carcinogenesis. Furthermore, CSCs in established tumours exist in a dynamic and plastic state, with nonstem tumour cells thought to be capable of de-differentiation to CSCs. The regulation of the CSC state both during tumour initiation and within established tumours is a desirable therapeutic target and is mediated by epigenetic factors. In this review, we will explore the epigenetic parallels between induced pluripotency and the generation of CSCs, and discuss how the epigenetic regulation of CSCs opens up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Yuan Y, Cao W, Zhou H, Qian H, Wang H. H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the transcriptional misregulation in cancer signaling pathway in hepatocellular carcinoma. Cell Death Dis 2021; 12:609. [PMID: 34120148 PMCID: PMC8197763 DOI: 10.1038/s41419-021-03895-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
In eukaryotes, histones and their variants are essential for chromatin structure and function; both play important roles in the regulation of gene transcription, as well as the development of tumors. We aimed to explore the genomics data of hepatocellular carcinoma (HCC), combined with literature analysis, in terms of the histone variant H2A.Z. Cell phenotype assay confirmed the effect of H2A.Z on the proliferation, metastasis, apoptosis, and cell cycle of HCC cells. H2A.Z was shown to function via the tumor dysregulation signaling pathway, with BCL6 as its interacting protein. In addition, the acetylation level of H2A.Z was higher in HCC and was related to tumor formation. We found the acetylation of H2A.Z to be related to and regulated by lincZNF337-AS1. LincZNF337-AS1 was found to bind to H2A.Z and KAT5 at different sites, promoting the acetylation of H2A.Z through KAT5. We concluded that, in HCC, H2A.Z is an oncogene, whose acetylation promotes the transcription of downstream genes, and is regulated by lincZNF331-AS1.
Collapse
Affiliation(s)
- Yin Yuan
- The Department of Hepatobiliary Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Wen Cao
- The Department of Liver Disease of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Hongbing Zhou
- The Department of Hepatobiliary Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Honggang Wang
- The Department of General Surgery of Hospital Affiliated 5 to Nantong University(Taizhou People's Hospital), Taizhou, Jiangsu Province, China.
| |
Collapse
|
13
|
O’Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S. The Biological Significance of Targeting Acetylation-Mediated Gene Regulation for Designing New Mechanistic Tools and Potential Therapeutics. Biomolecules 2021; 11:biom11030455. [PMID: 33803759 PMCID: PMC8003229 DOI: 10.3390/biom11030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause developmental and intellectual challenges and metabolic disorders. Despite the availability of tools for detecting acetylation, the mechanistic knowledge of acetylation-mediated cellular processes remains limited. This review aims to integrate molecular and structural bases of KAT functions, which would help design highly selective tools for understanding the biology of KATs toward developing new disease treatments.
Collapse
Affiliation(s)
- Chenise O’Garro
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Loveth Igbineweka
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Zonaira Ali
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Mihaly Mezei
- Department of Pharmaceutical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shiraz Mujtaba
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
- Correspondence:
| |
Collapse
|
14
|
Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens. Mol Biochem Parasitol 2021; 242:111363. [PMID: 33524469 DOI: 10.1016/j.molbiopara.2021.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica, a pathogenic parasite, is the causative organism of amoebiasis and uses human colon to complete its life cycle. It destroys intestinal tissue leading to invasive disease. Since it does not form cyst in culture medium, a reptilian parasite Entamoeba invadens serves as the model system to study encystation. Detailed investigation on the mechanism of cyst formation, information on ultra-structural changes and cyst wall formation during encystation are still lacking in E. invadens. Here, we used electron microscopy to study the ultrastructural changes during cyst formation and showed that the increase in heterochromatin patches and deformation of nuclear shape were early events in encystation. These changes peaked at ∼20 h post induction, and normal nuclear morphology was restored by 72 h. Two types of cellular structures were visible by 16 h. One was densely stained and consisted of the cytoplasmic mass with clearly visible nucleus. The other consisted of membranous shells with large vacuoles and scant cytoplasm. The former structure developed into the mature cyst while the latter structure was lost after 20 h, This study of ultra-structural changes during encystation in E. invadens opens up the possibilities for further investigation into the mechanisms involved in this novel process.
Collapse
|
15
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R. METTL6 is a tRNA m 3C methyltransferase that regulates pluripotency and tumor cell growth. SCIENCE ADVANCES 2020; 6:eaaz4551. [PMID: 32923617 PMCID: PMC7449687 DOI: 10.1126/sciadv.aaz4551] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.
Collapse
Affiliation(s)
- Valentina V. Ignatova
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Steffen Kaiser
- Chemical Faculty, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xinyang Bing
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul Stolz
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ying Xim Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chee Leng Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florence Pik Hoon Gay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Palma Rico Lastres
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
| | - Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Adrián Sanz-Moreno
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Emil Ibragimov
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Magdalena Valenta
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Susan Marschall
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Oliver J. Rando
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
17
|
Belotti E, Lacoste N, Simonet T, Papin C, Padmanabhan K, Scionti I, Gangloff YG, Ramos L, Dalkara D, Hamiche A, Dimitrov S, Schaeffer L. H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles. Nucleic Acids Res 2020; 48:4601-4613. [PMID: 32266374 PMCID: PMC7229818 DOI: 10.1093/nar/gkaa157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Collapse
Affiliation(s)
- Edwige Belotti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Thomas Simonet
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Kiran Padmanabhan
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 32-34 Avenue Tony Garnier, 69007 Lyon, France
| | - Isabella Scionti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Yann-Gaël Gangloff
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Lorrie Ramos
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Defne Dalkara
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Laurent Schaeffer
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
18
|
Loss of macroH2A1 decreases mitochondrial metabolism and reduces the aggressiveness of uveal melanoma cells. Aging (Albany NY) 2020; 12:9745-9760. [PMID: 32401230 PMCID: PMC7288915 DOI: 10.18632/aging.103241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults. The most accurate prognostic factor of UM is classification by gene expression profiling. Currently, the role of epigenetics is much less defined compared to genetic mechanisms. We recently showed a strong prognostic role of the expression levels of histone variant macroH2A1 in UM patients. Here, we assessed the mechanistic effects of macroH2A1 on UM progression. UM cell lines were stably knocked down (KD) for macroH2A1, and proliferation and colony formation capacity were evaluated. Mitochondrial function was assayed through qPCR and HPLC analyses. Correlation between mitochondrial gene expression and cancer aggressiveness was studied using a bioinformatics approach. MacroH2A1 loss significantly attenuated UM cells proliferation and aggressiveness. Furthermore, genes involved in oxidative phosphorylation displayed a decreased expression in KD cells. Consistently, macroH2A1 loss resulted also in a significant decrease of mitochondrial transcription factor A (TFAM) expression, suggesting impaired mitochondrial replication. Bioinformatics analyses uncovered that the expression of genes involved in mitochondrial metabolism correlates with macroH2A1 and with cancer aggressiveness in UM patients. Altogether, our results suggest that macroH2A1 controls UM cells progression and it may represent a molecular target to develop new pharmacological strategies for UM treatment.
Collapse
|
19
|
Application of CE-MS for the analysis of histones and histone modifications. Methods 2020; 184:125-134. [PMID: 32014606 DOI: 10.1016/j.ymeth.2020.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 02/02/2023] Open
Abstract
The analysis, identification and quantification of histones and their post-translational modifications plays a central role in chromatin research and in studying epigenetic regulations during physiological processes. In the last decade analytical strategies based on mass spectrometry have been greatly improved for providing a global view of single modification abundances or to determine combinatorial patterns of modifications. Presented here is a newly developed strategy for histone protein analysis and a number of applications are illustrated with an emphasis on PTM characterization. Capillary electrophoresis is coupled to mass spectrometry (CE-MS) and has proven to be a very promising concept as it enables to study intact histones (top-down proteomics) as well as the analysis of enzymatically digested proteins (bottom-up proteomics). This technology combines highly efficient low-flow CE separations with ionization in a single device and offers an orthogonal separation principle to conventional LC-MS analysis, thus expanding the existing analytical repertoire in a perfect manner.
Collapse
|
20
|
Krause M, Yang FW, te Lindert M, Isermann P, Schepens J, Maas RJA, Venkataraman C, Lammerding J, Madzvamuse A, Hendriks W, te Riet J, Wolf K. Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180225. [PMID: 31431171 PMCID: PMC6627020 DOI: 10.1098/rstb.2018.0225] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
Directional cell migration in dense three-dimensional (3D) environments critically depends upon shape adaptation and is impeded depending on the size and rigidity of the nucleus. Accordingly, the nucleus is primarily understood as a physical obstacle; however, its pro-migratory functions by stepwise deformation and reshaping remain unclear. Using atomic force spectroscopy, time-lapse fluorescence microscopy and shape change analysis tools, we determined the nuclear size, deformability, morphology and shape change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator or being pre-treated with chromatin-decondensating agent TSA. We show oscillating peak accelerations during migration through 3D collagen matrices and microdevices that occur during shape reversion of deformed nuclei (recoil), and increase with confinement. During G1 cell-cycle phase, nucleus stiffness was increased and yielded further increased speed fluctuations together with sustained cell migration rates in confinement when compared to interphase populations or to periods of intrinsic nuclear softening in the S/G2 cell-cycle phase. Likewise, nuclear softening by pharmacological chromatin decondensation or after lamin A/C depletion reduced peak oscillations in confinement. In conclusion, deformation and recoil of the stiff nucleus contributes to saltatory locomotion in dense tissues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Marina Krause
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Feng Wei Yang
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK
| | - Mariska te Lindert
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Philipp Isermann
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Schepens
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ralph J. A. Maas
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chandrasekhar Venkataraman
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anotida Madzvamuse
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK
| | - Wiljan Hendriks
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joost te Riet
- Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Katarina Wolf
- Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
21
|
Singh R, Bassett E, Chakravarti A, Parthun MR. Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res 2019; 46:8665-8678. [PMID: 30165676 PMCID: PMC6158624 DOI: 10.1093/nar/gky768] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Replication-dependent histones are expressed in a cell cycle regulated manner and supply the histones necessary to support DNA replication. In mammals, the replication-dependent histones are encoded by a family of genes that are located in several clusters. In humans, these include 16 genes for histone H2A, 22 genes for histone H2B, 14 genes for histone H3, 14 genes for histone H4 and 6 genes for histone H1. While the proteins encoded by these genes are highly similar, they are not identical. For many years, these genes were thought to encode functionally equivalent histone proteins. However, several lines of evidence have emerged that suggest that the replication-dependent histone genes can have specific functions and may constitute a novel layer of chromatin regulation. This Survey and Summary reviews the literature on replication-dependent histone isoforms and discusses potential mechanisms by which the small variations in primary sequence between the isoforms can alter chromatin function. In addition, we summarize the wealth of data implicating altered regulation of histone isoform expression in cancer.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Bassett
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019; 20:ijms20102415. [PMID: 31096697 PMCID: PMC6567317 DOI: 10.3390/ijms20102415] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a complex genetic and epigenetic-based disease that has developed an armada of mechanisms to escape cell death. The deregulation of apoptosis and autophagy, which are basic processes essential for normal cellular activity, are commonly encountered during the development of human tumors. In order to assist the cancer cell in defeating the imbalance between cell growth and cell death, histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of both histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy, which are either mutually exclusive or activated in combination. Here, we compile known molecular signals and pathways involved in the HDACi-triggered induction of apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear. Correspondingly, we also summarized as yet established intertwined mechanisms, in particular with respect to the oncogenic tumor suppressor protein p53, that drive the interplay between apoptosis and autophagy in response to HDACi. In this context, we also note the significance to determine the presence of functional p53 protein levels in the cancer cell. The confirmation of the context-dependent function of autophagy will pave the way to improve the benefit from HDACi-mediated cancer treatment.
Collapse
|
23
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
24
|
Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019; 160:156-171. [PMID: 30878492 DOI: 10.1016/j.biochi.2019.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between genotype and phenotype is a central goal not just for genetics but also for medicine and biological sciences. Despite outstanding technological progresses, genetics alone is not able to completely explain phenotypes, in particular for complex diseases. Given the existence of a "missing heritability", growing attention has been given to non-mendelian mechanisms of inheritance and to the role of the environment. The study of interaction between gene and environment represents a challenging but also a promising field with high potential for health prevention, and epigenetics has been suggested as one of the best candidate to mediate environmental effects on the genome. Among environmental factors able to interact with both genome and epigenome, nutrition is one of the most impacting. Not just our genome influences the responsiveness to food and nutrients, but vice versa, nutrition can also modify gene expression through epigenetic mechanisms. In this complex picture, nutrigenetics and nutrigenomics represent appealing disciplines aimed to define new prospectives of personalized nutrition. This review introduces to the study of gene-environment interactions and describes how nutrigenetics and nutrigenomics modulate health, promoting or affecting healthiness through life-style, thus playing a pivotal role in modulating the effect of genetic predispositions.
Collapse
|
25
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
26
|
Kornej J, Büttner P, Hammer E, Engelmann B, Dinov B, Sommer P, Husser D, Hindricks G, Völker U, Bollmann A. Circulating proteomic patterns in AF related left atrial remodeling indicate involvement of coagulation and complement cascade. PLoS One 2018; 13:e0198461. [PMID: 30496173 PMCID: PMC6264811 DOI: 10.1371/journal.pone.0198461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Left atrial (LA) electro-anatomical remodeling and diameter increase in atrial fibrillation (AF) indicates disease progression and is associated with poor therapeutic success. Furthermore, AF leads to a hypercoagulable state, which in turn promotes the development of a substrate for AF and disease progression in the experimental setting. The aim of this study was to identify pathways associated with LA remodeling in AF patients using untargeted proteomics approach. METHODS Peripheral blood samples of 48 patients (62±10 years, 63% males, 59% persistent AF) undergoing AF catheter ablation were collected before ablation. 23 patients with left atrial low voltage areas (LVA), defined as <0.5 mV, and 25 patients without LVA were matched for age, gender and CHA2DS2-VASc score. Untargeted proteome analysis was performed using LC-ESI-Tandem mass spectrometry in a label free intensity based workflow. Significantly different abundant proteins were identified and used for pathway analysis and protein-protein interaction analysis. RESULTS Analysis covered 280 non-redundant circulating plasma proteins. The presence of LVA correlated with 30 differentially abundant proteins of coagulation and complement cascade (q<0.05). CONCLUSIONS This pilot proteomic study identified plasma protein candidates associated with electro-anatomical remodeling in AF and pointed towards an imbalance in coagulation and complement pathway, tissue remodeling and inflammation.
Collapse
Affiliation(s)
- Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Su L, Xia W, Shen T, Liang Q, Wang W, Li H, Jiao J. H2A.Z.1 crosstalk with H3K56-acetylation controls gliogenesis through the transcription of folate receptor. Nucleic Acids Res 2018; 46:8817-8831. [PMID: 29982651 PMCID: PMC6158499 DOI: 10.1093/nar/gky585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play crucial roles in the central nervous system, and defects in astrocyte function are closely related to many neurological disorders. Studying the mechanism of gliogenesis has important implications for understanding and treating brain diseases. Epigenetic regulations have essential roles during mammalian brain development. Here, we demonstrate that histone H2A.Z.1 is necessary for the specification of multiple neural precursor cells (NPCs) and has specialized functions that regulate gliogenesis. Depletion of H2A.Z.1 suppresses gliogenesis and results in reduced astrocyte differentiation. Additionally, H2A.Z.1 regulates the acetylation of H3K56 (H3K56ac) by cooperating with the chaperone of ASF1a. Furthermore, RNA-seq data indicate that folate receptor 1 (FOLR1) participates in gliogenesis through the JAK–STAT signaling pathway. Taken together, our results demonstrate that H2A.Z.1 is a key regulator of gliogenesis because it interacts with ASF1a to regulate H3K56ac and then directly affects the expression of FOLR1, which acts as a signal-transducing component of the JAK–STAT signaling pathway.
Collapse
Affiliation(s)
- Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tianjin Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
29
|
Current Insights into Oral Cancer Epigenetics. Int J Mol Sci 2018; 19:ijms19030670. [PMID: 29495520 PMCID: PMC5877531 DOI: 10.3390/ijms19030670] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Epigenetic modifications have emerged into one of the cancer hallmarks, replacing the concept of malignant pathologies as being solely genetic-based conditions. The epigenetic landscape is responsible for normal development but also for the heterogeneity among tissues in terms of gene expression patterns. Dysregulation in these mechanisms has been associated with disease stage, and increased attention is now granted to cancer in order to take advantage of these modifications in terms of novel therapeutic strategies or diagnosis/prognosis tools. Oral cancer has also been subjected to epigenetic analysis with numerous studies revealing that the development and progression of this malignancy are partially induced by an altered epigenetic substrate together with genetic alterations and prolonged exposure to environmental risk factors. The present review summarizes the most important epigenetic modifications associated with oral cancer and also their potential to be used as new therapeutic targets.
Collapse
|
30
|
Farman FU, Iqbal M, Azam M, Saeed M. Nucleosomes positioning around transcriptional start site of tumor suppressor (Rbl2/p130) gene in breast cancer. Mol Biol Rep 2018; 45:185-194. [PMID: 29417345 DOI: 10.1007/s11033-018-4151-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Dynamic positioning of nucleosomes is pivotal in determining level of genes expression especially on or around transcription start site (TSS) of a gene. Purpose of the current study was to determine nucleosome position around TSS of Rbl2/p130. We investigated Rbl2/p130 expression in connection to nucleosome positions around its TSS among breast tumors and their adjacent normal control tissues (ANCT) using micrococcal nuclease (MNAse) digestion assay and ChIP-PCR analysis. Three fold reduced Rbl2/p130 expression in these tumor tissues were noticed compared to their control tissues. DNA obtained from MNAse digested chromatin was used as PCR template. Region between - 137 to + 140 around TSS was scanned using 3 primer pairs (P1 = - 137 to + 69; P2 = - 90 to + 69; P3 = - 33 to + 140). ~ 66% breast tumors and ~ 26% ANCT samples were positive for P1. The difference was found statistically significant (p = 0.000) with an odd ratio (OD) of 9.143, suggesting that nucleosome formation in this region is ~ 9 times more probable in tumor samples. ~ 73% of the tumor and 60% ANCT were positive for P2, which although is significant (p = 0.035) with OD = 3.250, but less preferable than P1. However, P3 was not found to be a preferred area for nucleosome occupancy (p = 0.670; OD = 1.2). Negative correlations for nucleosome positions were observed especially for P1. Our results indicate that nucleosome are present slightly downstream of TSS in routine, while in case of breast carcinogenesis nucleosomes slides 55 bases upstream of the TSS, aligning + 1 position at the center of nucleosome, hence hindering access to the transcriptional machinery.
Collapse
Affiliation(s)
- Farman Ullah Farman
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Mehwish Iqbal
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
| | - Muhammad Azam
- Department of Statistics & Computer Science, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan.
| |
Collapse
|
31
|
Li C, Liu Y, Shen WH, Yu Y, Dong A. Chromatin-remodeling factor OsINO80 is involved in regulation of gibberellin biosynthesis and is crucial for rice plant growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:144-159. [PMID: 29045007 DOI: 10.1111/jipb.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 05/07/2023]
Abstract
The phytohormone gibberellin (GA) plays essential roles in plant growth and development. Here, we report that OsINO80, a conserved ATP-dependent chromatin-remodeling factor in rice (Oryza sativa), functions in both GA biosynthesis and diverse biological processes. OsINO80-knockdown mutants, derived from either T-DNA insertion or RNA interference, display typical GA-deficient phenotypes, including dwarfism, reduced cell length, late flowering, retarded seed germination and impaired reproductive development. Consistently, transcriptome analyses reveal that OsINO80 knockdown results in downregulation by more than two-fold of over 1,000 genes, including the GA biosynthesis genes CPS1 and GA3ox2, and the dwarf phenotype of OsINO80-knockdown mutants can be rescued by the application of exogenous GA3. Chromatin immunoprecipitation (ChIP) experiments show that OsINO80 directly binds to the chromatin of CPS1 and GA3ox2 loci. Biochemical assays establish that OsINO80 specially interacts with histone variant H2A.Z and the H2A.Z enrichments at CPS1 and GA3ox2 are decreased in OsINO80-knockdown mutants. Thus, our study identified a rice chromatin-remodeling factor, OsINO80, and demonstrated that OsINO80 is involved in regulation of the GA biosynthesis pathway and plays critical functions for many aspects of rice plant growth and development.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
33
|
Tekel SJ, Haynes KA. Molecular structures guide the engineering of chromatin. Nucleic Acids Res 2017; 45:7555-7570. [PMID: 28609787 PMCID: PMC5570049 DOI: 10.1093/nar/gkx531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics.
Collapse
Affiliation(s)
- Stefan J Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Karmella A Haynes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
34
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
35
|
Zhao H, Winogradoff D, Bui M, Dalal Y, Papoian GA. Promiscuous Histone Mis-Assembly Is Actively Prevented by Chaperones. J Am Chem Soc 2016; 138:13207-13218. [PMID: 27454815 PMCID: PMC7757119 DOI: 10.1021/jacs.6b05355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone proteins are essential for the organization, expression, and inheritance of genetic material for eukaryotic cells. A centromere-specific H3 histone variant, centromere protein A (CENP-A), shares about 50% amino acid sequence identity with H3. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their distinct biological functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal a high degree of similarity. In this work, we characterize the structural dynamics of CENP-A/H4 and H3/H4 dimers based on a dual-resolution approach, using both microsecond-scale explicit-solvent all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Our data show that the H4 histone is significantly more rigid compared with the H3 histone and its variant CENP-A, hence, serving as a reinforcing structural element within the histone core. We report that the CENP-A/H4 dimer is significantly more dynamic than its canonical counterpart H3/H4, and our results provide a physical explanation for this flexibility. Further, we observe that the centromere-specific chaperone Holliday Junction Recognition Protein (HJURP) stabilizes the CENP-A/H4 dimer by forming a specific electrostatic interaction network. Finally, replacing CENP-A S68 with E68 disrupts the binding interface between CENP-A and HJURP in all-atom MD simulation, and consistently, in vivo experiments demonstrate that replacing CENP-A S68 with E68 disrupts CENP-A's localization to the centromere. Based on all our results, we propose that, during the CENP-A/H4 deposition process, the chaperone HJURP protects various substructures of the dimer, serving both as a folding and binding chaperone.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David Winogradoff
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
36
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
37
|
Hildebrand EM, Biggins S. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects. PLoS Genet 2016; 12:e1005930. [PMID: 26982580 PMCID: PMC4794243 DOI: 10.1371/journal.pgen.1005930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. Chromosomes carry the genetic material in cells. When cells divide, each daughter cell must inherit a single copy of each chromosome. The centromere is the locus on each chromosome that ensures the equal distribution of chromosomes during cell division. One essential protein involved in this task is CENP-ACse4, which normally localizes exclusively to centromeres. Here, we investigated where CENP-ACse4 spreads in the genome when parts of its regulatory machinery are removed. We found that CENP-ACse4 becomes mislocalized to promoters, the region upstream of each gene that controls the activity of the gene. Consistent with this, the mislocalization of CENP-ACse4 to promoters leads to problems with gene activity. Our work shows that mislocalization of centromeric proteins can have effects beyond chromosome segregation defects, such as interfering with gene expression on chromosome arms.
Collapse
Affiliation(s)
- Erica M. Hildebrand
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
38
|
Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, Parekh PR, Sethi TK, Kasoji M, Abrams N, Merchant A, Rajapakse VN, Bonner WM. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun 2016; 7:10711. [PMID: 26876487 PMCID: PMC4756313 DOI: 10.1038/ncomms10711] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/12/2016] [Indexed: 02/08/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induces mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reverses these changes, as does silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibit a similar metastatic behaviour, but the cells with re-expressed H2A.X are substantially more metastatic. We surmise that H2A.X re-expression leads to partial EMT reversal and increases robustness in the HCT116 cells, permitting them to both form tumours and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlate inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a regulator of EMT. The histone H2A variants are involved in DNA repair, gene regulation and cancer development. In this study, the authors unravel an additional role for H2A.X in the regulation of mesenchymal-like traits and activation of the EMT transcription factors, Slug and ZEB1, in colon cancer cells.
Collapse
Affiliation(s)
- Urbain Weyemi
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Rohini Choudhuri
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Towqir Aziz
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Daisuke Maeda
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Myriem Boufraqech
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Palak R Parekh
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Taresh K Sethi
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Manjula Kasoji
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Natalie Abrams
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Anand Merchant
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - William M Bonner
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
40
|
Li X, Jiang Y, Ji Z, Liu Y, Zhang Q. BRHIS1 suppresses rice innate immunity through binding to monoubiquitinated H2A and H2B variants. EMBO Rep 2015. [PMID: 26202491 DOI: 10.15252/embr.201440000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the absence of pathogen attack, organisms usually suppress immune responses to reduce the negative effects of disease resistance. Monoubiquitination of histone variants at specific gene loci is crucial for gene expression, but its involvement in the regulation of plant immunity remains unclear. Here, we show that a rice SWI/SNF2 ATPase gene BRHIS1 is downregulated in response to the rice blast fungal pathogen or to the defense-priming-inducing compound BIT (1,2-benzisothiazol-3(2h)-one,1, 1-dioxide). The BRHIS1-containing complex represses the expression of some disease defense-related genes, including the pathogenesis-related gene OsPBZc and the leucine-rich-repeat (LRR) receptor-like protein kinase gene OsSIRK1. This is achieved through BRHIS1 recruitment to the promoter regions of target genes through specific interaction with monoubiquitinated histone variants H2B.7 and H2A.Xa/H2A.Xb/H2A.3, in the absence of pathogen attack or BIT treatment. Our results show that rice disease defense genes are initially organized in an expression-ready state by specific monoubiquitination of H2A and H2B variants deposited on their promoter regions, but are kept suppressed by the BRHIS1 complex, facilitating the prompt initiation of innate immune responses in response to infection through the stringent regulation of BRHIS1.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanxiang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhicheng Ji
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qunyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Sharma R, Zhou MM. Partners in crime: The role of tandem modules in gene transcription. Protein Sci 2015; 24:1347-59. [PMID: 26059070 DOI: 10.1002/pro.2711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022]
Abstract
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy.
Collapse
Affiliation(s)
- Rajal Sharma
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| |
Collapse
|
42
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|
44
|
Subramanian* V, Fields* PA, Boyer LA. H2A.Z: a molecular rheostat for transcriptional control. F1000PRIME REPORTS 2015; 7:01. [PMID: 25705384 PMCID: PMC4311278 DOI: 10.12703/p7-01] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The replacement of nucleosomal H2A with the histone variant H2A.Z is critical for regulating DNA-mediated processes across eukaryotes and for early development of multicellular organisms. How this variant performs these seemingly diverse roles has remained largely enigmatic. Here, we discuss recent mechanistic insights that have begun to reveal how H2A.Z functions as a molecular rheostat for gene control. We focus on specific examples in metazoans as a model for understanding how H2A.Z integrates information from histone post-translational modifications, other histone variants, and transcription factors (TFs) to regulate proper induction of gene expression programs in response to cellular cues. Finally, we propose a general model of how H2A.Z incorporation regulates chromatin states in diverse processes.
Collapse
|
45
|
Abstract
The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors, and it is among the most complex phenotypes studied to date. Evidence suggests that epigenetic factors, including DNA methylation, histone modifications and microRNA expression, may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as a biomarker for chronological age. This chapter summarizes the mechanisms by which these epigenetic factors contribute to aging and how they may affect the complex physiology of aging, lifespan and age-associated diseases.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA,
| |
Collapse
|
46
|
Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res 2015; 165:126-42. [PMID: 24768944 DOI: 10.1016/j.trsl.2014.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial process during normal development that allows dynamic and reversible shifts between epithelial and mesenchymal cell states. Cancer cells take advantage of the complex, interrelated cellular networks that regulate EMT to promote their migratory and invasive capabilities. During the past few years, evidence has accumulated that indicates that genetic mutations and changes to epigenetic mechanisms are key drivers of EMT in cancer cells. Recent studies have begun to shed light on the epigenetic reprogramming in cancer cells that enables them to switch from a noninvasive form to an invasive, metastatic form. The authors review the current knowledge of alterations of epigenetic machinery, including DNA methylation, histone modifications, nucleosome remodeling and expression of microRNAs, associated with EMT and tumor progression of breast cancer cells. Last, existing and upcoming drug therapies targeting epigenetic regulators and their potential benefit for developing novel treatment strategies are discussed.
Collapse
|
47
|
Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A, Galderisi U. De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle 2015; 14:1315-1326. [PMID: 25724006 PMCID: PMC4614278 DOI: 10.4161/15384101.2014.995053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells have a peculiar chromatin architecture that contributes to their unique properties, including uncommitted status, multi/pluripotency and self-renewal. We analyzed the effect of the de-regulation of the SWI/SNF chromatin remodeling complex in mesenchymal stromal cells (MSC) through the silencing and up-regulation of BRG1, which is the ATPase subunit of the complex. The altered expression of BRG1 promoted the senescence of MSC with suppression of the NANOG transcription, which is part of the transcriptional circuitry governing stem cell functions. To gain insight on the way NANOG was silenced, we evaluated how the de-regulated BRG1 expression affect the binding of activators and repressors on the NANOG promoter. We found 4 E2F binding motifs on NANOG promoter, which can be occupied by RB1 and RB2/P130. These are members of the retinoblastoma gene family. In MSC with a silenced BRG1, the relative binding of the 2 retinoblastoma proteins increased, and this was associated with the recruitment of DNMT1. This induced the methylation of CpG on the NANOG promoter. Opposingly, when a high level of BRG1 was present, the same E2F binding motifs were docking sites for BRG1, which induced chromatin compaction without CpG methylation but with increased histone deacetylation, associated with the presence of HDAC1 on E2F binding sites. Besides the sharp regulation of the NANOG expression, we evidenced, through proteomic analysis, that the de-regulation of the SWI/SNF function affected the expression of histones and other nuclear proteins involved in "nuclear architecture," suggesting that BRG1 may act as global regulator of gene expression.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Valeria Severino
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
| | - Nicola Alessio
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Giovanni Di Bernardo
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | | | - Angela Chambery
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
- IRCCS; Multimedica, Milano, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
- Institute Bioscience and BioResources; CNR; Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; Temple University; Philadelphia, PA USA
| |
Collapse
|
48
|
Epigenetic mechanisms of perinatal programming: translational approaches from rodent to human and back. ADVANCES IN NEUROBIOLOGY 2015; 10:363-80. [PMID: 25287549 DOI: 10.1007/978-1-4939-1372-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perinatal life is a period of enhanced plasticity and susceptibility to environmental effects via the maternal environment or parental care. A variety of studies have indicated that epigenetic mechanisms, which can alter gene function without a change in gene sequence, play a role in setting developmental trajectories that impact health, including mental health. This chapter reviews examples of translational approaches to the study of biological embedding of mental health via differences in parental care.
Collapse
|
49
|
Skeletal muscle plasticity induced by seasonal acclimatization in carp involves differential expression of rRNA and molecules that epigenetically regulate its synthesis. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:57-66. [DOI: 10.1016/j.cbpb.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/28/2014] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
|
50
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|