1
|
Koester JA, Fox O, Smith E, Cox MB, Taylor AR. A multifunctional organelle coordinates phagocytosis and chlorophagy in a marine eukaryote phytoplankton Scyphosphaera apsteinii. THE NEW PHYTOLOGIST 2025; 246:1096-1112. [PMID: 40035416 PMCID: PMC11982794 DOI: 10.1111/nph.20388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/06/2024] [Indexed: 03/05/2025]
Abstract
Mixotrophy via phagocytosis can have profound consequences for the survival of marine phytoplankton and the efficiency of carbon transfer in marine systems. Little is known about the cellular mechanisms that underly nutrient acquisition via prey uptake and processing in mixotrophic phytoplankton. We used confocal microscopy, flow cytometry, and electron microscopy to assess phagocytosis and intracellular prey processing in the diploid calcifying coccolithophore Scyphosphaera apsteinii. Bioinformatic analysis was performed to develop a working model of the pathways that likely converge to regulate mixotrophic nutrition and autophagy. We found cells ingested proxy (up to 2 μm diameter) and natural (bacteria and cyanobacteria) prey particles that are processed within a single, prominent acidic vacuole detected in 80-100% of cells during exponential growth. This organelle was constitutive in cells through all growth phases to late stationary and is inherited when cells divide. Chloroplast fragments localized to this digestive organelle. A distinct, nonacidic vacuole containing polyphosphate was also identified in cells with ingested particles. We conclude a novel acidic organelle plays a multifunctional catabolic role in both mixotrophic nutrition (phagotrophy) and autophagy (chlorophagy). This discovery illustrates the dynamic nutritional strategies that marine phytoplankton, such as coccolithophores, have evolved to acquire and conserve nutrients.
Collapse
Affiliation(s)
- Julie A. Koester
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Oren Fox
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Elizabeth Smith
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Madison B. Cox
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| | - Alison R. Taylor
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington601 South College RoadWilmingtonNC28403USA
| |
Collapse
|
2
|
Popelka H, Klionsky DJ. The emerging significance of Vac8, a multi-purpose armadillo-repeat protein in yeast. Autophagy 2025; 21:913-916. [PMID: 39045779 PMCID: PMC12013421 DOI: 10.1080/15548627.2024.2377377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vac8 is the sole armadillo-repeat (ARM) protein in yeast. The function of Vac8 in the cytoplasm-to-vacuole targeting pathway has been known for a long time but its role in the phagophore assembly site localization and recruitment of autophagy-related protein complexes is slowly coming to light. Because Vac8 is also involved in formation of the nuclear-vacuole junction and vacuole inheritance, the protein needs to be a competent and wide-ranging mediator of cellular processes. In this article, we discuss two recent studies reporting on Vac8 and its binding partners. We describe Vac8 in the context of crystallized protein complexes as well as predicted models to reveal the versatility of Vac8 and its potential to become a subject of future autophagy research.Abbreviation: ARM, armadillo repeat; Cvt, cytoplasm-to-vacuole targeting; IDPR, intrinsically disordered protein region NVJ, nucleus-vacuole junction; SEC, size-exclusion chromatography.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645041. [PMID: 40196620 PMCID: PMC11974856 DOI: 10.1101/2025.03.24.645041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Myo2, a myosin V motor, is essential for organelle transport in budding yeast. Its attachment to and detachment from cargo are mediated by adaptor molecules. Vac17, a vacuole-specific adaptor, links Myo2 to Vac8 on the vacuole membrane, and plays a key role in the formation and dissociation of the Myo2-Vac17-Vac8 complex. Using genetics, cryo-electron microscopy and structure prediction, we find that Vac17 interacts with Myo2 through two distinct sites rather than a single interface. Similarly, the peroxisome adapter Inp2 engages two separate regions of Myo2, one of which overlaps with Vac17. These findings support a "handhold" model, in which cargo adaptors occupy multiple sites on the Myo2 tail, enhancing motor-cargo interactions and likely providing additional regulatory control over motor recruitment. Summary This study provides insights into how cargo adaptors bind myosin V. Genetics, cell-based assays, cryo-EM, and AlphaFold, reveal that the vacuole-specific adaptor uses a handhold mechanism to attach to two areas on the myosin V tail. Moreover, evidence is presented that other adaptors use a similar strategy.
Collapse
|
4
|
Powell AM, Williams AE, Ables ET. Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642432. [PMID: 40161740 PMCID: PMC11952372 DOI: 10.1101/2025.03.10.642432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Many tissue-resident stem cells are retained through asymmetric cell division, a process that ensures stem cell self-renewal through each mitotic cell cycle. Asymmetric organelle distribution has been proposed as a mechanism by which stem cells are marked for long-term retention; however, it is not clear whether biased organelle localization is a cause or an effect of asymmetric division. In Drosophila females, an endoplasmic reticulum-like organelle called the fusome is continually regenerated in germline stem cells (GSCs) and associated with GSC division. Here, we report that the β-importin Tnpo-SR is essential for fusome regeneration. Depletion of Tnpo-SR disrupts cytoskeletal organization during interphase and nuclear membrane remodeling during mitosis. Tnpo-SR does not localize to microtubules, centrosomes, or the fusome, suggesting that its role in maintaining these processes is indirect. Despite this, we find that restoring fusome morphogenesis in Tnpo-SR-depleted GSCs is sufficient to rescue GSC maintenance and cell cycle progression. We conclude that Tnpo-SR functionally fusome regeneration to cell cycle progression, supporting the model that asymmetric rebuilding of fusome promotes maintenance of GSC identity and niche retention.
Collapse
Affiliation(s)
- Amanda M. Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858
- Current address: Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA, 30322
| | | |
Collapse
|
5
|
Tian LJ, Zheng YT, Dang Z, Xu S, Gong SL, Wang YT, Guan Y, Wu Z, Liu G, Tian YC. Near-Native Imaging of Metal Ion-Initiated Cell State Transition. ACS NANO 2025; 19:5279-5294. [PMID: 39874599 DOI: 10.1021/acsnano.4c12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography. The three-dimensional architecture of intact yeast directly shows that iron or manganese triggers a hormesis-like effect that promotes cell proliferation. This process leads to the reorganization of organelles in the preparation for division, characterized by the polar distribution of mitochondria, an increased number of lipid droplets (LDs), volume shrinkage, and the formation of a hollow structure. Additionally, vesicle-like structures that detach from the vacuole are observed. Oppositely, cadmium or mercury causes stress-associated phenotypes, including mitochondrial fragmentation, LD swelling, and autophagosome formation. Notably, the organellar interactome, encompassing the interactions between mitochondria and LDs and those between the nuclear envelope and LDs, is quantified and exhibits alteration with multifaceted features in response to different metal ions. More importantly, the dynamics of organellar architecture render them more sensitive biomarkers than traditional approaches for assessing the cell state. Strikingly, yeast has a powerful depuration capacity to isolate and transform the overaccumulated cadmium in the vacuole, mitochondria, and cytoplasm as a high-value product, quantum dots. This work presents the possibility of discovering fundamental links between organellar morphological characteristics and the cell state.
Collapse
Affiliation(s)
- Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Tong Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Shuai Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-Lan Gong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Ting Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Obara K, Nishimura K, Kamura T. E3 Ligases Regulate Organelle Inheritance in Yeast. Cells 2024; 13:292. [PMID: 38391905 PMCID: PMC10887072 DOI: 10.3390/cells13040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Saccharomyces cerevisiae proliferates by budding, which includes the formation of a cytoplasmic protrusion called the 'bud', into which DNA, RNA, proteins, organelles, and other materials are transported. The transport of organelles into the growing bud must be strictly regulated for the proper inheritance of organelles by daughter cells. In yeast, the RING-type E3 ubiquitin ligases, Dma1 and Dma2, are involved in the proper inheritance of mitochondria, vacuoles, and presumably peroxisomes. These organelles are transported along actin filaments toward the tip of the growing bud by the myosin motor protein, Myo2. During organelle transport, organelle-specific adaptor proteins, namely Mmr1, Vac17, and Inp2 for mitochondria, vacuoles, and peroxisomes, respectively, bridge the organelles and myosin. After reaching the bud, the adaptor proteins are ubiquitinated by the E3 ubiquitin ligases and degraded by the proteasome. Targeted degradation of the adaptor proteins is necessary to unload vacuoles, mitochondria, and peroxisomes from the actin-myosin machinery. Impairment of the ubiquitination of adaptor proteins results in the failure of organelle release from myosin, which, in turn, leads to abnormal dynamics, morphology, and function of the inherited organelles, indicating the significance of proper organelle unloading from myosin. Herein, we summarize the role and regulation of E3 ubiquitin ligases during organelle inheritance in yeast.
Collapse
Affiliation(s)
- Keisuke Obara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan;
| | | | - Takumi Kamura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan;
| |
Collapse
|
7
|
Huda M, Bektas SN, Bekdas B, Caydasi AK. The signalling lipid PI3,5P 2 is essential for timely mitotic exit. Open Biol 2023; 13:230125. [PMID: 37751887 PMCID: PMC10522413 DOI: 10.1098/rsob.230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Coordination of mitotic exit with chromosome segregation is key for successful mitosis. Mitotic exit in budding yeast is executed by the mitotic exit network (MEN), which is negatively regulated by the spindle position checkpoint (SPOC). SPOC kinase Kin4 is crucial for SPOC activation in response to spindle positioning defects. Here, we report that the lysosomal signalling lipid phosphatidylinositol-3,5-bisphosphate (PI3,5P2) has an unanticipated role in the timely execution of mitotic exit. We show that the lack of PI3,5P2 causes a delay in mitotic exit, whereas elevated levels of PI3,5P2 accelerates mitotic exit in mitotic exit defective cells. Our data indicate that PI3,5P2 promotes mitotic exit in part through impairment of Kin4. This process is largely dependent on the known PI3,5P2 effector protein Atg18. Our work thus uncovers a novel link between PI3,5P2 and mitotic exit.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Baris Bekdas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
8
|
Kim H, Park J, Kim H, Ko N, Park J, Jang E, Yoon S, Diaz J, Lee C, Jun Y. Structures of Vac8-containing protein complexes reveal the underlying mechanism by which Vac8 regulates multiple cellular processes. Proc Natl Acad Sci U S A 2023; 120:e2211501120. [PMID: 37094131 PMCID: PMC10161063 DOI: 10.1073/pnas.2211501120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Vac8, a yeast vacuolar protein with armadillo repeats, mediates various cellular processes by changing its binding partners; however, the mechanism by which Vac8 differentially regulates these processes remains poorly understood. Vac8 interacts with Nvj1 to form the nuclear-vacuole junction (NVJ) and with Atg13 to mediate cytoplasm-to-vacuole targeting (Cvt), a selective autophagy-like pathway that delivers cytoplasmic aminopeptidase I directly to the vacuole. In addition, Vac8 associates with Myo2, a yeast class V myosin, through its interaction with Vac17 for vacuolar inheritance from the mother cell to the emerging daughter cell during cell divisions. Here, we determined the X-ray crystal structure of the Vac8-Vac17 complex and found that its interaction interfaces are bipartite, unlike those of the Vac8-Nvj1 and Vac8-Atg13 complexes. When the key amino acids present in the interface between Vac8 and Vac17 were mutated, vacuole inheritance was severely impaired in vivo. Furthermore, binding of Vac17 to Vac8 prevented dimerization of Vac8, which is required for its interactions with Nvj1 and Atg13, by clamping the H1 helix to the ARM1 domain of Vac8 and thereby preventing exposure of the binding interface for Vac8 dimerization. Consistently, the binding affinity of Vac17-bound Vac8 for Nvj1 or Atg13 was markedly lower than that of free Vac8. Likewise, free Vac17 had no affinity for the Vac8-Nvj1 and Vac8-Atg13 complexes. These results provide insights into how vacuole inheritance and other Vac8-mediated processes, such as NVJ formation and Cvt, occur independently of one another.
Collapse
Affiliation(s)
- Hyejin Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Jihyeon Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Hyunwoo Kim
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Naho Ko
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Jumi Park
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Eunhong Jang
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - So Young Yoon
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Joyce Anne R. Diaz
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Changwook Lee
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
| | - Youngsoo Jun
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| |
Collapse
|
9
|
Prouteau M, Bourgoint C, Felix J, Bonadei L, Sadian Y, Gabus C, Savvides SN, Gutsche I, Desfosses A, Loewith R. EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat Struct Mol Biol 2023; 30:273-285. [PMID: 36702972 PMCID: PMC10023571 DOI: 10.1038/s41594-022-00912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/21/2022] [Indexed: 01/27/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a protein kinase controlling cell homeostasis and growth in response to nutrients and stresses. In Saccharomyces cerevisiae, glucose depletion triggers a redistribution of TORC1 from a dispersed localization over the vacuole surface into a large, inactive condensate called TOROID (TORC1 organized in inhibited domains). However, the mechanisms governing this transition have been unclear. Here, we show that acute depletion and repletion of EGO complex (EGOC) activity is sufficient to control TOROID distribution, independently of other nutrient-signaling pathways. The 3.9-Å-resolution structure of TORC1 from TOROID cryo-EM data together with interrogation of key interactions in vivo provide structural insights into TORC1-TORC1' and TORC1-EGOC interaction interfaces. These data support a model in which glucose-dependent activation of EGOC triggers binding to TORC1 at an interface required for TOROID assembly, preventing TORC1 polymerization and promoting release of active TORC1.
Collapse
Affiliation(s)
- Manoël Prouteau
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Clélia Bourgoint
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Jan Felix
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Lenny Bonadei
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yashar Sadian
- CryoGEnic facility (DCI Geneva), University of Geneva, Geneva, Switzerland
| | - Caroline Gabus
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Robbie Loewith
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
- Swiss National Centre for Competence in Research Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
10
|
Choi SY, Choi W, Park YS, Kim HK, Kim YH, Min J. Vacuoles isolated from Saccharomyces cerevisiae inhibit differentiation of 3T3-L1 adipocyte. Enzyme Microb Technol 2023; 163:110165. [DOI: 10.1016/j.enzmictec.2022.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
|
11
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
12
|
Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast. Nat Commun 2022; 13:2706. [PMID: 35577788 PMCID: PMC9110415 DOI: 10.1038/s41467-022-30045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1). Actin cables affect lifespan by supporting movement and inheritance of fitter mitochondria to daughter cells in yeast. Here the authors show that branched-chain amino acid (BCAA) levels affect actin cable stability and a role for YKL075C/AAN1 in control of BCAA metabolism and actin cable stability and function.
Collapse
|
13
|
Jin Y, Jin N, Oikawa Y, Benyair R, Koizumi M, Wilson TE, Ohsumi Y, Weisman LS. Bur1 functions with TORC1 for vacuole-mediated cell cycle progression. EMBO Rep 2022; 23:e53477. [PMID: 35166010 PMCID: PMC8982600 DOI: 10.15252/embr.202153477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.
Collapse
Affiliation(s)
- Yui Jin
- Tokyo Tech World Research Hub Initiative (WRHI)TokyoJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Natsuko Jin
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Present address:
Live Cell Super‐Resolution Imaging Research TeamRIKEN Center for Advanced PhotonicsWakoJapan
| | - Yu Oikawa
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Ron Benyair
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Michiko Koizumi
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | | | - Yoshinori Ohsumi
- Tokyo Tech World Research Hub Initiative (WRHI)TokyoJapan
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Lois S Weisman
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
14
|
Arakawa S, Kanaseki T, Wagner R, Goodenough U. Ultrastructure of the foliose lichen Myelochroa leucotyliza and its solo fungal and algal (Trebouxia sp.) partners. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Li KW, Lu MS, Iwamoto Y, Drubin DG, Pedersen RTA. A preferred sequence for organelle inheritance during polarized cell growth. J Cell Sci 2021; 134:272417. [PMID: 34622919 PMCID: PMC8627559 DOI: 10.1242/jcs.258856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Some organelles cannot be synthesized anew, so they are segregated into daughter cells during cell division. In Saccharomyces cerevisiae, daughter cells bud from mother cells and are populated by organelles inherited from the mothers. To determine whether this organelle inheritance occurs in a stereotyped manner, we tracked organelles using fluorescence microscopy. We describe a program for organelle inheritance in budding yeast. The cortical endoplasmic reticulum (ER) and peroxisomes are inherited concomitantly with bud emergence. Next, vacuoles are inherited in small buds, followed closely by mitochondria. Finally, the nucleus and perinuclear ER are inherited when buds have nearly reached their maximal size. Because organelle inheritance timing correlates with bud morphology, which is coupled to the cell cycle, we tested whether disrupting the cell cycle alters organelle inheritance order. By arresting cell cycle progression but allowing continued bud growth, we determined that organelle inheritance still occurs when DNA replication is blocked, and that the general inheritance order is maintained. Thus, organelle inheritance follows a preferred order during polarized cell division and does not require completion of S-phase. Summary: Organelles are interconnected by contact sites, but they must be inherited from mother cells into buds during budding yeast mitosis. We report that this process occurs in a preferred sequence.
Collapse
Affiliation(s)
- Kathryn W Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michelle S Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Wong S, Weisman LS. Let it go: mechanisms that detach myosin V from the yeast vacuole. Curr Genet 2021; 67:865-869. [PMID: 34110447 DOI: 10.1007/s00294-021-01195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022]
Abstract
A major question in cell biology is, how are organelles and macromolecular machines moved within a cell? The delivery of cargoes to the right place at the right time within a cell is critical to cellular health. Failure to do so is often catastrophic for animal physiology and results in diseases of the gut, brain, and skin. In budding yeast, a myosin V motor, Myo2, moves cellular materials from the mother cell into the growing daughter bud. Myo2-based transport ensures that cellular contents are shared during cell division. During transport, Myo2 is often linked to its cargo via cargo-specific adaptor proteins. This simple organism thus serves as a powerful tool to study how myosin V moves cargo, such as organelles. Some critical questions include how myosin V moves along the actin cytoskeleton, or how myosin V attaches to cargo in the mother. Other critical questions include how the cargo is released from myosin V when it reaches its final destination in the bud. Here, we review the mechanisms that regulate the vacuole-specific adaptor protein, Vac17, to ensure that Myo2 delivers the vacuole to the bud and releases it at the right place and the right time. Recent studies have revealed that Vac17 is regulated by ubiquitylation and phosphorylation events that coordinate its degradation and the detachment of the vacuole from Myo2. Thus, multiple post-translational modifications tightly coordinate cargo delivery with cellular events. It is tempting to speculate that similar mechanisms regulate other cargoes and molecular motors.
Collapse
Affiliation(s)
- Sara Wong
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Wong S, Weisman LS. Roles and regulation of myosin V interaction with cargo. Adv Biol Regul 2021; 79:100787. [PMID: 33541831 PMCID: PMC7920922 DOI: 10.1016/j.jbior.2021.100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.
Collapse
Affiliation(s)
- Sara Wong
- Cell and Molecular Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
18
|
Nguyen V, Smothers J, Ballhorn P, Kottapalli S, Ly A, Villarreal J, Kim K. Myosin V-mediated transport of Snc1 and Vps10 toward the trans-Golgi network. Eur J Cell Biol 2020; 100:151143. [PMID: 33277053 DOI: 10.1016/j.ejcb.2020.151143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/30/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022] Open
Abstract
Retrieval of cargo proteins from the endosome towards the trans-Golgi network (TGN) is a crucial intracellular process for cellular homeostasis. Its dysfunction is associated with pathogenesis of Alzheimer and Parkinson's diseases. Myosin family proteins are cellular motors walking along actin filaments by utilizing the chemical energy from ATP hydrolysis, known to involve in pleiotropic cellular trafficking pathways. However, the question of whether myosins play a role in the trafficking of Snc1 and Vps10 has not been addressed yet. The present study assesses the potential roles of all five yeast myosins in the recycling of two membrane cargo, Snc1 and Vps10. It appears that all myosins except Myo2 are not required for the Snc1 traffic, while it was found that Myo1 and 2 play important roles for Vps10 retrieval from the endosome and the vacuole. Multiple myo2 mutants harboring a point mutation in the actin binding or the cargo binding tail domain were characterized to demonstrate abnormal Vps10-GFP and GFP-Snc1 distribution phenotypes, suggesting a severe defect in their sorting and trafficking at the endosome. Furthermore, Vps10-GFP patches in all tested myo2 mutants were found to be near stationary with quantitative live cell imaging. Finally, we found that actin cables in the myo2 mutant cells were considerably disrupted, which may aggravate the trafficking of Vps10 from the endosome. Together, our results provide novel insights into the function of Myo-family proteins in the recycling traffic of Vps10 and Snc1 destined for the TGN.
Collapse
Affiliation(s)
- Vy Nguyen
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Jared Smothers
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA; Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8816, USA
| | - Paul Ballhorn
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Sravya Kottapalli
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Anh Ly
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Julia Villarreal
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA.
| |
Collapse
|
19
|
Chadwick WL, Biswas SK, Bianco S, Chan YHM. Non-random distribution of vacuoles in Schizosaccharomyces pombe. Phys Biol 2020; 17:065004. [PMID: 33035200 DOI: 10.1088/1478-3975/aba510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A central question in eukaryotic cell biology asks, during cell division, how is the growth and distribution of organelles regulated to ensure each daughter cell receives an appropriate amount. For vacuoles in budding yeast, there are well described organelle-to-cell size scaling trends as well as inheritance mechanisms involving highly coordinated movements. It is unclear whether such mechanisms are necessary in the symmetrically dividing fission yeast, Schizosaccharomyces pombe, in which random partitioning may be utilized to distribute vacuoles to daughter cells. To address the increasing need for high-throughput analysis, we are augmenting existing semi-automated image processing by developing fully automated machine learning methods for locating vacuoles and segmenting fission yeast cells from brightfield and fluorescence micrographs. All strains studied show qualitative correlations in vacuole-to-cell size scaling trends, i.e. vacuole volume, surface area, and number all increase with cell size. Furthermore, increasing vacuole number was found to be a consistent mechanism for the increase in total vacuole size in the cell. Vacuoles are not distributed evenly throughout the cell with respect to available cytoplasm. Rather, vacuoles show distinct peaks in distribution close to the nucleus, and this preferential localization was confirmed in mutants in which nucleus position is perturbed. Disruption of microtubules leads to quantitative changes in both vacuole size scaling trends and distribution patterns, indicating the microtubule cytoskeleton is a key mechanism for maintaining vacuole structure.
Collapse
Affiliation(s)
- William L Chadwick
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America. Center for Cellular Construction, San Francisco Bay Area, CA, United States of America
| | | | | | | |
Collapse
|
20
|
Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor. Curr Biol 2020; 30:4399-4412.e7. [PMID: 32916113 DOI: 10.1016/j.cub.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
Collapse
|
21
|
Klecker T, Westermann B. Asymmetric inheritance of mitochondria in yeast. Biol Chem 2020; 401:779-791. [DOI: 10.1515/hsz-2019-0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/27/2023]
Abstract
AbstractMitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
22
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
23
|
Freeman SA, Grinstein S. Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic 2018; 19:965-974. [DOI: 10.1111/tra.12614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Spencer A. Freeman
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
24
|
Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions. Cell Rep 2017; 16:826-38. [PMID: 27373154 PMCID: PMC4963537 DOI: 10.1016/j.celrep.2016.06.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/29/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Age can be reset during mitosis in both yeast and stem cells to generate a young daughter cell from an aged and deteriorated one. This phenomenon requires asymmetry-generating genes (AGGs) that govern the asymmetrical inheritance of aggregated proteins. Using a genome-wide imaging screen to identify AGGs in Saccharomyces cerevisiae, we discovered a previously unknown role for endocytosis, vacuole fusion, and the myosin-dependent adaptor protein Vac17 in asymmetrical inheritance of misfolded proteins. Overproduction of Vac17 increases deposition of aggregates into cytoprotective vacuole-associated sites, counteracts age-related breakdown of endocytosis and vacuole integrity, and extends replicative lifespan. The link between damage asymmetry and vesicle trafficking can be explained by a direct interaction between aggregates and vesicles. We also show that the protein disaggregase Hsp104 interacts physically with endocytic vesicle-associated proteins, such as the dynamin-like protein, Vps1, which was also shown to be required for Vac17-dependent sequestration of protein aggregates. These data demonstrate that two physiognomies of aging-reduced endocytosis and protein aggregation-are interconnected and regulated by Vac17.
Collapse
|
25
|
Strelnikova N, Sauter N, Guizar-Sicairos M, Göllner M, Diaz A, Delivani P, Chacón M, Tolić IM, Zaburdaev V, Pfohl T. Live cell X-ray imaging of autophagic vacuoles formation and chromatin dynamics in fission yeast. Sci Rep 2017; 7:13775. [PMID: 29061993 PMCID: PMC5653777 DOI: 10.1038/s41598-017-13175-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/21/2017] [Indexed: 01/04/2023] Open
Abstract
Seeing physiological processes at the nanoscale in living organisms without labeling is an ultimate goal in life sciences. Using X-ray ptychography, we explored in situ the dynamics of unstained, living fission yeast Schizosaccharomyces pombe cells in natural, aqueous environment at the nanoscale. In contrast to previous X-ray imaging studies on biological matter, in this work the eukaryotic cells were alive even after several ptychographic X-ray scans, which allowed us to visualize the chromatin motion as well as the autophagic cell death induced by the ionizing radiation. The accumulated radiation of the sequential scans allowed for the determination of a characteristic dose of autophagic vacuole formation and the lethal dose for fission yeast. The presented results demonstrate a practical method that opens another way of looking at living biological specimens and processes in a time-resolved label-free setting.
Collapse
Affiliation(s)
| | - Nora Sauter
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Michael Göllner
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Petrina Delivani
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mariola Chacón
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Thomas Pfohl
- Department of Chemistry, University of Basel, Basel, Switzerland. .,Biomaterials Science Center, University of Basel, Basel, Switzerland. .,Institute of Physics, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Mechanistic insight into the nucleus-vacuole junction based on the Vac8p-Nvj1p crystal structure. Proc Natl Acad Sci U S A 2017; 114:E4539-E4548. [PMID: 28533415 DOI: 10.1073/pnas.1701030114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of the nucleus-vacuole junction (NVJ) is mediated by direct interaction between the vacuolar protein Vac8p and the outer nuclear endoplasmic reticulum membrane protein Nvj1p. Herein we report the crystal structure of Vac8p bound to Nvj1p at 2.4-Å resolution. Vac8p comprises a flexibly connected N-terminal H1 helix followed by 12 armadillo repeats (ARMs) that form a right-handed superhelical structure. The extended 80-Å-long loop of Nvj1p specifically binds the highly conserved inner groove formed from ARM1-12 of Vac8p. Disruption of the Nvj1p-Vac8p interaction results in the loss of tight NVJs, which impairs piecemeal microautophagy of the nucleus in Saccharomyces cerevisiae Vac8p cationic triad (Arg276, Arg317, and Arg359) motifs interacting with Nvj1p are also critical to the recognition of Atg13p, a key component of the cytoplasm-to-vacuole targeting (CVT) pathway, indicating competitive binding to Vac8p. Indeed, mutation of the cationic triad abolishes CVT of Ape1p in vivo. Combined with biochemical data, the crystal structure reveals a Vac8p homodimer formed from ARM1, and this self-association, likely regulated by the flexible H1 helix and the C terminus of Nvj1p, is critical for Vac8p cellular functions.
Collapse
|
27
|
Yau RG, Wong S, Weisman LS. Spatial regulation of organelle release from myosin V transport by p21-activated kinases. J Cell Biol 2017; 216:1557-1566. [PMID: 28495836 PMCID: PMC5461012 DOI: 10.1083/jcb.201607020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022] Open
Abstract
Correct positioning of organelles is essential to eukaryotic cells. Molecular motors transport organelles to their proper destinations, yet little is known about the pathways that define these destinations. In Saccharomyces cerevisiae, the myosin V motor Myo2 binds the vacuole-specific adapter Vac17 to attach to the vacuole/lysosome and initiate transport. After arrival in the bud, Myo2 releases the vacuole, and Vac17 is degraded. However, the mechanisms that spatially regulate this release were not established. In this study, we report that the bud cortex is a landmark that signals a successful delivery of the vacuole to the bud. We demonstrate that upon arrival at the bud cortex, Vac17 is phosphorylated by Cla4. Cla4-dependent phosphorylation is required for the ubiquitylation and subsequent degradation of Vac17 and the release of the vacuole from Myo2. Our study reveals a critical step in the spatial regulation of myosin V-dependent organelle transport and may reveal common mechanisms for how molecular motors accurately deposit cargoes at the correct locations.
Collapse
Affiliation(s)
- Richard G Yau
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Sara Wong
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Lois S Weisman
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109 .,Department of Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
28
|
Hill SM, Hanzén S, Nyström T. Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep 2017; 18:377-391. [PMID: 28193623 PMCID: PMC5331209 DOI: 10.15252/embr.201643458] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
The accumulation of damaged and aggregated proteins is a hallmark of aging and increased proteotoxic stress. To limit the toxicity of damaged and aggregated proteins and to ensure that the damage is not inherited by succeeding cell generations, a system of spatial quality control operates to sequester damaged/aggregated proteins into inclusions at specific protective sites. Such spatial sequestration and asymmetric segregation of damaged proteins have emerged as key processes required for cellular rejuvenation. In this review, we summarize findings on the nature of the different quality control sites identified in yeast, on genetic determinants required for spatial quality control, and on how aggregates are recognized depending on the stress generating them. We also briefly compare the yeast system to spatial quality control in other organisms. The data accumulated demonstrate that spatial quality control involves factors beyond the canonical quality control factors, such as chaperones and proteases, and opens up new venues in approaching how proteotoxicity might be mitigated, or delayed, upon aging.
Collapse
Affiliation(s)
- Sandra Malmgren Hill
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sarah Hanzén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
29
|
Mattie S, McNally EK, Karim MA, Vali H, Brett CL. How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell 2017; 28:309-321. [PMID: 27881666 PMCID: PMC5231899 DOI: 10.1091/mbc.e15-11-0759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/11/2022] Open
Abstract
Lysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear. To better understand this process, we studied fragment formation during homotypic vacuolar lysosome membrane fusion in Saccharomyces cerevisiae Using cell-free fusion assays and light microscopy, we find that GTPase activation and trans-SNARE complex zippering have opposing effects on fragment formation and verify that this affects the morphology of the fusion product and regulates transporter protein degradation. We show that fragment formwation is limited by stalk expansion, a key intermediate of the lipid bilayer fusion reaction. Using electron microscopy, we present images of hemifusion diaphragms that form as stalks expand and propose a model describing how the fusion machinery regulates fragment formation during lysosome fusion to control morphology and protein lifetimes.
Collapse
Affiliation(s)
- Sevan Mattie
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Erin K McNally
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Mahmoud A Karim
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Christopher L Brett
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
30
|
Pécréaux J, Redemann S, Alayan Z, Mercat B, Pastezeur S, Garzon-Coral C, Hyman AA, Howard J. The Mitotic Spindle in the One-Cell C. elegans Embryo Is Positioned with High Precision and Stability. Biophys J 2016; 111:1773-1784. [PMID: 27760363 PMCID: PMC5071606 DOI: 10.1016/j.bpj.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Abstract
Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents of the mother cell are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early Caenorhabditis elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution. We found that the precision is remarkably high: the cell-to-cell variation in the transverse position of the center of the spindle during metaphase, as measured by the standard deviation, was only 1.5% of the length of the short axis of the cell. Spindle position is also very stable: the standard deviation of the fluctuations in transverse spindle position during metaphase was only 0.5% of the short axis of the cell. Assuming that stability is limited by fluctuations in the number of independent motor elements such as microtubules or dyneins underlying the centering machinery, we infer that the number is ∼1000, consistent with the several thousand of astral microtubules in these cells. Astral microtubules grow out from the two spindle poles, make contact with the cell cortex, and then shrink back shortly thereafter. The high stability of centering can be accounted for quantitatively if, while making contact with the cortex, the astral microtubules buckle as they exert compressive, pushing forces. We thus propose that the large number of microtubules in the asters provides a highly precise mechanism for positioning the spindle during metaphase while assembly is completed before the onset of anaphase.
Collapse
Affiliation(s)
- Jacques Pécréaux
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Stefanie Redemann
- Dresden University of Technology, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Zahraa Alayan
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Benjamin Mercat
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Sylvain Pastezeur
- Institute of Genetics and Development of Rennes, Unité Mixte de Recherche 6290, Centre National de la Recherche Scientifique, CS 34317, Rennes, France; Institute of Genetics and Development of Rennes, University Rennes 1, Rennes, France
| | - Carlos Garzon-Coral
- Shriram Center of Bioengineering and Chemical Engineering, Stanford University, Stanford, California; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathon Howard
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
31
|
Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 2016; 6:29045. [PMID: 27363625 PMCID: PMC4929563 DOI: 10.1038/srep29045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector.
Collapse
|
32
|
de Marcos Lousa C, Denecke J. Lysosomal and vacuolar sorting: not so different after all! Biochem Soc Trans 2016; 44:891-7. [PMID: 27284057 PMCID: PMC5264500 DOI: 10.1042/bst20160050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/12/2022]
Abstract
Soluble hydrolases represent the main proteins of lysosomes and vacuoles and are essential to sustain the lytic properties of these organelles typical for the eukaryotic organisms. The sorting of these proteins from ER residents and secreted proteins is controlled by highly specific receptors to avoid mislocalization and subsequent cellular damage. After binding their soluble cargo in the early stage of the secretory pathway, receptors rely on their own sorting signals to reach their target organelles for ligand delivery, and to recycle back for a new round of cargo recognition. Although signals in cargo and receptor molecules have been studied in human, yeast and plant model systems, common denominators and specific examples of diversification have not been systematically explored. This review aims to fill this niche by comparing the structure and the function of lysosomal/vacuolar sorting receptors (VSRs) from these three organisms.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- School of Clinical and Applied Sciences, Faculty of Biomedical Sciences, Leeds Beckett University, Leeds LS13HE, U.K. Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| | - Jurgen Denecke
- Centre for Plant Sciences, University of Leeds, Leeds LS29JT, U.K.
| |
Collapse
|
33
|
Zheng Z, Liu X, Li B, Cai Y, Zhu Y, Zhou M. Myosins FaMyo2B and Famyo2 Affect Asexual and Sexual Development, Reduces Pathogenicity, and FaMyo2B Acts Jointly with the Myosin Passenger Protein FaSmy1 to Affect Resistance to Phenamacril in Fusarium asiaticum. PLoS One 2016; 11:e0154058. [PMID: 27099966 PMCID: PMC4839718 DOI: 10.1371/journal.pone.0154058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
We previously reported that mutations occurred in the gene myosin5 were responsible for resistance to the fungicide phenamacril in Fusarium graminearum. Here, we determined whether there is a functional link between phenamacril resistance and the myosin proteins FaMyo2B and Famyo2 in Fusarium asiaticum, which is the major causal agent of Fusarium head blight in China. We found that FaMyo2B acts jointly with FaSmy1 to affect resistance to phenamacril in F. asiaticum. We also found that FaMyo2B disruption mutant and Famyo2 deletion mutant were defective in hyphal branching, conidiation, and sexual reproduction. ΔFamyo2 also had an enhanced sensitivity to cell wall damaging agents and an abnormal distribution of septa and nuclei. In addition, the FaMyo2B and Famyo2 mutants had reduced pathogenicity on wheat coleoptiles and flowering wheat heads. Taken together, these results reveal that FaMyo2B and Famyo2 are required for several F. asiaticum developmental processes and activities, which help us better understand the resistance mechanism and find the most effective approach to control FHB.
Collapse
Affiliation(s)
- Zhitian Zheng
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Xiumei Liu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Bin Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yuanye Zhu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
34
|
Mueller C, Samoo A, Hammoudi PM, Klages N, Kallio JP, Kursula I, Soldati-Favre D. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein (TgARO). J Cell Sci 2016; 129:1031-45. [DOI: 10.1242/jcs.177386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/07/2016] [Indexed: 02/03/2023] Open
Abstract
Rhoptries are club-shaped, regulated secretory organelles that cluster at the apical pole of apicomplexan parasites. Their discharge is essential for invasion and the establishment of an intracellular lifestyle. Little is known about rhoptry biogenesis and recycling during parasite division. In Toxoplasma gondii, positioning of rhoptries involves the armadillo repeats only protein (TgARO) and myosin F (TgMyoF). Here, we show that two TgARO partners, ARO interacting protein (TgAIP) and adenylate cyclase β (TgACβ) localize to a rhoptry subcompartment. In absence of TgAIP, TgACβ disappears from the rhoptries. By assessing the contribution of each TgARO armadillo (ARM) repeat, we provide evidence that TgARO is multifunctional, participating not only in positioning but also in clustering of rhoptries. Structural analyses show that TgARO resembles the myosin-binding domain of the myosin chaperone UNC-45. A conserved patch of aromatic and acidic residues denotes the putative TgMyoF-binding site, and the overall arrangement of the ARM repeats explains the dramatic consequences of deleting each of them. Lastly, Plasmodium falciparum ARO functionally complements TgARO depletion and interacts with the same partners, highlighting the conservation of rhoptry biogenesis in Apicomplexa.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Atta Samoo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Juha Pekka Kallio
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
35
|
Bioengineered yeast-derived vacuoles with enhanced tissue-penetrating ability for targeted cancer therapy. Proc Natl Acad Sci U S A 2015; 113:710-5. [PMID: 26715758 DOI: 10.1073/pnas.1509371113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the appreciable success of synthetic nanomaterials for targeted cancer therapy in preclinical studies, technical challenges involving their large-scale, cost-effective production and intrinsic toxicity associated with the materials, as well as their inability to penetrate tumor tissues deeply, limit their clinical translation. Here, we describe biologically derived nanocarriers developed from a bioengineered yeast strain that may overcome such impediments. The budding yeast Saccharomyces cerevisiae was genetically engineered to produce nanosized vacuoles displaying human epidermal growth factor receptor 2 (HER2)-specific affibody for active targeting. These nanosized vacuoles efficiently loaded the anticancer drug doxorubicin (Dox) and were effectively endocytosed by cultured cancer cells. Their cancer-targeting ability, along with their unique endomembrane compositions, significantly enhanced drug penetration in multicellular cultures and improved drug distribution in a tumor xenograft. Furthermore, Dox-loaded vacuoles successfully prevented tumor growth without eliciting any prolonged immune responses. The current study provides a platform technology for generating cancer-specific, tissue-penetrating, safe, and scalable biological nanoparticles for targeted cancer therapy.
Collapse
|
36
|
Moosavi B, Mousavi B, Yang GF. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Traffic 2015; 17:5-20. [PMID: 26503767 DOI: 10.1111/tra.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
The model eukaryotic yeast Saccharomyces cerevisiae has proven a useful model system in which prion biogenesis and elimination are studied. Several yeast prions exist in budding yeast and a number of studies now suggest that these alternate protein conformations may play important roles in the cell. During the last few years cellular factors affecting prion induction, propagation and elimination have been identified. Amongst these, proteins involved in the regulation of the actin cytoskeleton and dynamic membrane processes such as endocytosis have been found to play a critical role not only in facilitating de novo prion formation but also in prion propagation. Here we briefly review prion formation and maintenance with special attention given to the cellular processes that require the functionality of the actin cytoskeleton.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
37
|
Knoblach B, Rachubinski RA. Motors, anchors, and connectors: orchestrators of organelle inheritance. Annu Rev Cell Dev Biol 2015; 31:55-81. [PMID: 26443192 DOI: 10.1146/annurev-cellbio-100814-125553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organelle inheritance is a process whereby organelles are actively distributed between dividing cells at cytokinesis. Much valuable insight into the molecular mechanisms of organelle inheritance has come from the analysis of asymmetrically dividing cells, which transport a portion of their organelles to the bud while retaining another portion in the mother cell. Common principles apply to the inheritance of all organelles, although individual organelles use specific factors for their partitioning. Inheritance factors can be classified as motors, which are required for organelle transport; anchors, which immobilize organelles at distinct cell structures; or connectors, which mediate the attachment of organelles to motors and anchors. Here, we provide an overview of recent advances in the field of organelle inheritance and highlight how motor, anchor, and connector molecules choreograph the segregation of a multicopy organelle, the peroxisome. We also discuss the role of organelle population control in the generation of cellular diversity.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada;
| | - Richard A Rachubinski
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada;
| |
Collapse
|
38
|
Knoblach B, Rachubinski RA. Sharing the cell's bounty - organelle inheritance in yeast. J Cell Sci 2015; 128:621-30. [PMID: 25616900 DOI: 10.1242/jcs.151423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic cells replicate and partition their organelles between the mother cell and the daughter cell at cytokinesis. Polarized cells, notably the budding yeast Saccharomyces cerevisiae, are well suited for the study of organelle inheritance, as they facilitate an experimental dissection of organelle transport and retention processes. Much progress has been made in defining the molecular players involved in organelle partitioning in yeast. Each organelle uses a distinct set of factors - motor, anchor and adaptor proteins - that ensures its inheritance by future generations of cells. We propose that all organelles, regardless of origin or copy number, are partitioned by the same fundamental mechanism involving division and segregation. Thus, the mother cell keeps, and the daughter cell receives, their fair and equitable share of organelles. This mechanism of partitioning moreover facilitates the segregation of organelle fragments that are not functionally equivalent. In this Commentary, we describe how this principle of organelle population control affects peroxisomes and other organelles, and outline its implications for yeast life span and rejuvenation.
Collapse
Affiliation(s)
- Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, AL T6G 2H7, Canada
| | | |
Collapse
|
39
|
Bodman JAR, Yang Y, Logan MR, Eitzen G. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 2015; 290:4705-4716. [PMID: 25561732 DOI: 10.1074/jbc.m114.630764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.
Collapse
Affiliation(s)
- James A R Bodman
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yang Yang
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael R Logan
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Gary Eitzen
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
40
|
Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, Malmgren-Hill S, Cvijovic M, Fernandez-Rodriguez J, Grantham J, Gustafsson CM, Liu B, Nyström T. Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet 2014; 10:e1004539. [PMID: 25079602 PMCID: PMC4117435 DOI: 10.1371/journal.pgen.1004539] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.
Collapse
Affiliation(s)
- Jia Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Lisa Larsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Sandra Malmgren-Hill
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijovic
- Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
41
|
Yau RG, Peng Y, Valiathan RR, Birkeland SR, Wilson TE, Weisman LS. Release from myosin V via regulated recruitment of an E3 ubiquitin ligase controls organelle localization. Dev Cell 2014; 28:520-33. [PMID: 24636257 DOI: 10.1016/j.devcel.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/13/2013] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Molecular motors transport organelles to specific subcellular locations. Upon arrival at their correct locations, motors release organelles via unknown mechanisms. The yeast myosin V, Myo2, binds the vacuole-specific adaptor Vac17 to transport the vacuole from the mother cell to the bud. Here, we show that vacuole detachment from Myo2 occurs in multiple regulated steps along the entire pathway of vacuole transport. Detachment initiates in the mother cell with the phosphorylation of Vac17 that recruits the E3 ligase Dma1 to the vacuole. However, Dma1 recruitment also requires the assembly of the vacuole transport complex and is first observed after the vacuole enters the bud. Dma1 remains on the vacuole until the bud and mother vacuoles separate. Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that the termination of peroxisome transport also requires Dma1. We predict that this is a general mechanism that detaches myosin V from select cargoes.
Collapse
Affiliation(s)
- Richard G Yau
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yutian Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Shanda R Birkeland
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lois S Weisman
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Westermann B. Mitochondrial inheritance in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1039-46. [PMID: 24183694 DOI: 10.1016/j.bbabio.2013.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
Abstract
Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.
Collapse
|
43
|
Alpadi K, Kulkarni A, Namjoshi S, Srinivasan S, Sippel KH, Ayscough K, Zieger M, Schmidt A, Mayer A, Evangelista M, Quiocho FA, Peters C. Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion. Nat Commun 2013; 4:1704. [PMID: 23591871 PMCID: PMC3630463 DOI: 10.1038/ncomms2724] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/08/2013] [Indexed: 11/09/2022] Open
Abstract
The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. While SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homolog Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE- tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.
Collapse
Affiliation(s)
- Kannan Alpadi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Park E, Nebenführ A. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 2013; 8:e76745. [PMID: 24116145 PMCID: PMC3792037 DOI: 10.1371/journal.pone.0076745] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
45
|
Chernyakov I, Santiago-Tirado F, Bretscher A. Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Curr Biol 2013; 23:1818-24. [PMID: 24012315 DOI: 10.1016/j.cub.2013.07.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 01/01/2023]
Abstract
Active segregation of essential organelles is required for successful cell division. The essential budding yeast myosin V Myo2 actively segregates most organelles along polarized actin cables. The mechanism of mitochondrial segregation remains controversial, with movement driven by actin polymerization, movement driven by association with transported cortical endoplasmic reticulum (ER), and direct transport by Myo2 proposed as models. Two nonessential proteins, Mmr1 and the Rab GTPase Ypt11, bind Myo2 and have been implicated in mitochondrial inheritance, although their specific roles are also contended. We generated myo2(sens) mutations that exhibit no overt phenotype but render MMR1 essential and have compromised Ypt11 binding. We then isolated myo2(sens)mmr1(ts) conditional mutants and determined that they have a specific and severe defect in active mitochondrial inheritance, revealing mitochondrial transport by Myo2 as an essential function. ypt11Δ mmr1(ts) cells also have conditional defects in growth and active transport of mitochondria into the bud, both of which are suppressed by artificially forcing mitochondrial inheritance. At the restrictive temperature, cells defective in mitochondrial inheritance give rise to dead buds that go through cytokinesis normally, showing no evidence of a proposed cell-cycle mitochondrial inheritance checkpoint. Thus, active mitochondrial inheritance is an essential process and a function of Myo2 that requires either Mmr1 or Ypt11.
Collapse
Affiliation(s)
- Irina Chernyakov
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14850, USA
| | | | | |
Collapse
|
46
|
Tamura N, Oku M, Ito M, Noda NN, Inagaki F, Sakai Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. ACTA ACUST UNITED AC 2013; 202:685-98. [PMID: 23940117 PMCID: PMC3747300 DOI: 10.1083/jcb.201302067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dephosphorylation of Atg18 increases its phosphoinositide-binding activity, thereby enhancing its association with the vacuolar membrane and inducing changes in vacuolar structure. The PROPPIN family member Atg18 is a phosphoinositide-binding protein that is composed of a seven β-propeller motif and is part of the conserved autophagy machinery. Here, we report that the Atg18 phosphorylation in the loops in the propellar structure of blade 6 and blade 7 decreases its binding affinity to phosphatidylinositol 3,5-bisphosphate in the yeast Pichia pastoris. Dephosphorylation of Atg18 was necessary for its association with the vacuolar membrane and caused septation of the vacuole. Upon or after dissociation from the vacuolar membrane, Atg18 was rephosphorylated, and the vacuoles fused and formed a single rounded structure. Vacuolar dynamics were regulated according to osmotic changes, oxidative stresses, and nutrient conditions inducing micropexophagy via modulation of Atg18 phosphorylation. This study reveals how the phosphoinositide-binding activity of the PROPPIN family protein Atg18 is regulated at the membrane association domain and highlights the importance of such phosphoregulation in coordinated intracellular reorganization.
Collapse
Affiliation(s)
- Naoki Tamura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Yagisawa F, Fujiwara T, Ohnuma M, Kuroiwa H, Nishida K, Imoto Y, Yoshida Y, Kuroiwa T. Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. PROTOPLASMA 2013. [PMID: 23197134 DOI: 10.1007/s00709-012-0467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Golgi body has important roles in modifying, sorting, and transport of proteins and lipids. Eukaryotic cells have evolved in various ways to inherit the Golgi body from mother to daughter cells, which allows the cells to function properly immediately after mitosis. Here we used Cyanidioschyzon merolae, one of the most suitable systems for studies of organelle dynamics, to investigate the inheritance of the Golgi. Two proteins, Sed5 and Got1, were used as Golgi markers. Using immunofluorescence microscopy, we demonstrated that C. merolae contains one to two Golgi bodies per cell. The Golgi body was localized to the perinuclear region during the G1 and S phases and next to the spindle poles in a microtubule-dependent manner during M phase. It was inherited together with spindle poles upon cytokinesis. These observations suggested that Golgi inheritance is dependent on microtubules in C. merolae.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St. Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jacot D, Daher W, Soldati-Favre D. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. EMBO J 2013; 32:1702-16. [PMID: 23695356 DOI: 10.1038/emboj.2013.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/22/2013] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum possess an organelle surrounded by four membranes, originating from the secondary endosymbiosis of a red alga. This so-called apicoplast hosts essential metabolic pathways. We report here that apicoplast inheritance is an actin-based process. Concordantly, parasites depleted in either profilin or actin depolymerizing factor, or parasites overexpressing the FH2 domain of formin 2, result in loss of the apicoplast. The class XXII myosin F (MyoF) is conserved across the phylum and localizes in the vicinity of the Toxoplasma gondii apicoplast during division. Conditional knockdown of TgMyoF severely affects apicoplast turnover, leading to parasite death. This recapitulates the phenotype observed upon perturbation of actin dynamics that led to the accumulation of the apicoplast and secretory organelles in enlarged residual bodies. To further dissect the mode of action of this motor, we conditionally stabilized the tail of MyoF, which forms an inactive heterodimer with endogenous TgMyoF. This dominant negative mutant reveals a central role of this motor in the positioning of the two centrosomes prior to daughter cell formation and in apicoplast segregation.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
49
|
Paulsel AL, Merz AJ, Nickerson DP. Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. J Biol Chem 2013; 288:18162-71. [PMID: 23612966 DOI: 10.1074/jbc.m113.457069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
VPS9 domains can act as guanosine nucleotide exchange factors (GEFs) against small G proteins of the Rab5 family. Saccharomyces cerevisiae vps9Δ mutants have trafficking defects considerably less severe than multiple deletions of the three cognate Rab5 paralogs (Vps21, Ypt52, and Ypt53). Here, we show that Muk1, which also contains a VPS9 domain, acts as a second GEF against Vps21, Ypt52, and Ypt53. Muk1 is partially redundant with Vps9 in vivo, with vps9Δ muk1Δ double mutant cells displaying hypersensitivity to temperature and ionic stress, as well as profound impairments in endocytic and Golgi endosome trafficking, including defects in sorting through the multivesicular body. Cells lacking both Vps9 and Muk1 closely phenocopy double and triple knock-out strains lacking Rab5 paralogs. Microscopy and overexpression experiments demonstrate that Vps9 and Muk1 have distinct localization determinants. These experiments establish Muk1 as the second Rab5 GEF in budding yeast.
Collapse
Affiliation(s)
- Andrew L Paulsel
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
50
|
Mueller C, Klages N, Jacot D, Santos J, Cabrera A, Gilberger T, Dubremetz JF, Soldati-Favre D. The Toxoplasma Protein ARO Mediates the Apical Positioning of Rhoptry Organelles, a Prerequisite for Host Cell Invasion. Cell Host Microbe 2013; 13:289-301. [DOI: 10.1016/j.chom.2013.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/04/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|