1
|
Wang C, Zhang Y, Cao J, Yang Z. Oscillatory Dynamics and Regulatory Mechanisms of the p53-Per2 Network in DNA-Damaged Cells. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:9725-9732. [PMID: 39058613 DOI: 10.1109/tnnls.2024.3424784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Circadian rhythm disruptions are linked to increased cancer risk and unfavorable prognosis in patients with cancer, highlighting the critical role of the interplay between the circadian rhythm factor Per2 and the tumor suppressor p53. This brief presents, for the first time, a mathematical model to capture the dynamics of the p53-Per2 network in DNA-damaged cells. The model accurately describes the different stages of the process from unstressed cells to cellular repair and finally to apoptosis as the degree of DNA damage increases. Furthermore, it is found that increasing the inhibition of Per2 by p53 leads to the phase advance of Per2 oscillations, whereas by modulating the inhibition of Mdm2 by Per2, an independent amplitude modulation of active p53 can be achieved, with the range of modulation increasing with the strength of the inhibition. Moreover, the effects of time delays inherent in the transcription, translation, and nuclear translocation of Per2 on the circadian rhythm of DNA-damaged cells are quantitatively investigated by theoretical analyses. It is found that time delays can induce stable oscillations through a supercritical Hopf bifurcation, thereby maintaining the circadian function of DNA-damaged cells and enhancing their DNA-damage repair capacity. This study proposes new insights into cancer prevention and treatment strategies.
Collapse
|
2
|
Ten Tusscher KH. Computational modeling of plant root development: the art and the science. THE NEW PHYTOLOGIST 2025. [PMID: 40269551 DOI: 10.1111/nph.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Plant root development, like any developmental process, arises from the interplay between processes like gene expression, cell-cell signaling, cell growth and division, and tissue mechanics, which unfold over a wide range of temporal and spatial scales. Computational models are uniquely suited to integrate these different processes and spatio-temporal scales to investigate how their interplay determines developmental outcomes and have become part of mainstream plant developmental research. Still, for non-modeling experts, it often remains unclear how models are built, why a particular modeling approach was chosen, and how to interpret and value model outcomes. This review attempts to explain the science behind the art of model building, illustrating the simplifications that are often made to keep models simple to understand and when these are and are not justified. Similarly, it discusses when it is safe to ignore certain processes like growth or tissue mechanics and when it is not. Additionally, this review discusses a range of major breakthrough modeling articles. Their approaches are linked to classical concepts and models in developmental biology like the French flag positional information gradient of Lewis Wolpert and the repetitive patterning mechanism proposed by Turing, in addition to highlighting the lessons they taught us on plant root development.
Collapse
Affiliation(s)
- Kirsten H Ten Tusscher
- Experimental and Computational Plant Development, IEB, Department of Biology, Utrecht University, Winthontlaan 30C, 3526 KV, Utrecht, the Netherlands
- Theoretical Biology, IBB, Department of Biology, Utrecht University, Winthontlaan 30C, 3526 KV, Utrecht, the Netherlands
| |
Collapse
|
3
|
del Olmo M, Schmal C, Herzel H. Exploring nonlinear phenomena in animal vocalizations through oscillator theory. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240015. [PMID: 40176524 PMCID: PMC11966158 DOI: 10.1098/rstb.2024.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 04/04/2025] Open
Abstract
Animal vocalizations comprise a rich array of complex sounds that exhibit nonlinear phenomena (NLP), which have fascinated researchers for decades. From the melodic songs of birds to the clicks and whistles of dolphins, many species have been found to produce nonlinear vocalizations, offering a valuable perspective on the mechanisms underlying sound production and potential adaptive functions. By leveraging on the principles of oscillator theory and nonlinear dynamics, animal vocalizations, which are based on coupled oscillators, can be described and conveniently classified. We review the basic ingredients for self-sustained oscillations and how different NLP can emerge. We discuss important terms in the context of oscillator theory: attractor types, phase space, bifurcations and Arnold tongue diagrams. Through a comparative analysis of observed NLP and bifurcation diagrams, our study reviews how the tools of nonlinear dynamics can provide insights into the intricate complexity of animal vocalizations, as well as into the evolutionary pressures and adaptive strategies that have shaped the diverse communication systems of the animal kingdom.This article is part of the theme issue, 'Nonlinear phenomena in vertebrate vocalizations: mechanisms and communicative functions'.
Collapse
Affiliation(s)
- Marta del Olmo
- Humboldt-Universität zu Berlin Institute for Theoretical Biology, Berlin, Germany
| | - Christoph Schmal
- Humboldt-Universität zu Berlin Institute for Theoretical Biology, Berlin, Germany
| | - Hanspeter Herzel
- Humboldt-Universität zu Berlin Institute for Theoretical Biology, Berlin, Germany
| |
Collapse
|
4
|
Mondal A, Tcherniak E, Kolomeisky AB. Stochastic analysis of human ovarian aging and menopause timing. Biophys J 2025; 124:1095-1104. [PMID: 39935178 PMCID: PMC11993922 DOI: 10.1016/j.bpj.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Menopause marks a critically important biological event that ends a woman's fertility. It is a result of ovarian aging and depletion of ovarian reserve. Although many aspects of these processes are now well understood, the overall dynamic picture remains unclear. Here, we present a novel theoretical framework to analyze human ovarian aging dynamics and menopause timing. Our method is based on stochastic analysis of underlying processes stimulated by observing follicles sequentially transitioning between different stages during ovulation. This allows us to obtain a fully quantitative description of ovarian aging and menopause timing consistent with available experimental observations. Our model accurately predicts the average age of menopause across geographically diverse human populations. Theoretical analysis suggests a universal relation between the initial follicle reserve, the depletion rates, and the threshold that triggers menopause. In addition, it is found that the distributions of menopause times are quite narrow, and it is proposed that this might be a result of a precise regulation due to the synchronization of transitions between different stages of follicles. Our theoretical approach not only quantitatively explains the dynamics of human ovarian aging and menopause timing but also provides important insights into individual variability in ovarian aging. It can be used as a powerful tool for predicting menopause timing and investigating complex processes of reproductive aging.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | | | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
5
|
Gawthrop P, Pan M. Energy-based analysis of biochemical oscillators using bond graphs and linear control theory. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241791. [PMID: 40309185 PMCID: PMC12040473 DOI: 10.1098/rsos.241791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 05/02/2025]
Abstract
The bond graph approach has been recognized as a useful conceptual basis for understanding the behaviour of living entities modelled as a system with hierarchical interacting parts exchanging energy. One such behaviour is oscillation, which underpins many essential biological functions. In this paper, energy-based modelling of biochemical systems using the bond graph approach is combined with classical feedback control theory to give a novel approach to the analysis, and potentially synthesis, of biochemical oscillators. It is shown that oscillation is dependent on the interplay between active and passive feedback and this interplay is formalized using classical frequency-response analysis of feedback systems. In particular, the phase margin is suggested as a simple scalar indicator of the presence or absence of oscillations; it is shown how this indicator can be used to investigate the effect of both the structure and parameters of biochemical system on oscillation. It follows that the combination of classical feedback control theory and the bond graph approach to systems biology gives a novel analysis and design methodology for biochemical oscillators. The approach is illustrated using an introductory example similar to the Goodwin oscillator, the Sel'kov model of glycolytic oscillations and the repressilator.
Collapse
Affiliation(s)
- Peter Gawthrop
- Systems Biology Laboratory, School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria3010, Australia
| | - Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria3010, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria3010, Australia
- Equine Centre, Melbourne Veterinary School, University of Melbourne, 250 Princes Hwy, Werribee, Victoria3030, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
6
|
Afrose SP, Roy S, Bhattacharyya P, Singh AK, Roy L, Das D. Minimal catalytic dissipative assemblies via cooperation of an amino acid, a nucleobase precursor and a cofactor. Chem Sci 2025:d5sc00827a. [PMID: 40177318 PMCID: PMC11959741 DOI: 10.1039/d5sc00827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Functions arising from cooperation between protobiopolymers have fueled the chemical emergence of living matter, which requires a continuous supply of energy to exist in a far-from-equilibrium state. Non-equilibrium conditions imparted by available energy sources have played critical roles in the appearance of complex co-assembled architectures, which exploit the properties of different classes of biopolymers. Such co-assemblies formed from mixtures of nitrogenous heterocycles as protonucleobases and peptide precursors might have acted as early versions of catalytic machinery, capable of sustaining chemical reaction networks. Herein, we show the generation of catalytic non-equilibrium networks from a mixture of a nitrogenous heterocycle, an amino acid and a cofactor driven by an aromatic substrate. The cooperation, a result of supramolecular interactions between different components, rendered the assemblies capable of activating the cofactor towards oxidative degradation of the substrate, which resulted in autonomous disassembly (negative feedback). Furthermore, utilising promiscuous hydrolytic capability, the transient co-assemblies could metabolise a precursor to generate additional amounts of the substrate, enhancing the lifetime (positive feedback) of the assemblies.
Collapse
Affiliation(s)
- Syed Pavel Afrose
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Soumili Roy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Pratip Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai, Indian Oil Odisha Campus Bhubaneswar Gajapati Nagar Bhubaneswar Odisha 751013 India
| | - Lisa Roy
- Department of Education, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| |
Collapse
|
7
|
Lummis SCR, Salvage SC, Huang CLH, Jackson AP. Veratridine-Induced Oscillations in Nav 1.7 but Not Nav 1.5 Sodium Channels Are Revealed by Membrane Potential Sensitive Dye. MEMBRANES 2025; 15:80. [PMID: 40137032 PMCID: PMC11944043 DOI: 10.3390/membranes15030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/20/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Voltage-gated sodium channels (Navs) are critical for membrane potential depolarisation in cells, with especially important roles in neuronal and cardiomyocyte membranes. Their malfunction results in a range of disorders, and they are the target of many widely used drugs. A rapid yet accurate functional assay is therefore desirable both to probe for novel active compounds and to better understand the many different Nav isoforms. Here, we use fluorescence to monitor Nav function: cells expressing either the cardiac Nav 1.5 or pain-associated Nav 1.7 were loaded with fluorescent membrane potential sensitive dye and then stimulated with veratridine. Cells expressing Nav 1.5 show a concentration-dependent slow rise and then a plateau in fluorescence. In contrast, cells expressing Nav 1.7 show a more rapid rise and then unexpected oscillatory behavior. Inhibition by flecainide and mexiletine demonstrates that these oscillations are Nav-dependent. Thus, we show that this fluorescent membrane potential dye can provide useful functional data and that we can readily distinguish between these two Nav isoforms because of the behavior of cells expressing them when activated by veratridine. We consider these distinct behaviors may be due to different interactions of veratridine with the different Nav isoforms, although more studies are needed to understand the mechanism underlying the oscillations.
Collapse
Affiliation(s)
- Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK; (S.C.S.); (C.L.-H.H.); (A.P.J.)
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK; (S.C.S.); (C.L.-H.H.); (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK; (S.C.S.); (C.L.-H.H.); (A.P.J.)
- Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3DY, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK; (S.C.S.); (C.L.-H.H.); (A.P.J.)
| |
Collapse
|
8
|
Liao G, Diekman CO, Bose A. Dynamics of phase tumbling and the reentrainment of circadian oscillators. Math Biosci 2025; 381:109381. [PMID: 39929435 DOI: 10.1016/j.mbs.2025.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology and behavior of organisms to the 24-h environmental cycles arising from Earth's rotation. Rapid travel across time zones causes misalignment between an organism's circadian rhythms and its environment, leading to sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speed up the process of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the entrainment map.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China.
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| |
Collapse
|
9
|
Xiong T, Ma W, Yu P. Ion current oscillation of polyelectrolyte modified micropipettes. Faraday Discuss 2025; 257:44-50. [PMID: 39431831 DOI: 10.1039/d4fd00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Here, we report for the first time that ion current oscillation (ICO) with periodic amplitude and frequency can autonomously occur at polyimidazole brush (PvimB) modified pipettes in an asymmetric solution with a pH gradient (e.g. pH 6.0/pH 8.0). Experimental results demonstrated that under a strong bias voltage, the proton responsive PvimB-modified pipettes exhibited significant current switching behavior under negative bias voltages, which contributed to the periodic oscillating ion current under constant biases. Based on this dynamic, the frequency and amplitude of the ICO phenomenon were regulated by adjusting the pH gradient in the asymmetric solution. ICOs under different bias voltages were further explored to show the voltage-dependent nature of this phenomenon. This observation of ICO phenomena offers a new strategy for designing iontronic devices with dynamic conductivity changes induced by surface chemical interactions within spatial confinements.
Collapse
Affiliation(s)
- Tianyi Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
da Cunha ÉF, Kraakman YJ, Kriukov DV, van Poppel T, Stegehuis C, Wong ASY. Identify structures underlying out-of-equilibrium reaction networks with random graph analysis. Chem Sci 2025; 16:3099-3106. [PMID: 39829982 PMCID: PMC11736930 DOI: 10.1039/d4sc05234j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Network measures have proven very successful in identifying structural patterns in complex systems (e.g., a living cell, a neural network, the Internet). How such measures can be applied to understand the rational and experimental design of chemical reaction networks (CRNs) is unknown. Here, we develop a procedure to model CRNs as a mathematical graph on which network measures and a random graph analysis can be applied. We used an enzymatic CRN (for which a mass-action model was previously developed) to show that the procedure provides insights into its network structure and properties. Temporal analyses, in particular, revealed when feedback interactions emerge in such a network, indicating that CRNs comprise various reactions that are being added and removed over time. We envision that the procedure, including the temporal network analysis method, could be broadly applied in chemistry to characterize the network properties of many other CRNs, promising data-driven analysis of future molecular systems of ever greater complexity.
Collapse
Affiliation(s)
- Éverton F da Cunha
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
- MESA+ Institute and BRAINS (Center for Brain-inspired Nano Systems), University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| | - Yanna J Kraakman
- Department of Mathematical Operation Research, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| | - Dmitrii V Kriukov
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
- MESA+ Institute and BRAINS (Center for Brain-inspired Nano Systems), University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| | - Thomas van Poppel
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| | - Clara Stegehuis
- Department of Mathematical Operation Research, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| | - Albert S Y Wong
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
- MESA+ Institute and BRAINS (Center for Brain-inspired Nano Systems), University of Twente Drienerlolaan 5 Enschede 7522 NH The Netherlands
| |
Collapse
|
11
|
Rombouts J, Tavella F, Vandervelde A, Phong C, Ferrell JE, Yang Q, Gelens L. Mechanistic origins of temperature scaling in the early embryonic cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630245. [PMID: 39763717 PMCID: PMC11703202 DOI: 10.1101/2024.12.24.630245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally proposed for individual chemical reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes. Using experimental data from Xenopus laevis, Xenopus tropicalis, and Danio rerio, plus published data from Caenorhabditis elegans, Caenorhabditis briggsae, and Drosophila melanogaster, we find that the apparent activation energies (E a values) for the early embryonic cell cycle for diverse ectotherms are all similar, 75 ± 7 kJ/mol (mean ± std.dev., n = 6), which corresponds to aQ 10 value at 20°C of 2.8 ± 0.2 (mean ± std.dev., n = 6). Using computational models, we find that the approximate Arrhenius scaling and the deviations from it at high and low temperatures can be accounted for by biphasic temperature scaling in critical individual components of the cell cycle oscillator circuit, by imbalances in theE a values for different partially rate-determining enzymes, or by a combination of both. Experimental studies of cycling Xenopus extracts indicate that both of these mechanisms contribute to the general scaling of temperature, and in vitro studies of individual cell cycle regulators confirm that there is in fact a substantial imbalance in theirE a values. These findings provide mechanistic insights into the dynamic interplay between temperature and complex biochemical processes, and into why biological systems fail at extreme temperatures.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Franco Tavella
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| | - Connie Phong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Qiong Yang
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| |
Collapse
|
12
|
Ibrahim B. Dynamics of spindle assembly and position checkpoints: Integrating molecular mechanisms with computational models. Comput Struct Biotechnol J 2025; 27:321-332. [PMID: 39897055 PMCID: PMC11782880 DOI: 10.1016/j.csbj.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. While experimental research has uncovered key aspects of checkpoint function, the complexity of protein interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. This review explores mathematical frameworks-from ordinary differential equations to stochastic simulations, which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein interactions to whole-system simulations with thousands of parameters. These approaches have elucidated fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to chemical organization theory, highlighting their successful application in predicting protein localization patterns and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, particularly deep learning for parameter optimization, present transformative opportunities for improving model accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell cycle control, with practical implications for cancer research and therapeutic development.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany
- European Virus Bioinformatics Center, Leutragraben 1, Jena, 07743, Germany
| |
Collapse
|
13
|
Braakman R, Satinsky B, O’Keefe TJ, Longnecker K, Hogle SL, Becker JW, Li RC, Dooley K, Arellano A, Kido Soule MC, Kujawinski EB, Chisholm SW. Global niche partitioning of purine and pyrimidine cross-feeding among ocean microbes. SCIENCE ADVANCES 2025; 11:eadp1949. [PMID: 39752493 PMCID: PMC11698098 DOI: 10.1126/sciadv.adp1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Cross-feeding involves microbes consuming exudates of other surrounding microbes, mediating elemental cycling. Characterizing the diversity of cross-feeding pathways in ocean microbes illuminates evolutionary forces driving self-organization of ocean ecosystems. Here, we uncover a purine and pyrimidine cross-feeding network in globally abundant groups. The cyanobacterium Prochlorococcus exudes both compound classes, which metabolic reconstructions suggest follows synchronous daily genome replication. Co-occurring heterotrophs differentiate into purine- and pyrimidine-using generalists or specialists that use compounds for different purposes. The most abundant heterotroph, SAR11, is a specialist that uses purines as sources of energy, carbon, and/or nitrogen, with subgroups differentiating along ocean-scale gradients in the supply of energy and nitrogen, in turn producing putative cryptic nitrogen cycles that link many microbes. Last, in an SAR11 subgroup that dominates where Prochlorococcus is abundant, adenine additions to cultures inhibit DNA synthesis, poising cells for replication. We argue that this subgroup uses inferred daily adenine pulses from Prochlorococcus to synchronize to the daily photosynthate supply from surrounding phytoplankton.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Earth, Atmospheric, & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandon Satinsky
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler J. O’Keefe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krista Longnecker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Shane L. Hogle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jamie W. Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert C. Li
- Department of Earth, Atmospheric, & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keven Dooley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aldo Arellano
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melissa C. Kido Soule
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Yildirim N, Brew T, Ay A. Regulatory Effects of Cooperativity and Signal Profile on Adaptive Dynamics in Incoherent Feedforward Loop Networks. In Silico Biol 2025; 16:14343207241306092. [PMID: 39973888 DOI: 10.1177/14343207241306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cellular adaptation to external signals is essential for biological functions, and it is an important field of interest in systems biology. This study examines the impact of cooperativity on the adaptation response of the Incoherent Feedforward Loop (IFFL) network motif to various signal profiles. Through comprehensive simulations, we studied how the IFFL motif responds to constant and pulse-type signals under varying levels of cooperativity. The results of our study demonstrate that positive cooperativity generally enhances the system's ability to adapt to different signal profiles. Nevertheless, given specific signal profiles, higher levels of cooperativity may decrease the system's adaptability. On the other hand, the adaptive response breaks down for negative cooperativity. For constant signals, increased positive cooperativity leads to a response with higher amplitude, and it accelerates the response time but delays the return time required to settle back down to the pre-stimulus state. Upon signal cessation, high positive cooperativity not only slows the system's response and return times but, in some cases, can lead to a complete temporary halt in response. For the pulse-like signal, cooperativity increases the maximum amplitude of the oscillatory response. These insights highlight the delicate balance between cooperativity and signal profile in cellular adaptation mechanisms involving the IFFL network motif.
Collapse
Affiliation(s)
| | - Thomas Brew
- Department of Physics and Astronomy, Colgate University, Hamilton, NY, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY, USA
| |
Collapse
|
15
|
Tian XJ, Zhang R, Ferro MV, Goetz H. Modeling ncRNA-Mediated Circuits in Cell Fate Decision: From Systems Biology to Synthetic Biology. Methods Mol Biol 2025; 2883:139-154. [PMID: 39702707 DOI: 10.1007/978-1-0716-4290-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions to elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes. In this chapter, we review and summarize the general framework of mathematical modeling of ncRNA in a pedagogical way and the application of this general framework to real biological processes. We discuss the emerging properties resulting from the reciprocal regulation between mRNA, miRNA, and competing endogenous mRNA (ceRNA). We also explore the efforts within the synthetic biology approach to understand the fundamental design principles underlying cell fate decisions. Both the positive feedback loops between ncRNAs and transcription factors and the emerging properties from the miRNA-mRNA reciprocal regulation enable bistable switches to direct cell fate decisions.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Manuela Vanegas Ferro
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Hong T. Mathematical Modeling for Oscillations Driven by Noncoding RNAs. Methods Mol Biol 2025; 2883:155-165. [PMID: 39702708 DOI: 10.1007/978-1-0716-4290-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this chapter, we first survey strategies for the mathematical modeling of gene regulatory networks for capturing physiologically important dynamics in cells such as oscillations. We focus on models based on ordinary differential equations with various forms of nonlinear functions that describe gene regulations. We next use a small system of a microRNA and its mRNA target to illustrate a recently discovered oscillator driven by noncoding RNAs. This oscillator has unique features that distinguish it from conventional biological oscillators, including the absence of an imposed negative feedback loop and the divergence of the periods. The latter property may serve crucial biological functions for restoring heterogeneity of cell populations on the timescale of days. We describe general requirements for obtaining the limit cycle oscillations in terms of underlying biochemical reactions and kinetic rate constants. We discuss future directions stemming from this minimal, noncoding RNA-based model for gene expression oscillation.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
17
|
Burckard O, Teboul M, Delaunay F, Chaves M. Benchmark for quantitative characterization of circadian clock cycles. Biosystems 2025; 247:105363. [PMID: 39551427 DOI: 10.1016/j.biosystems.2024.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Understanding circadian clock mechanisms is fundamental in order to counteract the harmful effects of clock malfunctioning and associated diseases. Biochemical, genetic and systems biology approaches have provided invaluable information on the mechanisms of the circadian clock, from which many mathematical models have been developed to understand the dynamics and quantitative properties of the circadian oscillator. To better analyze and compare quantitatively all these circadian cycles, we propose a method based on a previously proposed circadian cycle segmentation into stages. We notably identify a sequence of eight stages that characterize the progress of the circadian cycle. Next, we apply our approach to an experimental dataset and to five different models, all built with ordinary differential equations. Our method permits to assess the agreement of mathematical model cycles with biological properties or to detect some inconsistencies. As another application of our method, we provide insights on how this segmentation into stages can help to analyze the effect of a clock gene loss of function on the dynamic of a genetic oscillator. The strength of our method is to provide a benchmark for characterization, comparison and improvement of new mathematical models of circadian oscillators in a wide variety of model systems.
Collapse
Affiliation(s)
- Odile Burckard
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France.
| | | | | | - Madalena Chaves
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France
| |
Collapse
|
18
|
Harika GL, Sriram K. Emergent robust oscillatory dynamics in the interlocked feedback-feedforward loops. IET Syst Biol 2025; 19:e12111. [PMID: 39846379 PMCID: PMC11771794 DOI: 10.1049/syb2.12111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop. To this motif, an edge was added that results in an emergent structure consisting of new feedforward and feedback loops while retaining Goodwin's original negative feedback loop. To relate emergent structure to oscillatory dynamics, the authors took all the combinations of edge signs in the interlocked motif. Bifurcation analysis reveals that all the structural combinations can be grouped into two categories based on their unique dynamics. These two groups also exhibit unique amplitude-frequency (amp-freq) plots. These two categories are attributed to the emergence of interlocked motifs with specific edge signs. To support the ideas, a well-studied plant circadian model of Arabidopsis thaliana was taken to illustrate the importance of interlocked motifs in fine-tuning amplitude and frequency in circadian oscillators. The authors briefly discuss its implications for central oscillators' adaptation to different environmental cues.
Collapse
Affiliation(s)
- Guturu L. Harika
- Center for Computational BiologyDepartment of Computational BiologyIIIT‐DelhiNew DelhiIndia
| | - Krishnamachari Sriram
- Center for Computational BiologyDepartment of Computational BiologyIIIT‐DelhiNew DelhiIndia
| |
Collapse
|
19
|
Kapuy O, Holczer M, Csabai L, Korcsmáros T. Oscillatory autophagy induction is enabled by an updated AMPK-ULK1 regulatory wiring. PLoS One 2024; 19:e0313302. [PMID: 39724154 DOI: 10.1371/journal.pone.0313302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle. While many of these interactions have been known for decades, recent discoveries have revealed how mTORC1, AMPK, and ULK1 are truly interconnected. Although these new findings initially appeared contradictory to established models, additional experiments and our systems biology analysis clarify the updated regulatory structure. Through computational modelling of the autophagy oscillatory response, we show how this regulatory network governs autophagy induction. Our results not only reconcile previous conflicting experimental observations but also offer insights for refining autophagy regulation and advancing understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Luca Csabai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
20
|
Zhang N, Sood D, Guo SC, Chen N, Antoszewski A, Marianchuk T, Dey S, Xiao Y, Hong L, Peng X, Baxa M, Partch C, Wang LP, Sosnick TR, Dinner AR, LiWang A. Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB. Proc Natl Acad Sci U S A 2024; 121:e2412327121. [PMID: 39671178 DOI: 10.1073/pnas.2412327121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition in a construct optimized for NMR studies. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both partially and completely unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Damini Sood
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Spencer C Guo
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, CA 95616
| | - Adam Antoszewski
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Tegan Marianchuk
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Supratim Dey
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Yunxian Xiao
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Lu Hong
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Michael Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Carrie Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Aaron R Dinner
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Andy LiWang
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343
| |
Collapse
|
21
|
Šoštar M, Marinović M, Filić V, Pavin N, Weber I. Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae. PLoS Comput Biol 2024; 20:e1012025. [PMID: 39652619 DOI: 10.1371/journal.pcbi.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes. We observed that plasma membrane domains enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical model accurately reproduced the experimentally observed dynamic patterns, including the predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model predicted a new colocalization regime of these two proteins in polarized cells, which we confirmed experimentally. In summary, our results improve the understanding of Rac1 dynamics and reveal how the occurrence and transitions between different regimes depend on biochemical reaction rates, protein levels and cell size. This study not only expands our knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demonstrates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their counterintuitively anti-correlated dynamics.
Collapse
Affiliation(s)
- Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
22
|
Reja A, Jha S, Sreejan A, Pal S, Bal S, Gadgil C, Das D. Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks. Nat Commun 2024; 15:9980. [PMID: 39557837 PMCID: PMC11574191 DOI: 10.1038/s41467-024-54197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
The construction of complex systems by simple chemicals that can display emergent network dynamics might contribute to our understanding of complex behavior from simple organic reactions. Here we design single amino acid/dipeptide-based systems that exhibit multiple periodic changes of (dis)assembly under non-equilibrium conditions in closed system, importantly in the absence of evolved biocatalysts. The two-component based building block exploits pH driven non-covalent assembly and time-delayed accelerated catalysis from self-assembled state to install orthogonal feedback loops with a single batch of reactants. Mathematical modelling of the reaction network establishes that the oscillations are transient for this network structure and helps to predict the relative contribution of the feedback loop to the ability of the system to exhibit such transient oscillation. Such autonomous systems with purely synthetic molecules are the starting point that can enable the design of active materials with emergent properties.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sangam Jha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Ashley Sreejan
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Chetan Gadgil
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
23
|
Hernández-García ME, Gómez-Schiavon M, Velázquez-Castro J. Extrinsic fluctuations in the p53 cycle. J Chem Phys 2024; 161:184103. [PMID: 39513451 DOI: 10.1063/5.0227728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Fluctuations are inherent to biological systems, arising from the stochastic nature of molecular interactions, and influence various aspects of system behavior, stability, and robustness. These fluctuations can be categorized as intrinsic, stemming from the system's inherent structure and dynamics, and extrinsic, arising from external factors, such as temperature variations. Understanding the interplay between these fluctuations is crucial for obtaining a comprehensive understanding of biological phenomena. However, studying these effects poses significant computational challenges. In this study, we used an underexplored methodology to analyze the effect of extrinsic fluctuations in stochastic systems using ordinary differential equations instead of solving the master equation with stochastic parameters. By incorporating temperature fluctuations into reaction rates, we explored the impact of extrinsic factors on system dynamics. We constructed a master equation and calculated the equations for the dynamics of the first two moments, offering computational efficiency compared with directly solving the chemical master equation. We applied this approach to analyze a biological oscillator, focusing on the p53 model and its response to temperature-induced extrinsic fluctuations. Our findings underscore the impact of extrinsic fluctuations on the nature of oscillations in biological systems, with alterations in oscillatory behavior depending on the characteristics of extrinsic fluctuations. We observed an increased oscillation amplitude and frequency of the p53 concentration cycle. This study provides valuable insights into the effects of extrinsic fluctuations on biological oscillations and highlights the importance of considering them in more complex systems to prevent unwanted scenarios related to health issues.
Collapse
Affiliation(s)
- Manuel Eduardo Hernández-García
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Heroica Puebla de Zaragoza 72570, Mexico
| | - Mariana Gómez-Schiavon
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro 76230, Mexico
- Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Chilean National Agency for Research and Development, Santiago 8331150, Chile
| | - Jorge Velázquez-Castro
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Heroica Puebla de Zaragoza 72570, Mexico
| |
Collapse
|
24
|
Dragoi CM, Tyson JJ, Novák B. Newton's cradle: Cell cycle regulation by two mutually inhibitory oscillators. Math Biosci 2024; 377:109291. [PMID: 39241924 DOI: 10.1016/j.mbs.2024.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The cell division cycle is a fundamental physiological process displaying a great degree of plasticity during the course of multicellular development. This plasticity is evident in the transition from rapid and stringently-timed divisions of the early embryo to subsequent size-controlled mitotic cycles. Later in development, cells may pause and restart proliferation in response to myriads of internal or external signals, or permanently exit the cell cycle following terminal differentiation or senescence. Beyond this, cells can undergo modified cell division variants, such as endoreplication, which increases their ploidy, or meiosis, which reduces their ploidy. This wealth of behaviours has led to numerous conceptual analogies intended as frameworks for understanding the proliferative program. Here, we aim to unify these mechanisms under one dynamical paradigm. To this end, we take a control theoretical approach to frame the cell cycle as a pair of arrestable and mutually-inhibiting, doubly amplified, negative feedback oscillators controlling chromosome replication and segregation events, respectively. Under appropriate conditions, this framework can reproduce fixed-period oscillations, checkpoint arrests of variable duration, and endocycles. Subsequently, we use phase plane and bifurcation analysis to explain the dynamical basis of these properties. Then, using a physiologically realistic, biochemical model, we show that the very same regulatory structure underpins the diverse functions of the cell cycle control network. We conclude that Newton's cradle may be a suitable mechanical analogy of how the cell cycle is regulated.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
25
|
Peter S, Josephraj A, Ibrahim B. Cell Cycle Complexity: Exploring the Structure of Persistent Subsystems in 414 Models. Biomedicines 2024; 12:2334. [PMID: 39457646 PMCID: PMC11505146 DOI: 10.3390/biomedicines12102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The regulation of cellular proliferation and genomic integrity is controlled by complex surveillance mechanisms known as cell cycle checkpoints. Disruptions in these checkpoints can lead to developmental defects and tumorigenesis. Methods: To better understand these mechanisms, computational modeling has been employed, resulting in a dataset of 414 mathematical models in the BioModels database. These models vary significantly in detail and simulated processes, necessitating a robust analytical approach. Results: In this study, we apply the chemical organization theory (COT) to these models to gain insights into their dynamic behaviors. COT, which handles both ordinary and partial differential equations (ODEs and PDEs), is utilized to analyze the compartmentalized structures of these models. COT's framework allows for the examination of persistent subsystems within these models, even when detailed kinetic parameters are unavailable. By computing and analyzing the lattice of organizations, we can compare and rank models based on their structural features and dynamic behavior. Conclusions: Our application of the COT reveals that models with compartmentalized organizations exhibit distinctive structural features that facilitate the understanding of phenomena such as periodicity in the cell cycle. This approach provides valuable insights into the dynamics of cell cycle control mechanisms, refining existing models and potentially guiding future research in this area.
Collapse
Affiliation(s)
- Stephan Peter
- Department of Basic Sciences, Ernst-Abbe University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany;
| | - Arun Josephraj
- Department of Artificial Intelligence and Machine Learning, BMS Institute of Technology and Management, Bangalore 560066, India;
| | - Bashar Ibrahim
- Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Fürstengraben, 07743 Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
26
|
Esfandi H, Javidan M, Anderson RM, Pashaie R. Depth-Dependent Contributions of Various Vascular Zones to Cerebral Autoregulation and Functional Hyperemia: An In-Silico Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616950. [PMID: 39416222 PMCID: PMC11482864 DOI: 10.1101/2024.10.07.616950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Autoregulation and neurogliavascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed.
Collapse
Affiliation(s)
- Hadi Esfandi
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mahshad Javidan
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ramin Pashaie
- Electrical Engineering and Computer Science Department, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
27
|
Rossi F, Ristori S, Abou-Hassan A. Multiscale Approach for Tuning Communication among Chemical Oscillators Confined in Biomimetic Microcompartments. Acc Chem Res 2024; 57:2607-2619. [PMID: 38991143 DOI: 10.1021/acs.accounts.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Inspired by the biological world, new cross-border disciplines and technologies have emerged. Relevant examples include systems chemistry, which offers a bottom-up approach toward chemical complexity, and bio/chemical information and communication technology (bio/chemical ICT), which explores the conditions for propagating signals among individual microreactors separated by selectively permeable membranes. To fabricate specific arrays of microreactors, microfluidics has been demonstrated as an excellent method. In particular, droplet-based microfluidics is a powerful tool for encapsulating biological entities and chemical reagents in artificial microenvironments, mostly water-in-oil microdroplets. In these systems, the interfaces are liquid-liquid, and their physicochemical properties are key factors for tuning the coupling between molecular diffusion. Simple and double emulsions, where aqueous domains are in equilibrium with oil domains through boundary layers of amphiphilic molecules, are organized assemblies with high interfacial-area-to-volume ratios. These membranes can be engineered to obtain different surface charges, single- or multilayer stacking, and a variable degree of defects in molecular packing. Emulsions find application in many fields, including the food industry, pharmaceutics, and cosmetics. Furthermore, micro- and nanoemulsions can be used to model the propagation of chemical species through long distances, which is not only vital for cell signaling but also significant in molecular computing. Here we present in-depth research on the faceted world of solutions confined in restricted environments. In particular, we focused on the multiscale aspects of structure and dynamics from molecular to micro and macro levels. The Belousov-Zhabotinsky chemical reaction, known for its robustness and well-documented oscillatory behavior, was selected to represent a generic signal emitter/receiver confined within microenvironments separated by liquid-liquid interfaces. In this pulse generator, the temporal and spatial progressions are governed by periodic fluctuations in the concentration of chemical species, which act as activatory or inhibitory messengers over long distances. When organized into "colonies" or arrays, these micro-oscillators exhibit emergent dynamical behaviors at the population level. These behaviors can be finely tuned by manipulating the geometrical distribution of the oscillators and the properties of the interfaces at the nanoscale. By carefully selecting the membrane composition, it is possible to drive the system toward either in-phase, antiphase, or mixed synchronization regimes among individual oscillators, depending on messenger molecules. This relatively simple lab-scale model replicates some of the communication strategies commonly found in biological systems, particularly those based on the passive diffusion of chemical and electrical signals. It can help shed light on fundamental life processes and inspire new implementations in molecular computing and smart materials.
Collapse
Affiliation(s)
- Federico Rossi
- Department of Physical Science, Earth and Environment, University of Siena, Pian dei Mantellini, 44, 53100 Siena, Siena, Italy
| | - Sandra Ristori
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
28
|
Kong LW, Shi W, Tian XJ, Lai YC. Effects of growth feedback on adaptive gene circuits: A dynamical understanding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543915. [PMID: 37333159 PMCID: PMC10274713 DOI: 10.1101/2023.06.06.543915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The successful integration of engineered gene circuits into host cells remains a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures and identifying topologies resilient to growth feedback are crucial for both fundamental and applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we systematically study more than four hundred topological structures and uncover various categories of failures. Three dynamical mechanisms of circuit failures are identified: continuous deformation of the response curve, strengthened or induced oscillations, and sudden switching to coexisting attractors. Our extensive computations also uncover a scaling law between a circuit robustness measure and the strength of growth feedback. Despite the negative effects of growth feedback on the majority of circuit topologies, we identify several circuits that maintain optimal performance as designed, a feature important for applications.
Collapse
|
29
|
Harrell MA, Liu Z, Campbell BF, Chinsen O, Hong T, Das M. Arp2/3-dependent endocytosis ensures Cdc42 oscillations by removing Pak1-mediated negative feedback. J Cell Biol 2024; 223:e202311139. [PMID: 39012625 PMCID: PMC11259211 DOI: 10.1083/jcb.202311139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
The GTPase Cdc42 regulates polarized growth in most eukaryotes. In the bipolar yeast Schizosaccharomyces pombe, Cdc42 activation cycles periodically at sites of polarized growth. These periodic cycles are caused by alternating positive feedback and time-delayed negative feedback loops. At each polarized end, negative feedback is established when active Cdc42 recruits the Pak1 kinase to prevent further Cdc42 activation. It is unclear how Cdc42 activation returns to each end after Pak1-dependent negative feedback. We find that disrupting branched actin-mediated endocytosis disables Cdc42 reactivation at the cell ends. Using experimental and mathematical approaches, we show that endocytosis-dependent Pak1 removal from the cell ends allows the Cdc42 activator Scd1 to return to that end to enable reactivation of Cdc42. Moreover, we show that Pak1 elicits its own removal via activation of endocytosis. These findings provide a deeper insight into the self-organization of Cdc42 regulation and reveal previously unknown feedback with endocytosis in the establishment of cell polarity.
Collapse
Affiliation(s)
| | - Ziyi Liu
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | - Olivia Chinsen
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Tian Hong
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Maitreyi Das
- Biology Department, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
30
|
Amano S, Hermans TM. Repurposing a Catalytic Cycle for Transient Self-Assembly. J Am Chem Soc 2024; 146:23289-23296. [PMID: 39127918 PMCID: PMC11345760 DOI: 10.1021/jacs.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Life operates out of equilibrium to enable various sophisticated behaviors. Synthetic chemists have strived to mimic biological nonequilibrium systems in such fields as autonomous molecular machines and dissipative self-assembly. Central to these efforts has been the development of new chemical reaction cycles, which drive systems out of equilibrium by conversion of chemical fuel into waste species. However, the construction of reaction cycles has been challenging due to the difficulty of finding compatible reactions that constitute a cycle. Here, we realize an alternative approach by repurposing a known catalytic cycle as a chemical reaction cycle for driving dissipative self-assembly. This approach can overcome the compatibility problem because all steps involved in a catalytic cycle are already known to proceed concurrently under the same conditions. Our repurposing approach is applicable to diverse combinations of catalytic cycles and systems to drive out of equilibrium, which will substantially broaden the scope of out-of-equilibrium systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- University
of Strasbourg, CNRS, Strasbourg 67083, France
| | | |
Collapse
|
31
|
Xu S, Xu T, Yang Y, Chen X. Learning metabolic dynamics from irregular observations by Bidirectional Time-Series State Transfer Network. mSystems 2024; 9:e0069724. [PMID: 39057922 PMCID: PMC11334518 DOI: 10.1128/msystems.00697-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Modeling microbial metabolic dynamics is important for the rational optimization of both biosynthetic systems and industrial processes to facilitate green and efficient biomanufacturing. Classical approaches utilize explicit equation systems to represent metabolic networks, enabling the quantification of pathway fluxes to identify metabolic bottlenecks. However, these white-box models, despite their diverse applications, have limitations in simulating metabolic dynamics and are intrinsically inaccurate for industrial strains that lack information on network structures and kinetic parameters. On the other hand, black-box models do not rely on prior mechanistic knowledge of strains but are built upon observed time-series trajectories of biosynthetic systems in action. In practice, these observations are typically irregular, with discontinuously observed time points across multiple independent batches, each time point potentially containing missing measurements. Learning from such irregular data remains challenging for existing approaches. To address this issue, we present the Bidirectional Time-Series State Transfer Network (BTSTN) for modeling metabolic dynamics directly from irregular observations. Using evaluation data sets derived from both ideal dynamic systems and a real-world fermentation process, we demonstrate that BTSTN accurately reconstructs dynamic behaviors and predicts future trajectories. This approach exhibits enhanced robustness against missing measurements and noise, as compared to the state-of-the-art methods.IMPORTANCEIndustrial biosynthetic systems often involve strains with unclear genetic backgrounds, posing challenges in modeling their distinct metabolic dynamics. In such scenarios, white-box models, which commonly rely on inferred networks, are thereby of limited applicability and accuracy. In contrast, black-box models, such as statistical models and neural networks, are directly fitted or learned from observed time-series trajectories of biosynthetic systems in action. These methods typically assume regular observations without missing time points or measurements. If the observations are irregular, a pre-processing step becomes necessary to obtain a fully filled data set for subsequent model training, which, at the same time, inevitably introduces errors into the resulting models. BTSTN is a novel approach that natively learns from irregular observations. This distinctive feature makes it a unique addition to the current arsenal of technologies modeling metabolic dynamics.
Collapse
Affiliation(s)
- Shaohua Xu
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Ting Xu
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Yang
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Chen
- School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
32
|
Helenek C, Krzysztoń R, Petreczky J, Wan Y, Cabral M, Coraci D, Balázsi G. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chem Biol 2024; 31:1447-1459. [PMID: 38925113 PMCID: PMC11330362 DOI: 10.1016/j.chembiol.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Directed evolution focuses on optimizing single genetic components for predefined engineering goals by artificial mutagenesis and selection. In contrast, experimental evolution studies the adaptation of entire genomes in serially propagated cell populations, to provide an experimental basis for evolutionary theory. There is a relatively unexplored gap at the middle ground between these two techniques, to evolve in vivo entire synthetic gene circuits with nontrivial dynamic function instead of single parts or whole genomes. We discuss the requirements for such mid-scale evolution, with hypothetical examples for evolving synthetic gene circuits by appropriate selection and targeted shuffling of a seed set of genetic components in vivo. Implementing similar methods should aid the rapid generation, functionalization, and optimization of synthetic gene circuits in various organisms and environments, accelerating both the development of biomedical and technological applications and the understanding of principles guiding regulatory network evolution.
Collapse
Affiliation(s)
- Christopher Helenek
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rafał Krzysztoń
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Petreczky
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yiming Wan
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariana Cabral
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Damiano Coraci
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
33
|
Chakrabarti KS, Bakhtiari D, Rezaei-Ghaleh N. Bifurcations in coupled amyloid-β aggregation-inflammation systems. NPJ Syst Biol Appl 2024; 10:80. [PMID: 39080352 PMCID: PMC11289389 DOI: 10.1038/s41540-024-00408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
A complex interplay between various processes underlies the neuropathology of Alzheimer's disease (AD) and its progressive course. Several lines of evidence point to the coupling between Aβ aggregation and neuroinflammation and its role in maintaining brain homeostasis during the long prodromal phase of AD. Little is however known about how this protective mechanism fails and as a result, an irreversible and progressive transition to clinical AD occurs. Here, we introduce a minimal model of a coupled system of Aβ aggregation and inflammation, numerically simulate its dynamical behavior, and analyze its bifurcation properties. The introduced model represents the following events: generation of Aβ monomers, aggregation of Aβ monomers into oligomers and fibrils, induction of inflammation by Aβ aggregates, and clearance of various Aβ species. Crucially, the rates of Aβ generation and clearance are modulated by inflammation level following a Hill-type response function. Despite its relative simplicity, the model exhibits enormously rich dynamics ranging from overdamped kinetics to sustained oscillations. We then specify the region of inflammation- and coupling-related parameters space where a transition to oscillatory dynamics occurs and demonstrate how changes in Aβ aggregation parameters could shift this oscillatory region in parameter space. Our results reveal the propensity of coupled Aβ aggregation-inflammation systems to oscillatory dynamics and propose prolonged sustained oscillations and their consequent immune system exhaustion as a potential mechanism underlying the transition to a more progressive phase of amyloid pathology in AD. The implications of our results in regard to early diagnosis of AD and anti-AD drug development are discussed.
Collapse
Affiliation(s)
- Kalyan S Chakrabarti
- Department of Biological Science and Chemistry, Krea University, Sri City, India
| | | | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University (HHU) Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
| |
Collapse
|
34
|
Noguchi H, van Wijland F, Fournier JB. Cycling and spiral-wave modes in an active cyclic Potts model. J Chem Phys 2024; 161:025101. [PMID: 38973763 DOI: 10.1063/5.0221050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
We studied the nonequilibrium dynamics of a cycling three-state Potts model using simulations and theory. This model can be tuned from thermal-equilibrium to far-from-equilibrium conditions. At low cycling energy, the homogeneous dominant state cycles via nucleation and growth, while spiral waves are formed at high energy. For large systems, a discontinuous transition occurs from these cyclic homogeneous phases to spiral waves, while the opposite transition is absent. Conversely, these two modes can coexist for small systems. The waves can be reproduced by a continuum theory, and the transition can be understood from the competition between nucleation and growth.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité & CNRS, 75013 Paris, France
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité & CNRS, 75013 Paris, France
| |
Collapse
|
35
|
Zhang Z, Howlett MG, Silvester E, Kukura P, Fletcher SP. A Chemical Reaction Network Drives Complex Population Dynamics in Oscillating Self-Reproducing Vesicles. J Am Chem Soc 2024; 146:18262-18269. [PMID: 38917079 PMCID: PMC11240260 DOI: 10.1021/jacs.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
We report chemically fueled oscillations of vesicles. The population cycling of vesicles is driven by their self-reproduction and collapse within a biphasic reaction network involving the interplay of molecular and supramolecular events. We studied the oscillations on the molecular and supramolecular scales and tracked vesicle populations in time by interferometric scattering microscopy and dynamic light scattering. Complex supramolecular events were observed during oscillations─including vesicle reproduction, growth, and decomposition─and differences in the number, size, and mass of aggregates can often be observed within and between pulses. This system's dynamic behavior is reminiscent of a reproductive cycle in living cells.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael G. Howlett
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Emma Silvester
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Philipp Kukura
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Stephen P. Fletcher
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
36
|
Rao A, Iglesias AS, Grzelczak M. Choreographing Oscillatory Hydrodynamics with DNA-Coated Gold Nanoparticles. J Am Chem Soc 2024; 146:18236-18240. [PMID: 38941615 PMCID: PMC11240255 DOI: 10.1021/jacs.4c06868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Periodic responses to nonperiodic energy inputs, such as oscillations, are hallmarks of living systems. Nanoparticle-based systems have largely remained unexplored in the generation of oscillatory features. Here, we demonstrate a nanosystem featuring hierarchical response to light, where thermoplasmonic effects and reversible DNA-hybridization generate thermal convective forces and ultimately, oscillatory hydrodynamic flows. The slow aggregation of gold nanoparticles (AuNPs) serves as a positive feedback, while fast photothermal disassembly acts as negative feedback. These asymmetric feedback loops, combined with thermal hysteresis for time-delay, are essential ingredients for orchestrating an oscillating response.
Collapse
Affiliation(s)
- Anish Rao
- Centro
de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Ana Sánchez Iglesias
- Centro
de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Marek Grzelczak
- Centro
de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
37
|
Tubin S. A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol 2024; 34:323-336. [PMID: 38880541 DOI: 10.1016/j.semradonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A large proportion of cancer patients present with unresectable bulky disease at baseline or following treatment failure. The data available in the literature suggest that the vast majority of these patients do not benefit from available standard therapies. Therefore the clinical outcomes are poor; patients are desperate and usually relegated to palliative or best supportive care as the only options. Large tumor masses are usually hypoxic, resistant to radiation and systemic therapy, with extensive regional infiltration of the surrounding critical organs, the presence of which makes it impossible to deliver a radical dose of radiation. Promising data in terms of improved therapeutic ratio where such complex tumors are concerned can be seen with the use of new emerging unconventional radiotherapy techniques known as spatially fractionated radiotherapies (SFRT). One of them is PATHY, or PArtial Tumor irradiation targeting HYpoxic segment, which is characterized by a very short treatment course offering a large spectrum of therapeutic benefits in terms of the symptom relief, quality of life, local tumor control, neoadjuvant and immunomodulatory effects.
Collapse
Affiliation(s)
- Slavisa Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120 Heidelberg; Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States.
| |
Collapse
|
38
|
Rojas P, Piro O, Garcia ME. Biological Rhythms Generated by a Single Activator-Repressor Loop with Inhomogeneity and Diffusion. PHYSICAL REVIEW LETTERS 2024; 132:268401. [PMID: 38996302 DOI: 10.1103/physrevlett.132.268401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2024] [Indexed: 07/14/2024]
Abstract
Common models of circadian rhythms are typically constructed as compartmental reactions of well-mixed biochemicals, incorporating a negative-feedback loop consisting of several intermediate reaction steps essentially required to produce oscillations. Spatial transport of each reactant is often represented as an extra compartmental reaction step. Contrary to this traditional understanding, in this Letter we demonstrate that a single activation-repression biochemical reaction pair is sufficient to generate sustained oscillations if the sites of both reactions are spatially separated and molecular transport is mediated by diffusion. Our proposed scenario represents the simplest configuration in terms of the participating chemical reactions and offers a conceptual basis for understanding biological oscillations and inspiring in vitro assays aimed at constructing minimal clocks.
Collapse
Affiliation(s)
- Pablo Rojas
- Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Oreste Piro
- Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
- Departament de Física, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Martin E Garcia
- Theoretical Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| |
Collapse
|
39
|
Prokop B, Frolov N, Gelens L. Enhancing model identification with SINDy via nullcline reconstruction. CHAOS (WOODBURY, N.Y.) 2024; 34:063135. [PMID: 38885073 DOI: 10.1063/5.0199311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Many dynamical systems exhibit oscillatory behavior that can be modeled with differential equations. Recently, these equations have increasingly been derived through data-driven methods, including the transparent technique known as Sparse Identification of Nonlinear Dynamics (SINDy). This paper illustrates the importance of accurately determining the system's limit cycle position in phase space for identifying sparse and effective models. We introduce a method for identifying the limit cycle position and the system's nullclines by applying SINDy to datasets adjusted with various offsets. This approach is evaluated using three criteria: model complexity, coefficient of determination, and generalization error. We applied this method to several models: the oscillatory FitzHugh-Nagumo model, a more complex model consisting of two coupled cubic differential equations with a single stable state, and a multistable model of glycolytic oscillations. Our results confirm that incorporating detailed information about the limit cycle in phase space enhances the accuracy of model identification in oscillatory systems.
Collapse
Affiliation(s)
- Bartosz Prokop
- Department of Cellular and Molecular Medicine, Laboratory of Dynamics in Biological Systems, KU Leuven, 3000 Leuven, Belgium
| | - Nikita Frolov
- Department of Cellular and Molecular Medicine, Laboratory of Dynamics in Biological Systems, KU Leuven, 3000 Leuven, Belgium
| | - Lendert Gelens
- Department of Cellular and Molecular Medicine, Laboratory of Dynamics in Biological Systems, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Herajy M, Liu F, Heiner M. Design patterns for the construction of computational biological models. Brief Bioinform 2024; 25:bbae318. [PMID: 38961813 PMCID: PMC11222664 DOI: 10.1093/bib/bbae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Computational biological models have proven to be an invaluable tool for understanding and predicting the behaviour of many biological systems. While it may not be too challenging for experienced researchers to construct such models from scratch, it is not a straightforward task for early stage researchers. Design patterns are well-known techniques widely applied in software engineering as they provide a set of typical solutions to common problems in software design. In this paper, we collect and discuss common patterns that are usually used during the construction and execution of computational biological models. We adopt Petri nets as a modelling language to provide a visual illustration of each pattern; however, the ideas presented in this paper can also be implemented using other modelling formalisms. We provide two case studies for illustration purposes and show how these models can be built up from the presented smaller modules. We hope that the ideas discussed in this paper will help many researchers in building their own future models.
Collapse
Affiliation(s)
- Mostafa Herajy
- Department of Mathematics and Computer Science, Faculty of Science, Port Said University, 42521 Port Said, Egypt
| | - Fei Liu
- School of Software Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Monika Heiner
- Computer Science Institute, Brandenburg University of Technology, 03013 Cottbus, Germany
| |
Collapse
|
41
|
Zhang N, Sood D, Guo SC, Chen N, Antoszewski A, Marianchuk T, Chavan A, Dey S, Xiao Y, Hong L, Peng X, Baxa M, Partch C, Wang LP, Sosnick TR, Dinner AR, LiWang A. Temperature-Dependent Fold-Switching Mechanism of the Circadian Clock Protein KaiB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594594. [PMID: 38826295 PMCID: PMC11142059 DOI: 10.1101/2024.05.21.594594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.
Collapse
|
42
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Doostdar P, Hawley J, Chopra K, Marinopoulou E, Lea R, Arashvand K, Biga V, Papalopulu N, Soto X. Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness. Development 2024; 151:dev202640. [PMID: 38682303 PMCID: PMC11190438 DOI: 10.1242/dev.202640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.
Collapse
Affiliation(s)
- Parnian Doostdar
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Hawley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kunal Chopra
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kiana Arashvand
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ximena Soto
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
44
|
Yu P, Li Y, Fang W, Feng XQ, Li B. Mechanochemical dynamics of collective cells and hierarchical topological defects in multicellular lumens. SCIENCE ADVANCES 2024; 10:eadn0172. [PMID: 38691595 PMCID: PMC11062584 DOI: 10.1126/sciadv.adn0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Collective cell dynamics is essential for tissue morphogenesis and various biological functions. However, it remains incompletely understood how mechanical forces and chemical signaling are integrated to direct collective cell behaviors underlying tissue morphogenesis. Here, we propose a three-dimensional (3D) mechanochemical theory accounting for biochemical reaction-diffusion and cellular mechanotransduction to investigate the dynamics of multicellular lumens. We show that the interplay between biochemical signaling and mechanics can trigger either pitchfork or Hopf bifurcation to induce diverse static mechanochemical patterns or generate oscillations with multiple modes both involving marked mechanical deformations in lumens. We uncover the crucial role of mechanochemical feedback in emerging morphodynamics and identify the evolution and morphogenetic functions of hierarchical topological defects including cell-level hexatic defects and tissue-level orientational defects. Our theory captures the common mechanochemical traits of collective dynamics observed in experiments and could provide a mechanistic context for understanding morphological symmetry breaking in 3D lumen-like tissues.
Collapse
Affiliation(s)
- Pengyu Yu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Wei Fang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Del Olmo M, Legewie S, Brunner M, Höfer T, Kramer A, Blüthgen N, Herzel H. Network switches and their role in circadian clocks. J Biol Chem 2024; 300:107220. [PMID: 38522517 PMCID: PMC11044057 DOI: 10.1016/j.jbc.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Universität Heidelberg, Heidelberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Prokop B, Gelens L. From biological data to oscillator models using SINDy. iScience 2024; 27:109316. [PMID: 38523784 PMCID: PMC10959654 DOI: 10.1016/j.isci.2024.109316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Periodic changes in the concentration or activity of different molecules regulate vital cellular processes such as cell division and circadian rhythms. Developing mathematical models is essential to better understand the mechanisms underlying these oscillations. Recent data-driven methods like SINDy have fundamentally changed model identification, yet their application to experimental biological data remains limited. This study investigates SINDy's constraints by directly applying it to biological oscillatory data. We identify insufficient resolution, noise, dimensionality, and limited prior knowledge as primary limitations. Using various generic oscillator models of different complexity and/or dimensionality, we systematically analyze these factors. We then propose a comprehensive guide for inferring models from biological data, addressing these challenges step by step. Our approach is validated using glycolytic oscillation data from yeast.
Collapse
Affiliation(s)
- Bartosz Prokop
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Li X, Fomitskaya P, Smaliak VA, Smith BS, Skorb EV, Semenov SN. Selenium catalysis enables negative feedback organic oscillators. Nat Commun 2024; 15:3316. [PMID: 38632338 PMCID: PMC11024130 DOI: 10.1038/s41467-024-47714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The construction of materials regulated by chemical reaction networks requires regulatory motifs that can be stacked together into systems with desired properties. Multiple autocatalytic reactions producing thiols are known. However, negative feedback loop motifs are unavailable for thiol chemistry. Here, we develop a negative feedback loop based on the selenocarbonates. In this system, thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides. This negative feedback loop has two important features. First, catalytic oxidation of thiols follows Michaelis-Menten-like kinetics, thus increasing nonlinearity for the negative feedback. Second, the strength of the negative feedback can be tuned by varying substituents in selenocarbonates. When combined with the autocatalytic production of thiols in a flow reactor, this negative feedback loop induces sustained oscillations. The availability of this negative feedback motif enables the future construction of oscillatory, homeostatic, adaptive, and other regulatory circuits in life-inspired systems and materials.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, China
| | - Polina Fomitskaya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
50
|
Jeong EM, Kim JK. A robust ultrasensitive transcriptional switch in noisy cellular environments. NPJ Syst Biol Appl 2024; 10:30. [PMID: 38493227 PMCID: PMC10944533 DOI: 10.1038/s41540-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Ultrasensitive transcriptional switches enable sharp transitions between transcriptional on and off states and are essential for cells to respond to environmental cues with high fidelity. However, conventional switches, which rely on direct repressor-DNA binding, are extremely noise-sensitive, leading to unintended changes in gene expression. Here, through model simulations and analysis, we discovered that an alternative design combining three indirect transcriptional repression mechanisms, sequestration, blocking, and displacement, can generate a noise-resilient ultrasensitive switch. Although sequestration alone can generate an ultrasensitive switch, it remains sensitive to noise because the unintended transcriptional state induced by noise persists for long periods. However, by jointly utilizing blocking and displacement, these noise-induced transitions can be rapidly restored to the original transcriptional state. Because this transcriptional switch is effective in noisy cellular contexts, it goes beyond previous synthetic transcriptional switches, making it particularly valuable for robust synthetic system design. Our findings also provide insights into the evolution of robust ultrasensitive switches in cells. Specifically, the concurrent use of seemingly redundant indirect repression mechanisms in diverse biological systems appears to be a strategy to achieve noise-resilience of ultrasensitive switches.
Collapse
Affiliation(s)
- Eui Min Jeong
- Biomedical Mathematics Group, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- Department of Mathematical Sciences, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|