1
|
Dar A, Godara P, Prusty D, Bashir M. Plasmodium falciparum topoisomerases: Emerging targets for anti-malarial therapy. Eur J Med Chem 2024; 265:116056. [PMID: 38171145 DOI: 10.1016/j.ejmech.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Different metabolic pathways like DNA replication, transcription, and recombination generate topological constrains in the genome. These topological constraints are resolved by essential molecular machines known as topoisomerases. To bring changes in DNA topology, the topoisomerases create a single or double-stranded nick in the template DNA, hold the nicked ends to let the tangled DNA pass through, and finally re-ligate the breaks. The DNA nicking and re-ligation activities as well as ATPase activities (when present) in topoisomerases are subjected to inhibition by several anticancer and antibacterial drugs, thus establishing these enzymes as successful targets in anticancer and antibacterial therapies. The anti-topoisomerase drugs interfere with the functioning of these enzymes and result in the accumulation of DNA tangles or lethal genomic breaks, thereby promoting host cell (or organism) death. The potential of topoisomerases in the human malarial parasite, Plasmodium falciparum in antimalarial drug development has received little attention so far. Interestingly, the parasite genome encodes orthologs of topoisomerases found in eukaryotes, prokaryotes, and archaea, thus, providing an enormous opportunity for investigating these enzymes for antimalarial therapeutics. This review focuses on the features of Plasmodium falciparum topoisomerases (PfTopos) with respect to their closer counterparts in other organisms. We will discuss overall advances and basic challenges with topoisomerase research in Plasmodium falciparum and our attempts to understand the interaction of PfTopos with classical and new-generation topoisomerase inhibitors using in silico molecular docking approach. The recent episodes of parasite resistance against artemisinin, the only effective antimalarial drug at present, further highlight the significance of investigating new drug targets including topoisomerases in antimalarial therapeutics.
Collapse
Affiliation(s)
- Ashraf Dar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Priya Godara
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Masarat Bashir
- COTS, Sheri-Kashmir University of Agricultural Sciences and Technology, Mirgund, Srinagar, India
| |
Collapse
|
2
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
3
|
Erath J, Djuranovic S, Djuranovic SP. Adaptation of Translational Machinery in Malaria Parasites to Accommodate Translation of Poly-Adenosine Stretches Throughout Its Life Cycle. Front Microbiol 2019; 10:2823. [PMID: 31866984 PMCID: PMC6908487 DOI: 10.3389/fmicb.2019.02823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria is caused by unicellular apicomplexan parasites of the genus Plasmodium, which includes the major human parasite Plasmodium falciparum. The complex cycle of the malaria parasite in both mosquito and human hosts has been studied extensively. There is tight control of gene expression in each developmental stage, and at every level of gene synthesis: from RNA transcription, to its subsequent translation, and finally post-translational modifications of the resulting protein. Whole-genome sequencing of P. falciparum has laid the foundation for significant biological advances by revealing surprising genomic information. The P. falciparum genome is extremely AT-rich (∼80%), with a substantial portion of genes encoding intragenic polyadenosine (polyA) tracks being expressed throughout the entire parasite life cycle. In most eukaryotes, intragenic polyA runs act as negative regulators of gene expression. Recent studies have shown that translation of mRNAs containing 12 or more consecutive adenosines results in ribosomal stalling and frameshifting; activating mRNA surveillance mechanisms. In contrast, P. falciparum translational machinery can efficiently and accurately translate polyA tracks without activating mRNA surveillance pathways. This unique feature of P. falciparum raises interesting questions: (1) How is P. falciparum able to efficiently and correctly translate polyA track transcripts, and (2) What are the specifics of the translational machinery and mRNA surveillance mechanisms that separate P. falciparum from other organisms? In this review, we analyze possible evolutionary shifts in P. falciparum protein synthesis machinery that allow efficient translation of an AU rich-transcriptome. We focus on physiological and structural differences of P. falciparum stage specific ribosomes, ribosome-associated proteins, and changes in mRNA surveillance mechanisms throughout the complete parasite life cycle, with an emphasis on the mosquito and liver stages.
Collapse
Affiliation(s)
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Slavica Pavlovic Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Gazanion E, Vergnes B. Protozoan Parasite Auxotrophies and Metabolic Dependencies. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:351-375. [PMID: 30535605 DOI: 10.1007/978-3-319-74932-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diseases caused by protozoan parasites have a major impact on world health. These early branching eukaryotes cause significant morbidity and mortality in humans and livestock. During evolution, protozoan parasites have evolved toward complex life cycles in multiple host organisms with different nutritional resources. The conservation of functional metabolic pathways required for these successive environments is therefore a prerequisite for parasitic lifestyle. Nevertheless, parasitism drives genome evolution toward gene loss and metabolic dependencies (including strict auxotrophy), especially for obligatory intracellular parasites. In this chapter, we will compare and contrast how protozoan parasites have perfected this metabolic adaptation by focusing on specific auxotrophic pathways and scavenging strategies used by clinically relevant apicomplexan and trypanosomatid parasites to access host's nutritional resources. We will further see how these metabolic dependencies have in turn been exploited for therapeutic purposes against these human pathogens.
Collapse
Affiliation(s)
- Elodie Gazanion
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Baptiste Vergnes
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Integrative transcriptome and proteome analyses define marked differences between Neospora caninum isolates throughout the tachyzoite lytic cycle. J Proteomics 2017; 180:108-119. [PMID: 29154927 DOI: 10.1016/j.jprot.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/22/2022]
Abstract
Neospora caninum is one of the main causes of transmissible abortion in cattle. Intraspecific variations in virulence have been widely shown among N. caninum isolates. However, the molecular basis governing such variability have not been elucidated to date. In this study label free LC-MS/MS was used to investigate proteome differences between the high virulence isolate Nc-Spain7 and the low virulence isolate Nc-Spain1H throughout the tachyzoite lytic cycle. The results showed greater differences in the abundance of proteins at invasion and egress with 77 and 62 proteins, respectively. During parasite replication, only 19 proteins were differentially abundant between isolates. The microneme protein repertoire involved in parasite invasion and egress was more abundant in the Nc-Spain1H isolate, which displays a lower invasion rate. Rhoptry and dense granule proteins, proteins related to metabolism and stress responses also showed differential abundances between isolates. Comparative RNA-Seq analyses during tachyzoite egress were also performed, revealing an expression profile of genes associated with the bradyzoite stage in the low virulence Nc-Spain1H isolate. The differences in proteome and RNA expression profiles between these two isolates reveal interesting insights into likely mechanisms involved in specific phenotypic traits and virulence in N. caninum. SIGNIFICANCE The molecular basis that governs biological variability in N. caninum and the pathogenesis of neosporosis has not been well-established yet. This is the first study in which high throughput technology of LC-MS/MS and RNA-Seq is used to investigate differences in the proteome and transcriptome between two well-characterized isolates. Both isolates displayed different proteomes throughout the lytic cycle and the transcriptomes also showed marked variations but were inconsistent with the proteome results. However, both datasets identified a pre-bradyzoite status of the low virulence isolate Nc-Spain1H. This study reveals interesting insights into likely mechanisms involved in virulence in N. caninum and shed light on a subset of proteins that are potentially involved in the pathogenesis of this parasite.
Collapse
|
6
|
Sanz S, López-Gutiérrez B, Bandini G, Damerow S, Absalon S, Dinglasan RR, Samuelson J, Izquierdo L. The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in Plasmodium asexual blood stages. Sci Rep 2016; 6:37230. [PMID: 27849032 PMCID: PMC5110956 DOI: 10.1038/srep37230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 02/03/2023] Open
Abstract
Glycosylation is an important posttranslational protein modification in all eukaryotes. Besides glycosylphosphatidylinositol (GPI) anchors and N-glycosylation, O-fucosylation has been recently reported in key sporozoite proteins of the malaria parasite. Previous analyses showed the presence of GDP-fucose (GDP-Fuc), the precursor for all fucosylation reactions, in the blood stages of Plasmodium falciparum. The GDP-Fuc de novo pathway, which requires the action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose synthase (FS), is conserved in the parasite genome, but the importance of fucose metabolism for the parasite is unknown. To functionally characterize the pathway we generated a PfGMD mutant and analyzed its phenotype. Although the labelling by the fucose-binding Ulex europaeus agglutinin I (UEA-I) was completely abrogated, GDP-Fuc was still detected in the mutant. This unexpected result suggests the presence of an alternative mechanism for maintaining GDP-Fuc in the parasite. Furthermore, PfGMD null mutant exhibited normal growth and invasion rates, revealing that the GDP-Fuc de novo metabolic pathway is not essential for the development in culture of the malaria parasite during the asexual blood stages. Nonetheless, the function of this metabolic route and the GDP-Fuc pool that is generated during this stage may be important for gametocytogenesis and sporogonic development in the mosquito.
Collapse
Affiliation(s)
- Sílvia Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Sebastian Damerow
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Sabrina Absalon
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston MA 02115, USA
| | - Rhoel R Dinglasan
- The University of Florida Emerging Pathogens Institute, Department of Infectious Diseases &Pathology, Gainesville FL 32611, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Kumar S, Mudeppa DG, Sharma A, Mascarenhas A, Dash R, Pereira L, Shaik RB, Maki JN, White J, Zuo W, Tuljapurkar S, Duraisingh MT, Gomes E, Chery L, Rathod PK. Distinct genomic architecture of Plasmodium falciparum populations from South Asia. Mol Biochem Parasitol 2016; 210:1-4. [PMID: 27457272 DOI: 10.1016/j.molbiopara.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 11/27/2022]
Abstract
Previous whole genome comparisons of Plasmodium falciparum populations have not included collections from the Indian subcontinent, even though two million Indians contract malaria and about 50,000 die from the disease every year. Stratification of global parasites has revealed spatial relatedness of parasite genotypes on different continents. Here, genomic analysis was further improved to obtain country-level resolution by removing var genes and intergenic regions from distance calculations. P. falciparum genomes from India were found to be most closely related to each other. Their nearest neighbors were from Bangladesh and Myanmar, followed by Thailand. Samples from the rest of Southeast Asia, Africa and South America were increasingly more distant, demonstrating a high-resolution genomic-geographic continuum. Such genome stratification approaches will help monitor variations of malaria parasites within South Asia and future changes in parasite populations that may arise from in-country and cross-border migrations.
Collapse
Affiliation(s)
- Shiva Kumar
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Devaraja G Mudeppa
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ambika Sharma
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Anjali Mascarenhas
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Rashmi Dash
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Ligia Pereira
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Riaz Basha Shaik
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Jennifer N Maki
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John White
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wenyun Zuo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| | - Edwin Gomes
- Department of Medicine, Goa Medical College and Hospital, Bambolim, Goa 403202, India
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
8
|
In Silico Designing and Analysis of Inhibitors against Target Protein Identified through Host-Pathogen Protein Interactions in Malaria. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2016; 2016:2741038. [PMID: 27057354 PMCID: PMC4739458 DOI: 10.1155/2016/2741038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/20/2023]
Abstract
Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins. It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to their biological significance and functional roles. α-tubulin was identified as a potential protein target and inhibitors were designed against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug.
Collapse
|
9
|
Ewer KJ, Sierra-Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S, Hill AVS. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity". Vaccine 2015; 33:7444-51. [PMID: 26476366 PMCID: PMC4687526 DOI: 10.1016/j.vaccine.2015.09.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced.
Collapse
Affiliation(s)
- Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kailan Sierra-Davidson
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
10
|
Mo J, Li J. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax. Pathog Glob Health 2015; 109:61-7. [PMID: 25706099 DOI: 10.1179/2047773215y.0000000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Plasmodium spp. merozoite glycosylphosphatidylinositol-anchored proteins (GPI-APs) considered as protective immunogen in novel vaccines against malaria. To analyze the structure and function of a hypothetical conserved (HP-C) GPI-AP coded by gene PVX_092425 from Plasmodium vivax, and find its potential T-cell epitopes for further vivax malaria vaccine study. METHODS The structure, function and T-cell epitopes of the HP-C protein named Pvx_092425 were analyzed and predicted by online and offline bioinformatics software. RESULTS The bioinformatics data showed that the Pvx_092425 is an 830 amino acid (AA) long polypeptide encoded by five exons gene PVX_092425.It contains a pectin lyase-like superfamily, an AA repeats region, a cys-rich region and a transmembrane domain (TM) in C-terminal region. The alignment analysis drew it has a unique AA repeats region among Plasmodium spp. It was located in the cytoplasm, secretory system or cellular nucleus of P. vivax merozoite. For the sequence, the fragment of I823-V829 inserts in the interior side of the membrane, and M1--A812 belongs to the cytoplasmic tail. It has seven protein-protein binding sites. The peptides with the best predicted binding affinities were human leucocyte antigen (HLA) HLA-A*0203, HLA-DRB1*0101 and HLA- DRB1*0701.Among these predicted peptides, 582FLWDKALFD590 epitope interacted with HLA-DRB1*0101 allele showed best binding affinity compared to others. Structural analysis explained that the epitope fits well into the epitope-binding groove of HLA-DRB1*0101. CONCLUSIONS It proposes that the Pvx_092425 plays a key role during erythrocyte stage and generates information that is useful for development of blood-stage vaccine to block the merozoites invasion.
Collapse
|
11
|
Salman AM, Mogollon CM, Lin JW, van Pul FJA, Janse CJ, Khan SM. Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins. Methods Mol Biol 2015; 1325:257-286. [PMID: 26450395 DOI: 10.1007/978-1-4939-2815-6_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe methods for the rapid generation of transgenic rodent Plasmodium berghei (Pb) parasites that express human malaria parasite (HMP) proteins, using the recently developed GIMO-based transfection methodology. Three different genetic modifications are described resulting in three types of transgenic parasites. (1) Additional Gene (AG) mutants. In these mutants the HMP gene is introduced as an "additional gene" into a silent/neutral locus of the Pb genome under the control of either a constitutive or stage-specific Pb promoter. This method uses the GIMO-transfection protocol and AG mutants are generated by replacing the positive-negative selection marker (SM) hdhfr::yfcu cassette in a neutral locus of a standard GIMO mother line with the HMP gene expression cassette, resulting in SM free transgenic parasites. (2) Double-step Replacement (DsR) mutants. In these mutants the coding sequence (CDS) of the Pb gene is replaced with the CDS of the HMP ortholog in a two-step GIMO-transfection procedure. This process involves first the replacement of the Pb CDS with the hdhfr::yfcu SM, followed by insertion of the HMP ortholog at the same locus thereby replacing hdhfr::yfcu with the HMP CDS. These steps use the GIMO-transfection protocol, which exploits both positive selection for Pb orthologous gene-deletion and negative selection for HMP gene-insertion, resulting in SM free transgenic parasites. (3) Double-step Insertion (DsI) mutants. When a Pb gene is essential for blood stage development the DsR strategy is not possible. In these mutants the HMP expression cassette is first introduced into the neutral locus in a standard GIMO mother line as described for AG mutants but under the control elements of the Pb orthologous gene; subsequently, the Pb ortholog CDS is targeted for deletion through replacement of the Pb CDS with the hdhfr::yfcu SM, resulting in transgenic parasites with a new GIMO locus permissive for additional gene-insertion modifications.The different types of transgenic parasites can be exploited to examine interactions of drugs/inhibitors or immune factors with HMP molecules in vivo. Mice either immunized with HMP-vaccines or treated with specific drugs can be infected/challenged with these transgenic mutants to evaluate drug or vaccine efficacy in vivo.
Collapse
Affiliation(s)
- Ahmed M Salman
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Jing-Wen Lin
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Fiona J A van Pul
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, LUMC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WAM, Religa AA, Robertson L, Sanders M, Ogun SA, Cunningham D, Erhart A, Billker O, Khan SM, Stunnenberg HG, Langhorne J, Holder AA, Waters AP, Newbold CI, Pain A, Berriman M, Janse CJ. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol 2014; 12:86. [PMID: 25359557 PMCID: PMC4242472 DOI: 10.1186/s12915-014-0086-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/10/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. RESULTS We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilised it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the 'Plasmodium interspersed repeat genes' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. CONCLUSIONS Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.
Collapse
Affiliation(s)
- Thomas D Otto
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge UK
| | - Ulrike Böhme
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge UK
| | - Andrew P Jackson
- />Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Martin Hunt
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge UK
| | - Blandine Franke-Fayard
- />Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wieteke A M Hoeijmakers
- />Department of Molecular Biology, Science faculty, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Agnieszka A Religa
- />Institute of Infection, Immunity & Inflammation, School of Medical, Veterinary & Life Sciences, & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland UK
| | | | - Mandy Sanders
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge UK
| | - Solabomi A Ogun
- />Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London UK
| | - Deirdre Cunningham
- />Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London UK
| | - Annette Erhart
- />Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Oliver Billker
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge UK
| | - Shahid M Khan
- />Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik G Stunnenberg
- />Department of Molecular Biology, Science faculty, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jean Langhorne
- />Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London UK
| | - Anthony A Holder
- />Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London UK
| | - Andrew P Waters
- />Institute of Infection, Immunity & Inflammation, School of Medical, Veterinary & Life Sciences, & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland UK
| | - Chris I Newbold
- />Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- />Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford UK
| | - Arnab Pain
- />Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Chris J Janse
- />Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Lu F, Li J, Wang B, Cheng Y, Kong DH, Cui L, Ha KS, Sattabongkot J, Tsuboi T, Han ET. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics 2014; 102:66-82. [PMID: 24607491 DOI: 10.1016/j.jprot.2014.02.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/05/2014] [Accepted: 02/23/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED Completion of sequencing of the Plasmodium vivax genome and transcriptome offers the chance to identify antigens among >5000 candidate proteins. To identify those P. vivax proteins that are immunogenic, a total of 152 candidate proteins (160 fragments) were expressed using a wheat germ cell-free system. The results of Western blot analysis showed that 92.5% (148/160) of the targets were expressed, and 96.6% (143/148) were in a soluble form with 67.7% of solubility rate. The proteins were screened by protein arrays with sera from 22 vivax malaria patients and 10 healthy individuals to confirm their immune profile, and 44 (27.5%, 44/160) highly reactive P. vivax antigens were identified. Overall, 5 candidates (rhoptry-associated membrane antigen [RAMA], Pv-fam-a and -b, EXP-1 and hypothetical protein PVX_084775) showed a positive reaction with >80% of patient sera, and 21 candidates with 50% to 80%. More than 23% of the highly immunoreactive proteins were hypothetical proteins, described for the first time in this study. One of the top immunogenic proteins, RAMA, was characterized and confirmed to be a serological marker of recent exposure to P. vivax infection. These novel immunoproteomes should greatly facilitate the identification of promising novel malaria antigens and may warrant further study. BIOLOGICAL SIGNIFICANCE The establishment of high-throughput cloning and expression systems has permitted the construction of protein arrays for proteome-wide study of Plasmodium vivax. In this study, high-throughput screening assays have been applied to investigate blood stage-specific immune proteomes from P. vivax. We identified 44 antigenic proteins from the 152 putative candidates, more than 23% of which were hypothetical proteins described for the first time in this study. In addition, PvRAMA was characterized further and confirmed to be a serological marker of exposure to infections. The expression of one-third of the selected antigenic genes were shifted between P. vivax and Plasmodium falciparum, suggesting that these genes may represent important factors associated with P. vivax selectivity for young erythrocytes and/or with immune evasion. These novel immune proteomes of the P. vivax blood stage provide a baseline for further prospective serological marker studies in malaria. These methods could be used to determine immunodominant candidate antigens from the P. vivax genome.
Collapse
Affiliation(s)
- Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea; Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, Jiangsu, People's Republic of China
| | - Jian Li
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea; Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health, Wuxi, Jiangsu, People's Republic of China
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Deok-Hoon Kong
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chunchon, Gangwon-do, Republic of Korea.
| |
Collapse
|
14
|
Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, Izquierdo L. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem 2013; 288:16506-16517. [PMID: 23615908 DOI: 10.1074/jbc.m112.439828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.
Collapse
Affiliation(s)
- Sílvia Sanz
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Giulia Bandini
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Diego Ospina
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Maria Bernabeu
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Karina Mariño
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Carmen Fernández-Becerra
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|
15
|
The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81:1585-95. [PMID: 23460511 DOI: 10.1128/iai.01117-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P. vivax merozoite surface protein 1 paralog (PvMSP1P; PlasmoDB PVX_099975), was recently identified and predicted as a GPI-AP. The similarities in genetic structural characteristics between PvMSP1 and PvMSP1P (e.g., size of open reading frames, two epidermal growth factor-like domains, and GPI anchor motif in the C terminus) led us to study this protein. In the present study, different regions of the PvMSP1P protein, demarcated based on the processed forms of PvMSP1, were expressed successfully as recombinant proteins [i.e., 83 (A, B, and C), 30, 38, 42, 33, and 19 fragments]. We studied the naturally acquired immune response against each fragment of recombinant PvMSP1P and the potential ability of each fragment to bind erythrocytes. The N-terminal fragment (83A) and two C-terminal fragments (33 and 19) reacted strongly with sera from P. vivax-infected patients, with 50 to 68% sensitivity and 95 to 96% specificity, respectively. Due to colocalization of PvMSP1P with PvMSP1, we supposed that PvMSP1P plays a similar role as PvMSP1 during erythrocyte invasion. An in vitro cytoadherence assay showed that PvMSP1P, especially the 19-kDa C-terminal region, could bind to erythrocytes. We also found that human sera from populations naturally exposed to vivax malaria and antisera obtained by immunization using the recombinant molecule PvMSP1P-19 inhibited in vitro binding of human erythrocytes to PvMSP1P-19. These results provide further evidence that the PvMSP1P might be an essential parasite adhesion molecule in the P. vivax merozoite and is a potential vaccine candidate against P. vivax.
Collapse
|
16
|
Pv12, a 6-Cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. Parasitol Int 2012; 61:443-9. [DOI: 10.1016/j.parint.2012.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 11/21/2022]
|
17
|
WASS MN, STANWAY R, BLAGBOROUGH AM, LAL K, PRIETO JH, RAINE D, STERNBERG MJE, TALMAN AM, TOMLEY F, YATES J, SINDEN RE. Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology 2012; 139:1131-45. [PMID: 22336136 PMCID: PMC3417538 DOI: 10.1017/s0031182012000133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/06/2022]
Abstract
Here we discuss proteomic analyses of whole cell preparations of the mosquito stages of malaria parasite development (i.e. gametocytes, microgamete, ookinete, oocyst and sporozoite) of Plasmodium berghei. We also include critiques of the proteomes of two cell fractions from the purified ookinete, namely the micronemes and cell surface. Whereas we summarise key biological interpretations of the data, we also try to identify key methodological constraints we have met, only some of which we were able to resolve. Recognising the need to translate the potential of current genome sequencing into functional understanding, we report our efforts to develop more powerful combinations of methods for the in silico prediction of protein function and location. We have applied this analysis to the proteome of the male gamete, a cell whose very simple structural organisation facilitated interpretation of data. Some of the in silico predictions made have now been supported by ongoing protein tagging and genetic knockout studies. We hope this discussion may assist future studies.
Collapse
Affiliation(s)
- M. N. WASS
- The Centre for Bioinformatics, Department of Life Sciences, Imperial College, London SW7 2AZ
| | - R. STANWAY
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
- University of Bern, Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern
| | - A. M. BLAGBOROUGH
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
| | - K. LAL
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
| | - J. H. PRIETO
- The Scripps Research Institute, 10550 North Torrey Pines Rd., Department of Chemical Physiology, SR11 , La Jolla, CA 92037
| | - D. RAINE
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
| | - M. J. E. STERNBERG
- The Centre for Bioinformatics, Department of Life Sciences, Imperial College, London SW7 2AZ
| | - A. M. TALMAN
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519
| | - F. TOMLEY
- Pathology & Infectious Diseases, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA
| | - J. YATES
- The Scripps Research Institute, 10550 North Torrey Pines Rd., Department of Chemical Physiology, SR11 , La Jolla, CA 92037
| | - R. E. SINDEN
- The Malaria Centre, Department of Life Sciences, Imperial College, London SW7 2AZ
| |
Collapse
|
18
|
Abstract
Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
Collapse
|
19
|
A quantitative liquid chromatography tandem mass spectrometry method for metabolomic analysis of Plasmodium falciparum lipid related metabolites. Anal Chim Acta 2012; 739:47-55. [PMID: 22819049 DOI: 10.1016/j.aca.2012.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-(13)C(4) and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d(9)-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r(2)>0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50pmol to 100fmol/3×10(7)cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites.
Collapse
|
20
|
Liao S, Liu Y, Zheng B, Cho PY, Song HO, Lee YS, Jung SY, Park H. Expression of exogenous human hepatic nuclear factor-1α by a lentiviral vector and its interactions with Plasmodium falciparum subtilisin-like protease 2. THE KOREAN JOURNAL OF PARASITOLOGY 2012; 49:431-6. [PMID: 22355214 PMCID: PMC3279685 DOI: 10.3347/kjp.2011.49.4.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022]
Abstract
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-1α is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-1α in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-1α expressed by a lentiviral vector (LV HNF-1α) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-1α was observed to influence promoter activity, suggesting that host HNF-1α interacts with the Sub2 gene.
Collapse
Affiliation(s)
- Shunyao Liao
- Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Swain MT, Larkin DM, Caffrey CR, Davies SJ, Loukas A, Skelly PJ, Hoffmann KF. Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends Parasitol 2011; 27:555-64. [PMID: 22024648 PMCID: PMC3223292 DOI: 10.1016/j.pt.2011.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Schistosoma genomes provide a comprehensive resource for identifying the molecular processes that shape parasite evolution and for discovering novel chemotherapeutic or immunoprophylactic targets. Here, we demonstrate how intragenus and intergenus comparative genomics can be used to drive these investigations forward, illustrate the advantages and limitations of these approaches and review how post-genomic technologies offer complementary strategies for genome characterisation. Although sequencing and functional characterisation of other schistosome/platyhelminth genomes continues to expedite anthelmintic discovery, we contend that future priorities should equally focus on improving assembly quality, and chromosomal assignment, of existing schistosome/platyhelminth genomes.
Collapse
Affiliation(s)
- Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Laurentino EC, Taylor S, Mair GR, Lasonder E, Bartfai R, Stunnenberg HG, Kroeze H, Ramesar J, Franke-Fayard B, Khan SM, Janse CJ, Waters AP. Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell Microbiol 2011; 13:1956-74. [PMID: 21899698 PMCID: PMC3429858 DOI: 10.1111/j.1462-5822.2011.01683.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human FACT (facilitates chromatin transcription) consists of the proteins SPT16 and SSRP1 and acts as a histone chaperone in the (dis)assembly of nucleosome (and thereby chromatin) structure during transcription and DNA replication. We identified a Plasmodium berghei protein, termed FACT-L, with homology to the SPT16 subunit of FACT. Epitope tagging of FACT-L showed nuclear localization with high expression in the nuclei of (activated) male gametocytes. The gene encoding FACT-L could not be deleted indicating an essential role during blood-stage development. Using a ‘promoter-swap’ approach whereby the fact-l promoter was replaced by an ‘asexual blood stage-specific’ promoter that is silent in gametocytes, transcription of fact-l in promoter-swap mutant gametocytes was downregulated compared with wild-type gametocytes. These mutant male gametocytes showed delayed DNA replication and gamete formation. Male gamete fertility was strongly reduced while female gamete fertility was unaffected; residual ookinetes generated oocysts that arrested early in development and failed to enter sporogony. Therefore FACT is critically involved in the formation of fertile male gametes and parasite transmission. ‘Promoter swapping’ is a powerful approach for the functional analysis of proteins in gametocytes (and beyond) that are essential during asexual blood-stage development.
Collapse
Affiliation(s)
- Eliane C Laurentino
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Siden-Kiamos I, Ganter M, Kunze A, Hliscs M, Steinbüchel M, Mendoza J, Sinden RE, Louis C, Matuschewski K. Stage-specific depletion of myosin A supports an essential role in motility of malarial ookinetes. Cell Microbiol 2011; 13:1996-2006. [PMID: 21899701 DOI: 10.1111/j.1462-5822.2011.01686.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional analysis of Plasmodium genes by classical reverse genetics is currently limited to mutants that are viable during erythrocytic schizogony, the pathogenic phase of the malaria parasite where transfection is performed. Here, we describe a conceptually simple experimental approach to study the function of genes essential to the asexual blood stages in a subsequent life cycle stage by a promoter-swap approach. As a proof of concept we targeted the unconventional class XIV myosin MyoA, which is known to be required for Toxoplasma gondii tachyzoite locomotion and host cell invasion. By placing the corresponding Plasmodium berghei gene, PbMyoA, under the control of the apical membrane antigen 1 (AMA1) promoter, expression in blood stages is maintained but switched off during transmission to the insect vector, i.e. ookinetes. In those mutant ookinetes gliding motility is entirely abolished resulting in a complete block of life cycle progression in Anopheles mosquitoes. Similar approaches should permit the analysis of gene function in the mosquito forms that are shared with the erythrocytic stages of the malaria parasite.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71110 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liao S, Liu Y, Jung SY, Cho PY, Zheng B, Park H. Transcriptional activity of Plasmodium subtilisin-like protease 2 (Pf-Sub2) 5'untranslated regions and its interaction with hepatocyte growth factor. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 48:291-5. [PMID: 21234230 PMCID: PMC3018577 DOI: 10.3347/kjp.2010.48.4.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
Abstract
The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors and individual host responses to these determinants. In both humans and mice, liver injury is involved after parasite entry, which persists until the erythrocyte stage after infection with the fatal strain Plasmodium falciparum (Pf). Hepatocyte growth factor (HGF) has strong anti-apoptotic effects in various kinds of cells, and also has diverse metabolic functions. In this work, Pf-subtilisin-like protease 2 (Pf-Sub2) 5'untranslated region (UTR) was analyzed and its transcriptional activity was estimated by luciferase expression. Fourteen TATA boxes were observed but only one Oct-1 and c-Myb were done. In addition, host HGF interaction with Pf-Sub2 was evaluated by co-transfection of HGF- and Pf-Sub2-cloned vector. Interestingly, -1,422/+12 UTR exhibited the strongest luciferase activity but -329 to +12 UTR did not exhibit luciferase activity. Moreover, as compared with the control of unexpressed HGF, the HGF protein suppressed luciferase expression driven by the 5'untranslated region of the Pf-Sub2 promoter. Taken together, it is suggested that HGF controls and interacts with the promoter region of the Pf-Sub2 gene.
Collapse
Affiliation(s)
- Shunyao Liao
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Wright AD, McCluskey A, Robertson MJ, MacGregor KA, Gordon CP, Guenther J. Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi. Org Biomol Chem 2011; 9:400-7. [DOI: 10.1039/c0ob00326c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Alves E, Bartlett PJ, Garcia CRS, Thomas AP. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J Biol Chem 2010; 286:5905-12. [PMID: 21149448 DOI: 10.1074/jbc.m110.188474] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Collapse
Affiliation(s)
- Eduardo Alves
- Department of Pharmacology and Physiology, UMDNJ, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
27
|
Hughes KR, Philip N, Lucas Starnes G, Taylor S, Waters AP. From cradle to grave: RNA biology in malaria parasites. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:287-303. [DOI: 10.1002/wrna.30] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katie R. Hughes
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Nisha Philip
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - G. Lucas Starnes
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Sonya Taylor
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| | - Andrew P. Waters
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, UK
| |
Collapse
|
28
|
A genotype and phenotype database of genetically modified malaria-parasites. Trends Parasitol 2010; 27:31-9. [PMID: 20663715 DOI: 10.1016/j.pt.2010.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 11/20/2022]
Abstract
The RMgm database, www.pberghei.eu, is a web-based, manually curated, repository containing information on genetically modified rodent-malaria parasites. It provides easy and rapid access to information on the genotype and phenotype of mutant and reporter parasites. The database also contains information on unpublished mutants without a clear phenotype and negative trials to disrupt genes. Information can be searched using pre-defined key features, such as phenotype, life-cycle stage, gene model, gene-tags and mutations. The information relating to the mutants is reciprocally linked to PlasmoDB and GeneDB. Access to mutant-parasite information, and gene function/ontology inferred from mutant phenotypes provides a timely resource aimed at enhancing research into Plasmodium gene function and (systems) biology.
Collapse
|
29
|
PlasmoPredict: a gene function prediction website for Plasmodium falciparum. Trends Parasitol 2010; 26:107-10. [PMID: 20089451 DOI: 10.1016/j.pt.2009.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
The genome sequence of the malaria parasite Plasmodium falciparum was published in 2002 and revealed that approximately 60% of its genes could not be assigned a function. Eight years later the majority of P. falciparum proteins are still of unknown function. We therefore present PlasmoPredict, an easy-to-use online gene function prediction tool that integrates a wide range of functional genomics data for P. falciparum to aid in the annotation of these genes.
Collapse
|
30
|
Lau AOT. An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. Mol Biochem Parasitol 2008; 164:1-8. [PMID: 19110007 DOI: 10.1016/j.molbiopara.2008.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 11/30/2022]
Abstract
Babesia, Plasmodium and Theileria form a triad of apicomplexan hemoparasites and are accountable for significant mortality and morbidity to humans and animals globally. Understanding the pathobiology of these three genera is crucial as multiple drug resistant strains continue to arise in endemic areas along with pesticide and acaricide resistant vector hosts. Vastly improved sequencing technology has produced whole genome sequences of several apicomplexan species and subsequent comparative analyses of these genomes have identified unique as well as common features among the different species, information that will help in the pursuit of alternative therapies, management and perhaps elimination of the disease. This review, therefore, summarizes comparisons of genome structure, protein families, metabolic pathways and organelle biology in these three apicomplexans and how such knowledge has and will continue to enhance the field.
Collapse
Affiliation(s)
- Audrey O T Lau
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
31
|
Abstract
Intracellular pathogens such as viruses and bacteria subvert all the major cellular functions of their hosts. Targeted host processes include protein synthesis, membrane trafficking, modulation of gene expression, antigen presentation, and apoptosis. In recent years, it has become evident that protozoan pathogens, including members of the phylum Apicomplexa, also hijack their host cell's functions to access nutrients and to escape cellular defenses and immune responses. These obligate intracellular parasites provide superb illustrations of the subversion of host cell processes such as the recruitment and reorganization of host cell compartments without fusion around the parasitophorous vacuole of Toxoplasma gondii; the export of Plasmodium falciparum proteins on the surface of infected erythrocytes; and the induced transformation of the lymphocytes infected by Theileria parva, which leads to clonal extension.
Collapse
Affiliation(s)
- Fabienne Plattner
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
32
|
Silva-Flannery LM, Cabrera-Mora M, Jiang J, Moreno A. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine. Microbes Infect 2008; 11:83-91. [PMID: 19015042 DOI: 10.1016/j.micinf.2008.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/23/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
Synthetic linear peptide chimeras (LPCs(cys+)) show promise as delivery platforms for malaria subunit vaccines. Maximal immune response to LPCs(cys+) in rodent malaria models depends upon formation of cross-linkages to generate homopolymers, presenting challenges for vaccine production. To replicate the immunogenicity of LPCs(cys+) using a recombinant approach, we designed a recombinant LPC (rLPC) based on Plasmodium yoelii circumsporozoite protein-specific sequences of 208 amino acids consisting of four LPC subunits in series. BALB/c or CAF1/J mice were immunized with synthetic or recombinant LPCs. Antibody concentrations, cytokine production and protection against challenge were compared. Recombinant peptide replicated the robust, high avidity antibody responses obtained with the synthetic linear peptide chimera. After in vitro stimulation spleen cells from mice immunized with rLPC or synthetic LPC(cys+) produced gamma interferon and IL-4 suggesting the efficient priming of T cells. Immunization of mice with either recombinant or synthetic LPC(cys+) provided comparable protection against experimental challenge with P. yoelii sporozoites. Recombinant LPCs reproduced the immunogenicity of synthetic LPC(cys+) without requiring polymerization, improving prospects for use as malaria vaccines.
Collapse
Affiliation(s)
- Luciana M Silva-Flannery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
33
|
Patra KP, Johnson JR, Cantin GT, Yates JR, Vinetz JM. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 2008; 8:2492-9. [PMID: 18563747 DOI: 10.1002/pmic.200700727] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.
Collapse
Affiliation(s)
- Kailash P Patra
- Department of Medicine, George Palade Laboratories, University of California San Diego, CA 92093, USA
| | | | | | | | | |
Collapse
|
34
|
Wu J, Sieglaff DH, Gervin J, Xie XS. Discovering regulatory motifs in the Plasmodium genome using comparative genomics. ACTA ACUST UNITED AC 2008; 24:1843-9. [PMID: 18611947 DOI: 10.1093/bioinformatics/btn348] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Understanding gene regulation in Plasmodium, the causative agent of malaria, is an important step in deciphering its complex life cycle as well as leading to possible new targets for therapeutic applications. Very little is known about gene regulation in Plasmodium, and in particular, few regulatory elements have been identified. Such discovery has been significantly hampered by the high A-T content of some of the genomes of Plasmodium species, as well as the challenge in associating discovered regulatory elements to gene regulatory cascades due to Plasmodium's complex life cycle. RESULTS We report a new method of using comparative genomics to systematically discover motifs in Plasmodium without requiring any functional data. Different from previous methods, our method does not depend on sequence alignments, and thus is particularly suitable for highly divergent genomes. We applied our method to discovering regulatory motifs between the human parasite, P.falciparum, and its rodent-infectious relative, P.yoelii. We also tested our procedure against comparisons between P.falciparum and the primate-infectious, P.knowlesi. Our computational effort leads to an initial catalog of 38 distinct motifs, corresponding to over 16 200 sites in the Plasmodium genome. The functionality of these motifs was further supported by their defined distribution within the genome as well as a correlation with gene expression patterns. This initial map provides a systematic view of gene regulation in Plasmodium, which can be refined as additional genomes become available. AVAILABILITY The new algorithm, named motif discovery using orthologous sequences (MDOS), is available at http://www.ics.uci.edu/ approximately xhx/project/mdos/.
Collapse
Affiliation(s)
- Jie Wu
- Department of Computer Sciences, University of California, Irvine, CA 92697, CODA Genomics, Laguna Hills, CA 92656, USA
| | | | | | | |
Collapse
|
35
|
Bajaj R, Mohanty S, Dash AP, Das A. Fine-scale genetic characterization of Plasmodium falciparum chromosome 7 encompassing the antigenic var and the drug-resistant pfcrt genes. J Genet 2008; 87:59-64. [PMID: 18560175 DOI: 10.1007/s12041-008-0008-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome.
Collapse
Affiliation(s)
- Ruchi Bajaj
- Evolutionary Genomics and Bioinformatics Laboratory, National Institute of Malaria Research, 22 Sham Nath Marg, New Delhi 110 054, India
| | | | | | | |
Collapse
|
36
|
Greenwood BM, Fidock DA, Kyle DE, Kappe SHI, Alonso PL, Collins FH, Duffy PE. Malaria: progress, perils, and prospects for eradication. J Clin Invest 2008; 118:1266-76. [PMID: 18382739 DOI: 10.1172/jci33996] [Citation(s) in RCA: 422] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There are still approximately 500 million cases of malaria and 1 million deaths from malaria each year. Yet recently, malaria incidence has been dramatically reduced in some parts of Africa by increasing deployment of anti-mosquito measures and new artemisinin-containing treatments, prompting renewed calls for global eradication. However, treatment and mosquito control currently depend on too few compounds and thus are vulnerable to the emergence of compound-resistant parasites and mosquitoes. As discussed in this Review, new drugs, vaccines, and insecticides, as well as improved surveillance methods, are research priorities. Insights into parasite biology, human immunity, and vector behavior will guide efforts to translate parasite and mosquito genome sequences into novel interventions.
Collapse
Affiliation(s)
- Brian M Greenwood
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Dávalos LM, Perkins SL. Saturation and base composition bias explain phylogenomic conflict in Plasmodium. Genomics 2008; 91:433-42. [DOI: 10.1016/j.ygeno.2008.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/09/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
|
38
|
Xu X, Wu J, Xiao J, Tan Y, Bao Q, Zhao F, Li X. PlasmoGF: an integrated system for comparative genomics and phylogenetic analysis of Plasmodium gene families. Bioinformatics 2008; 24:1217-20. [PMID: 18337260 DOI: 10.1093/bioinformatics/btn092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Malaria, one of the world's most common diseases, is caused by the intracellular protozoan parasite known as Plasmodium. Recently, with the arrival of several malaria parasite genomes, we established an integrated system named PlasmoGF for comparative genomics and phylogenetic analysis of Plasmodium gene families. Gene families were clustered using the Markov Cluster algorithm implemented in TribeMCL program and could be searched using keywords, gene-family information, domain composition, Gene Ontology and BLAST. Moreover, a number of useful bioinformatics tools were implemented to facilitate the analysis of these putative Plasmodium gene families, including gene retrieval, annotation, sequence alignment, phylogeny construction and visualization. In the current version, PlasmoGF contained 8980 sets of gene families derived from six malaria parasite genomes: Plasmodium. falciparum, P. berghei, P. knowlesi, P. chabaudi, P. vivax and P. yoelii. The availability of such a highly integrated system would be of great interest for the community of researchers working on malaria parasite phylogenomics. AVAILABILITY PlasmoGF is freely available at http://bioinformatics.zj.cn/pgf/
Collapse
Affiliation(s)
- Xiang Xu
- School of Pharmaceutical Science/Zhejiang Provincial Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College, Wenzhou 325035, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Shock JL, Fischer KF, DeRisi JL. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol 2008; 8:R134. [PMID: 17612404 PMCID: PMC2323219 DOI: 10.1186/gb-2007-8-7-r134] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/05/2007] [Indexed: 11/23/2022] Open
Abstract
A consistent bias in tree reconciliation methods is described that occurs when the inferred gene tree is not correct, casting doubt on previous conclusions about ancient duplications and losses in vertebrate genome history. Background: The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. Results: We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Conclusion: Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.
Collapse
Affiliation(s)
- Jennifer L Shock
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Kael F Fischer
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
- Howard Hughes Medical Institute, Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| |
Collapse
|
40
|
Potential and limits of in silico target discovery - Case study of the search for new antimalarial chemotherapeutic targets. INFECTION GENETICS AND EVOLUTION 2008; 9:359-67. [PMID: 18294927 DOI: 10.1016/j.meegid.2008.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/05/2008] [Indexed: 01/25/2023]
Abstract
In medical sciences, a target is a broad concept to qualify a biological entity and/or a biological phenomenon, on which one aims to act as part of a therapy. It follows that a target can be defined as a phenotype, a biological process, a subcellular organelle, a protein or a protein domain. It also follows that a target cannot be defined independently of the type of intervention one considers implementing. In this brief review, we describe how in silico organization of genomic and post-genomic information of all partners involved in malaria (human patient, Plasmodium parasite and Anopheles vector), complying with knowledge of the disease in etiologic terms, appears as an efficient source of information not only to help selecting but also discarding target candidates. Some limitations in our capacity to explore the stored biological information, due to the current quality of genomic annotation, level of database integration, or to the performances of existing analytic and mining tools, are discussed. In silico strategies to assess the feasibility of bringing a target to a therapeutic development pipeline, in terms of target "druggability", are introduced.
Collapse
|
41
|
Characterization of a conserved rhoptry-associated leucine zipper-like protein in the malaria parasite Plasmodium falciparum. Infect Immun 2008; 76:879-87. [PMID: 18174339 DOI: 10.1128/iai.00144-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the key processes in the pathobiology of the malaria parasite is the invasion and subsequent modification of the human erythrocyte. In this complex process, an unknown number of parasite proteins are involved, some of which are leading vaccine candidates. The majority of the proteins that play pivotal roles in invasion are either stored in the apical secretory organelles or located on the surface of the merozoite, the invasive stage of the parasite. Using transcriptional and structural features of these known proteins, we performed a genomewide search that identified 49 hypothetical proteins with a high probability of being located on the surface of the merozoite or in the secretory organelles. Of these candidates, we characterized a novel leucine zipper-like protein in Plasmodium falciparum that is conserved in Plasmodium spp. This protein is expressed in late blood stages and localizes to the rhoptries of the parasite. We demonstrate that this Plasmodium sp.-specific protein has a high degree of conservation within field isolates and that it is refractory to gene knockout attempts and thus might play an important role in invasion.
Collapse
|
42
|
Ansari FA, Kumar N, Bala Subramanyam M, Gnanamani M, Ramachandran S. MAAP: Malarial adhesins and adhesin‐like proteins predictor. Proteins 2008; 70:659-66. [PMID: 17879344 DOI: 10.1002/prot.21568] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Malaria caused by protozoan parasites belonging to the genus Plasmodium is a dreaded disease, second only to tuberculosis. The emergence of parasites resistant to commonly used drugs and the lack of availability of vaccines aggravates the problem. One of the preventive approaches targets adhesion of parasites to host cells and tissues. Adhesion of parasites is mediated by proteins called adhesins. Abrogation of adhesion by either immunizing the host with adhesins or inhibiting the interaction using structural analogs of host cell receptors holds the potential to develop novel preventive strategies. The availability of complete genome sequence offers new opportunities for identifying adhesin and adhesin-like proteins. Development of computational algorithms can simplify this task and accelerate experimental characterization of the predicted adhesins from complete genomes. A curated positive dataset of experimentally known adhesins from Plasmodium species was prepared by careful examination of literature reports. "Controversial" or "hypothetical" adhesins were excluded. The negative dataset consisted of proteins representing various intracellular functions including information processing, metabolism, and interface (transporters). We did not include proteins likely to be on the surface with unknown adhesin properties or which are linked even indirectly to the adhesion process in either of the training sets. A nonhomology-based approach using 420 compositional properties of amino acid dipeptide and multiplet frequencies was used to develop MAAP Web server with Support Vector Machine (SVM) model classifier as its engine for the prediction of malarial adhesins and adhesin-like proteins. The MAAP engine has six SVM classifier models identified through an exhaustive search from 728 kernel parameters set. These models displayed an efficiency (Mathews correlation coefficient) of 0.860-0.967. The final prediction P(maap) score is the maximum score attained by a given sequence in any of the six models. The results of MAAP runs on complete proteomes of Plasmodium species revealed that in Plasmodium falciparum at P(maap) scores above 0.0, we observed a sensitivity of 100% with two false positives. In P. vivax and P. yoelii an optimal threshold P(maap) score of 0.7 was optimal with very few false positives (upto 5). Several new predictions were obtained. This list includes hypothetical protein PF14_0040, interspersed repeat antigen, STEVOR, liver stage antigen, SURFIN, RIFIN, stevor (3D7-stevorT3-2), mature parasite-infected erythrocyte surface antigen or P. falciparum erythrocyte membrane protein 2, merozoite surface protein 6 in P. falciparum, circumsporozoite proteins, microneme protein-1, Vir18, Vir12-like, Vir12, Vir18-like, Vir18-related and Vir4 in P. vivax, circumsporozoite protein/thrombospondin related anonymous proteins, 28 kDa ookinete surface protein, yir1, and yir4 of P. yoelii. Among these, a few proteins identified by MAAP were matched with those identified by other groups using different experimental and theoretical strategies. Most other interspersed repeat proteins in Plasmodium species had lower P(maap) scores. These new predictions could serve as new leads for further experimental characterization (MAAP webserver: http://maap.igib.res.in).
Collapse
Affiliation(s)
- Faraz Alam Ansari
- G. N. Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
43
|
Kooij TW, Matuschewski K. Triggers and tricks of Plasmodium sexual development. Curr Opin Microbiol 2007; 10:547-53. [PMID: 18006365 DOI: 10.1016/j.mib.2007.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/27/2022]
Abstract
Irrespective of the tremendous suffering caused by malaria, a Plasmodium infection by pathogenic blood stages is only transient and an obligate step toward the Anopheles vector where sexual reproduction and genetic recombination of the unicellular parasite takes place. Recent expression profiling studies identified the molecular make-up of female and male gametocytes. Differential promoters and translational repression through mRNA binding by a female-specific helicase help to fine-tune the expression of these sexual stage-specific genes. However, we are only just beginning to discover the triggers that initiate gametocytogenesis and the developmental programs that drive sexual development.
Collapse
Affiliation(s)
- Taco Wa Kooij
- Department of Parasitology, Heidelberg University School of Medicine, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|
44
|
Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog 2007; 3:1401-13. [PMID: 17953480 PMCID: PMC2034396 DOI: 10.1371/journal.ppat.0030148] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 08/30/2007] [Indexed: 12/28/2022] Open
Abstract
Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The ∼150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development. Vector-transmitted blood parasites cause some of the most widely distributed, serious, and poorly controlled diseases globally, including the most severe form of human malaria caused by Plasmodium falciparum. In livestock, tick-transmitted blood parasites include the protozoa Theileria parva, the cause of East Coast fever and Babesia bovis, the cause of tick fever, to which well over half of the world's cattle population are at risk. There is a critical need to better understand the mechanisms by which these parasites are transmitted, persist, and cause disease in order to optimize methods for control, including development of vaccines. This manuscript presents the genome sequence of B. bovis, and provides a whole genome comparative analysis with P. falciparum and T. parva. Genome-wide characterization of the B. bovis antigenically variable ves1 family reveals interesting differences in organization and expression from the related P. falciparum var genes. The second largest gene family (smorf) in B. bovis was newly discovered and may itself be involved in persistence, highlighting the utility of this approach in gene discovery. Organization and structure of the B. bovis genome is most similar to that of Theileria, and despite common features in clinical outcome is limited to microregional similarity with P. falciparum. Comparative gene analysis identifies several previously unknown proteins as homologs of vaccine candidates in one or more of these parasites, and candidate genes whose expression might account for unique properties such as the ability of Theileria to reversibly transform leukocytes.
Collapse
|
45
|
Chakrabarti K, Pearson M, Grate L, Sterne-Weiler T, Deans J, Donohue JP, Ares M. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA (NEW YORK, N.Y.) 2007; 13:1923-39. [PMID: 17901154 PMCID: PMC2040097 DOI: 10.1261/rna.751807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts.
Collapse
Affiliation(s)
- Kausik Chakrabarti
- Department of Molecular, Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Tosta CE. Coadaptation and malaria control. Mem Inst Oswaldo Cruz 2007; 102:385-404. [PMID: 17568946 DOI: 10.1590/s0074-02762007005000042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/22/2007] [Indexed: 01/22/2023] Open
Abstract
Malaria emerges from a disequilibrium of the system 'human-plasmodium-mosquito' (HPM). If the equilibrium is maintained, malaria does not ensue and the result is asymptomatic plasmodium infection. The relationships among the components of the system involve coadaptive linkages that lead to equilibrium. A vast body of evidence supports this assumption, including the strategies involved in the relationships between plasmodium and human and mosquito immune systems, and the emergence of resistance of plasmodia to antimalarial drugs and of mosquitoes to insecticides. Coadaptive strategies for malaria control are based on the following principles: (1) the system HPM is composed of three highly complex and dynamic components, whose interplay involves coadaptive linkages that tend to maintain the equilibrium of the system; (2) human and mosquito immune systems play a central role in the coadaptive interplay with plasmodium, and hence, in the maintenance of the system's equilibrium; the under- or overfunction of human immune system may result in malaria and influence its severity; (3) coadaptation depends on genetic and epigenetic phenomena occurring at the interfaces of the components of the system, and may involve exchange of infectrons (genes or gene fragments) between the partners; (4) plasmodia and mosquitoes have been submitted to selective pressures, leading to adaptation, for an extremely long while and are, therefore, endowed with the capacity to circumvent both natural (immunity) and artificial (drugs, insecticides, vaccines) measures aiming at destroying them; (5) since malaria represents disequilibrium of the system HPM, its control should aim at maintaining or restoring this equilibrium; (6) the disequilibrium of integrated systems involves the disequilibrium of their components, therefore the maintenance or restoration of the system's equilibrium depend on the adoption of integrated and coordinated measures acting on all components, that means, panadaptive strategies. Coadaptive strategies for malaria control should consider that: (1) host immune response has to be induced, since without it, no coadaptation is attained; (2) the immune response has to be sustained and efficient enough to avoid plasmodium overgrowth; (3) the immune response should not destroy all parasites; (4) the immune response has to be well controlled in order to not harm the host. These conditions are mostly influenced by antimalarial drugs, and should also be taken into account for the development of coadaptive malaria vaccines.
Collapse
Affiliation(s)
- Carlos Eduardo Tosta
- Laboratórios de Malária e de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil.
| |
Collapse
|
47
|
Meissner M, Breinich MS, Gilson PR, Crabb BS. Molecular genetic tools in Toxoplasma and Plasmodium: achievements and future needs. Curr Opin Microbiol 2007; 10:349-56. [PMID: 17826309 DOI: 10.1016/j.mib.2007.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/20/2007] [Indexed: 01/14/2023]
Abstract
The recent awarding of the Nobel prize to Andrew Fire and Craig Mello for the discovery of RNA-interference (RNAi) in plants once more demonstrated the importance of basic science in understanding biological mechanisms. Importantly, this discovery led to the establishment of powerful approaches to study gene function in a wide array of organisms. While a robust RNAi-technology remains elusive in apicomplexan parasites, other molecular genetic technologies have been introduced in recent years. Now, in the post genomic era, the task is to apply these methods to validate and functionally dissect an ever-expanding list of putative vaccine and drug candidates. The ultimate aim of such studies is to transform our knowledge of the genome to the knowledge of the phenome and ultimately new intervention strategies in these important pathogenic organisms. However, substantial limitations remain to the current repertoire of available molecular tools, which limits a comprehensive analysis of these candidates, especially of essential genes. This review summarises the methodologies available for functional gene analysis in apicomplexan parasites and discusses further needs in tool development.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut Heidelberg, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
48
|
Thomas C, Shalini S, Raghavendra N, Choudhary M, Verma A, Joshi H, Dash AP, Das A. Development of nuclear DNA markers for evolutionary studies in Plasmodium falciparum. J Genet 2007; 86:65-8. [PMID: 17656851 DOI: 10.1007/s12041-007-0009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Celia Thomas
- National Institute of Malaria Research (ICMR), 22 Sham Nath Marg, Delhi 110 054, India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Feng ZP, Zhang X, Han P, Arora N, Anders RF, Norton RS. Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes. Mol Biochem Parasitol 2006; 150:256-67. [PMID: 17010454 DOI: 10.1016/j.molbiopara.2006.08.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 11/21/2022]
Abstract
Preliminary sequence analysis of Plasmodium falciparum has shown that the proteome of this organism is enriched in intrinsically unstructured proteins (IUPs), which are either completely disordered or contain large disordered regions. IUPs have been characterized as a unique class of proteins that plays an important role in biology and disease. In this study, the IUP contents in the proteomes of apicomplexan parasites, especially the proteome of P. falciparum and its various life cycle stages, have been evaluated with DisEMBL-1.4. Compared with other proteomes, apicomplexan species are extremely abundant in proteins containing long disordered regions, and the IUP contents in mammalian Plasmodium species are higher than in most other apicomplexan parasites. The proteome of the P. falciparum sporozoite appears to be distinct from the other life cycle stages in having an even higher content of disordered proteins. The abundance of IUPs in the P. falciparum proteome correlates with its enrichment in repetitive sequences. The structural plasticity of IUPs, which allows promiscuous binding interactions, may favour parasite survival both by inhibiting the generation of effective high affinity antibody responses and by facilitating the interactions with host molecules necessary for attachment and invasion of host cells.
Collapse
Affiliation(s)
- Zhi-Ping Feng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3050, Australia.
| | | | | | | | | | | |
Collapse
|