1
|
Aishwarya S, Torres GC, Lopez-Saenz JA, Gutierrez DA, Kumar S, Madarakhandi A, Metikurki B, Teraiya N, Aguilera RJ, Karki SS. Synthesis of novel pyridazine and pyrimidine linked pyrazole derivatives as DNA ligase 1 and IV inhibitors that induce apoptosis. Chem Biol Interact 2025; 414:111509. [PMID: 40221125 PMCID: PMC12083462 DOI: 10.1016/j.cbi.2025.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/19/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Human ligase I and ligase IV have recently been recognized as potential targets and regulators of cancer. Novel pyrazole analogues were synthesized and evaluated for their anti-proliferation effects against lymphoma, breast and other cancer cell lines. The initial biological investigation resulted in the identification of lead compounds 7a and 8e. Compounds 7a and 8e were the most cytotoxic to acute lymphoblastic leukemia CEM cells, with CC50 values of 4.78 μM and 9.23 μM, respectively. Compound 8e was selected for further biological testing, whereas compound 7a was excluded from subsequent evaluations due to its poor solubility. To investigate the mechanism of action of 8e, it was tested for phosphatidylserine externalization, caspase-3 activation, mitochondrial membrane depolarization, reactive oxygen species generation (ROS) and its effects on the cell cycle. Results from these assays indicated that 8e induced the intrinsic apoptosis pathway and arrested cells in the S phase of the cell cycle. Furthermore, in silico docking and molecular dynamic simulation revealed a strong affinity of 7a and 8e for ligase I and ligase IV suggesting that the induction of apoptosis is likely due to direct inhibition of these ligases. Collectively, these findings indicate that 8e is a promising anticancer agent.
Collapse
Affiliation(s)
- S Aishwarya
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, 560010, India
| | - Gabriela C Torres
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Jose A Lopez-Saenz
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Denisse A Gutierrez
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, NITTE College of Pharmaceutical Sciences, Yelahanka, Bengaluru, Karnataka 560064, India
| | - Ashok Madarakhandi
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, 560010, India
| | - Basavaraj Metikurki
- Department of Pharmaceutical Chemistry, NITTE College of Pharmaceutical Sciences, Yelahanka, Bengaluru, Karnataka 560064, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, KadiSarvaVishvavidhyalaya, Gandhinagar, Gujarath, 382023, India
| | - Renato J Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| | - Subhas S Karki
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education & Research-Belagavi), Rajajinagar, Bengaluru, Karnataka, 560010, India.
| |
Collapse
|
2
|
Cappello L, Lo WT‘J, Zhang JZ, Xu P, Barrow D, Chopra I, Clark AG, Wells MT, Kim J. Bayesian phylodynamic inference of population dynamics with dormancy. Proc Natl Acad Sci U S A 2025; 122:e2501394122. [PMID: 40314983 PMCID: PMC12067208 DOI: 10.1073/pnas.2501394122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 05/03/2025] Open
Abstract
Many organisms employ reversible dormancy, or seedbank, in response to environmental fluctuations. This life-history strategy alters fundamental ecoevolutionary forces, leading to distinct patterns of genetic diversity. Two models of dormancy have been proposed based on the average duration of dormancy relative to coalescent timescales: weak seedbank, induced by scheduled seasonality (e.g., plants, invertebrates), and strong seedbank, where individuals stochastically switch between active and dormant states (e.g., bacteria, fungi). The weak seedbank coalescent is statistically equivalent to the Kingman coalescent with a scaled mutation rate, allowing the use of existing inference methods. In contrast, the strong seedbank coalescent differs fundamentally, as only active lineages can coalesce, while dormant lineages cannot. Additionally, dormant individuals typically mutate at a slower rate than active ones. Consequently, despite the significant role of dormancy in the ecoevolutionary dynamics of many organisms, no methods currently exist for inferring population dynamics involving dormancy and associated parameters. We present a Bayesian framework for jointly inferring a latent genealogy, seedbank parameters, and evolutionary parameters from molecular sequence data under the strong seedbank coalescent. We derive the exact probability density of genealogies sampled under the strong seedbank coalescent, characterize the corresponding likelihood function, and present efficient computational algorithms for its evaluation based on our theoretical framework. We develop a tailored Markov chain Monte Carlo sampler and implement our inference framework as a package SeedbankTree within BEAST2. Our work provides both a theoretical foundation and practical inference framework for studying the population genetic and genealogical impacts of dormancy.
Collapse
Affiliation(s)
- Lorenzo Cappello
- Departments of Economics and Business, Universitat Pompeu Fabra, Barcelona08005, Spain
- Data Science Center, Barcelona School of Economics, Barcelona08005, Spain
| | - Wai Tung ‘Jack’ Lo
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Joy Z. Zhang
- Center for Applied Mathematics, Cornell University, Ithaca, NY14850
| | - Peiyu Xu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Daniel Barrow
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Ishani Chopra
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| | - Andrew G. Clark
- Department of Computational Biology, Cornell University, Ithaca, NY14850
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Martin T. Wells
- Department of Statistics and Data Science, Cornell University, Ithaca, NY14850
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, NY14850
| |
Collapse
|
3
|
Filsinger GT, Mychack A, Lyerly E, Henriksen C, Bartlett TM, Kuchwara H, Eitzinger S, Bernhardt TG, Walker S, Church GM, Wannier TM. A diverse single-stranded DNA-annealing protein library enables efficient genome editing across bacterial phyla. Proc Natl Acad Sci U S A 2025; 122:e2414342122. [PMID: 40258142 PMCID: PMC12054835 DOI: 10.1073/pnas.2414342122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/26/2025] [Indexed: 04/23/2025] Open
Abstract
Genome modification is essential for studying and engineering bacteria, yet making efficient modifications to most species remains challenging. Bacteriophage-encoded single-stranded DNA-annealing proteins (SSAPs) can facilitate efficient genome editing by homologous recombination, but their typically narrow host range limits broad application. Here, we demonstrate that a single library of 227 SSAPs enables efficient genome-editing across six diverse bacteria from three divergent classes: Actinomycetia (Mycobacterium smegmatis and Corynebacterium glutamicum), Alphaproteobacteria (Agrobacterium tumefaciens and Caulobacter crescentus), and Bacilli (Lactococcus lactis and Staphylococcus aureus). Surprisingly, the most effective SSAPs frequently originated from phyla distinct from their bacterial hosts, challenging the assumption that phylogenetic relatedness is necessary for recombination efficiency, and supporting the value of a large unbiased library. Across these hosts, the identified SSAPs enable genome modifications requiring efficient homologous recombination, demonstrated through three examples. First, we use SSAPs with Cas9 in C. crescentus to introduce single amino acid mutations with >70% efficiency. Second, we adapt SSAPs for dsDNA editing in C. glutamicum and S. aureus, enabling one-step gene knockouts using PCR products. Finally, we apply SSAPs for multiplexed editing in S. aureus to precisely map the interaction between a conserved protein and a small-molecule inhibitor. Overall, this library-based SSAP screen expands engineering capabilities across diverse, previously recalcitrant microbes, enabling efficient genetic manipulation for both fundamental research and biotechnological applications.
Collapse
Affiliation(s)
- Gabriel T. Filsinger
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Aaron Mychack
- Department of Microbiology, Harvard University, Boston, MA02115
| | - Evan Lyerly
- Department of Microbiology, Harvard University, Boston, MA02115
| | - Camilla Henriksen
- Department of Veterinary and Animal Disease, University of Copenhagen, FrederiksbergDK-1870, Denmark
| | - Thomas M. Bartlett
- Department of Microbiology, Harvard University, Boston, MA02115
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, NY12208
| | - Helene Kuchwara
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Simon Eitzinger
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | | | - Suzanne Walker
- Department of Microbiology, Harvard University, Boston, MA02115
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02215
| | - Timothy M. Wannier
- Department of Genetics, Harvard Medical School, Boston, MA02115
- Wild Microbes Company, Cambridge, MA02139
| |
Collapse
|
4
|
Rengifo-Gonzalez M, Mazzuoli MV, Janssen AB, Rueff AS, Burnier J, Liu X, Veening JW. Make-or-break prime editing for genome engineering in Streptococcus pneumoniae. Nat Commun 2025; 16:3796. [PMID: 40263274 PMCID: PMC12015366 DOI: 10.1038/s41467-025-59068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
CRISPR-Cas9 has revolutionized genome engineering by allowing precise introductions of DNA double-strand breaks (DSBs). However, genome engineering in bacteria is still a complex, multi-step process requiring a donor DNA template for repair of DSBs. Prime editing circumvents this need as the repair template is indirectly provided within the prime editing guide RNA (pegRNA). Here, we developed make-or-break Prime Editing (mbPE) that allows for precise and effective genetic engineering in the opportunistic human pathogen Streptococcus pneumoniae. In contrast to traditional prime editing in which a nicking Cas9 is employed, mbPE harnesses wild type Cas9 in combination with a pegRNA that destroys the seed region or protospacer adjacent motif. Since most bacteria poorly perform template-independent end joining, correctly genome-edited clones are selectively enriched during mbPE. We show that mbPE is RecA-independent and can be used to introduce point mutations, deletions and targeted insertions, including protein tags such as a split luciferase, at selection efficiencies of over 93%. mbPE enables sequential genome editing, is scalable, and can be used to generate pools of mutants in a high-throughput manner. The mbPE system and pegRNA design guidelines described here will ameliorate future bacterial genome editing endeavors.
Collapse
Affiliation(s)
- Monica Rengifo-Gonzalez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland
| | - Maria-Vittoria Mazzuoli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland
| | - Axel B Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland
| | - Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland
| | - Jessica Burnier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland
| | - Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland.
| |
Collapse
|
5
|
Zeng S, Ju Y, Alam MS, Lu Z, Hameed HMA, Li L, Tian X, Fang C, Fang X, Ding J, Wang X, Hu J, Wang S, Zhang T. A CRISPR-nonhomologous end-joining-based strategy for rapid and efficient gene disruption in Mycobacterium abscessus. MLIFE 2025; 4:169-180. [PMID: 40313975 PMCID: PMC12042118 DOI: 10.1002/mlf2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 05/03/2025]
Abstract
Mycobacterium abscessus, a fast-growing, non-tuberculous mycobacterium resistant to most antimicrobial drugs, causes a wide range of serious infections in humans, posing a significant public health challenge. The development of effective genetic manipulation tools for M. abscessus is still in progress, limiting both research and therapeutic advancements. However, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) systems have emerged as promising tools for generating highly specific double-strand breaks (DSBs) in its genome. One of the mechanisms that repair these DSBs is the error-prone nonhomologous end-joining (NHEJ) pathway, which facilitates targeted gene editing. In this study, we introduced a novel application of the CRISPR-NHEJ approach in M. abscessus. We demonstrated that NrgA from M. marinum plays a crucial role in repairing DSBs induced by the CRISPR-Cas system in M. abscessus. Contrary to previous findings, our study also revealed that inhibiting or overexpressing components of homologous recombination/single-strand annealing significantly reduces the efficiency of NHEJ repair in M. abscessus. This discovery challenges current perspectives and suggests that NHEJ repair in M. abscessus may involve components from both homologous recombination and single-strand annealing pathways, highlighting the complex interactions among the three DSB repair mechanisms in M. abscessus.
Collapse
Affiliation(s)
- Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziwen Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Lijie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Xinyue Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
- Guangzhou National LaboratoryGuangzhouChina
| | - Jinxing Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- China‐New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- School of Basic Medical Sciences, Division of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Chest HospitalGuangzhouChina
- Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
- Guangzhou National LaboratoryGuangzhouChina
| |
Collapse
|
6
|
Ellington AJ, Schult TJ, Reisch CR, Christner BC. The Genetic Determinants of Extreme UV Radiation and Desiccation Tolerance in a Bacterium Recovered from the Stratosphere. Microorganisms 2025; 13:756. [PMID: 40284593 PMCID: PMC12029717 DOI: 10.3390/microorganisms13040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants conveying high tolerance to desiccation and UVR. In this study, we examined Curtobacterium aetherium L6-1, an actinobacterium obtained from stratospheric aerosol sampling that displays high resistance to desiccation and UVR. We found that its phylogenetic relatives are resistant to desiccation, but only C. aetherium displayed a high tolerance to UVR. Comparative genome analysis and directed evolution experiments implicated genes encoding photolyase, DNA nucleases and helicases, and catalases as responsible for UVR resistance in C. aetherium. Differential gene expression analysis revealed the upregulation of DNA repair and stress response mechanisms when cells were exposed to UVR, while genes encoding sugar transporters, sugar metabolism enzymes, and antioxidants were induced upon desiccation. Based on changes in gene expression as a function of water content, C. aetherium can modulate its metabolism through transcriptional regulation at very low moisture levels (Xw < 0.25 g H2O per gram dry weight). Uncovering the genetic underpinnings of desiccation and UVR resistance in C. aetherium provides new insights into how bacterial DNA repair and antioxidant mechanisms function to exhibit traits at the extreme ends of phenotypic distributions.
Collapse
Affiliation(s)
- Adam J. Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Meso Scale Diagnostics, LLC, Rockville, MD 20850, USA
| | - Tyler J. Schult
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Genomatica, San Diego, CA 92121, USA
| | - Brent C. Christner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Tang H, Gao J, Wang H, Sun M, Zhang S, Song C, Li Q. Characterization of the genome editing with miniature DNA nucleases TnpB and IscB in Escherichia coli strains. Commun Biol 2025; 8:261. [PMID: 39972101 PMCID: PMC11840021 DOI: 10.1038/s42003-025-07521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
DNA endonucleases TnpB and IscB are emerging candidates for combating drug-resistant bacteria, particularly Escherichia coli, due to their specificity in targeting DNA and smaller size. However, the genome-editing of TnpB/IscB in E. coli remains unclear. This study characterized the genome editing of TnpB/IscB in different E. coli strains. First, the toxicity and cleavage results indicated TnpB was effective only in MG1655, whereas IscB and enIscB demonstrated functionality in ATCC9637/BL21(DE3). Subsequently, a genome-editing tool was established in MG1655 by using TnpB (as a thermophilic programmable endonuclease), achieving up to 100% editing efficiency, while IscB/enIscB achieved editing in ATCC9637/BL21(DE3). Additionally, the editing plasmids were successfully cured. Finally, the mechanism underlying the escape of E. coli during TnpB/IscB editing was elucidated. Overall, this study successfully applied TnpB/IscB/enIscB to genome editing in E. coli, which will expand the genetic manipulation toolbox in E. coli and facilitate the development of the antimicrobial drugs.
Collapse
Affiliation(s)
- Hongjie Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Jie Gao
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Hengyi Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Chuan Song
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| |
Collapse
|
8
|
Fernandes LGV, Nascimento ALTO, Nally JE. Induced protein expression in Leptospira spp. and its application to CRISPR/Cas9 mutant generation. Sci Rep 2025; 15:4334. [PMID: 39910196 PMCID: PMC11799391 DOI: 10.1038/s41598-025-88633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Expanding the genetic toolkit for Leptospira spp. is a crucial step toward advancing our understanding of the biology and virulence of these atypical bacteria. Pathogenic Leptospira are responsible for over 1 million human leptospirosis cases annually and significantly impact domestic animals. Bovine leptospirosis causes substantial financial losses due to abortion, stillbirths, and suboptimal reproductive performance. The advent of the CRISPR/Cas9 system has marked a turning point in genetic manipulation, with applications across multiple Leptospira species. However, incorporating controlled protein expression into existing genetic tools could further expand their utility. We developed and demonstrated the functionality of IPTG-inducible heterologous protein expression in Leptospira spp. This system was applied for regulated expression of dead Cas9 (dCas9) to generate knockdown mutants, and Cas9 to produce knockout mutants by inducing double-strand breaks (DSB) into desired targets. IPTG-induced dCas9 expression enabled validation of essential genes and non-coding RNAs. Additionally, IPTG-controlled Cas9 expression combined with a constitutive non-homologous end-joining (NHEJ) system allowed for successful recovery of knockout mutants, even in the absence of IPTG. These newly controlled protein expression systems will advance studies on the basic biology and virulence of Leptospira, as well as facilitate knockout mutant generation for improved veterinary vaccines.
Collapse
Affiliation(s)
- L G V Fernandes
- Infectious Bacterial Diseases Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.
| | - A L T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - J E Nally
- Infectious Bacterial Diseases Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
9
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
10
|
Peach LJ, Zhang H, Weaver BP, Boedicker JQ. Assessing spacer acquisition rates in E. coli type I-E CRISPR arrays. Front Microbiol 2025; 15:1498959. [PMID: 39902289 PMCID: PMC11788318 DOI: 10.3389/fmicb.2024.1498959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025] Open
Abstract
CRISPR/Cas is an adaptive defense mechanism protecting prokaryotes from viruses and other potentially harmful genetic elements. Through an adaptation process, short "spacer" sequences, captured from these elements and incorporated into a CRISPR array, provide target specificity for the immune response. CRISPR arrays and array expansion are also central to many emerging biotechnologies. The rates at which spacers integrate into native arrays within bacterial populations have not been quantified. Here, we measure naïve spacer acquisition rates in Escherichia coli Type I-E CRISPR, identify factors that affect these rates, and model this process fundamental to CRISPR/Cas defense. Prolonged Cas1-Cas2 expression produced fewer new spacers per cell on average than predicted by the model. Subsequent experiments revealed that this was due to a mean fitness reduction linked to array-expanded populations. In addition, the expression of heterologous non-homologous end-joining DNA-repair genes was found to augment spacer acquisition rates, translating to enhanced phage infection defense. Together, these results demonstrate the impact of intracellular factors that modulate spacer acquisition and identify an intrinsic fitness effect associated with array-expanded populations.
Collapse
Affiliation(s)
- Luke J. Peach
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Haoyun Zhang
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Brian P. Weaver
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - James Q. Boedicker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Yang Z, Li B, Bu R, Wang Z, Xin Z, Li Z, Zhang L, Wang W. A highly efficient method for genomic deletion across diverse lengths in thermophilic Parageobacillus thermoglucosidasius. Synth Syst Biotechnol 2024; 9:658-666. [PMID: 38817825 PMCID: PMC11137367 DOI: 10.1016/j.synbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool-through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy-we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Fernandes LGV, Hamond C, Tibbs-Cortes BW, Putz EJ, Olsen SC, Palmer MV, Nally JE. CRISPR-prime editing, a versatile genetic tool to create specific mutations with a single nucleotide resolution in Leptospira. mBio 2024; 15:e0151624. [PMID: 39136471 PMCID: PMC11389409 DOI: 10.1128/mbio.01516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 09/12/2024] Open
Abstract
Leptospirosis, caused by pathogenic bacteria from the genus Leptospira, is a global zoonosis responsible for more than one million human cases and 60,000 deaths annually. The disease also affects many domestic animal species. Historically, genetic manipulation of Leptospira has been difficult to perform, resulting in limited knowledge on pathogenic mechanisms of disease and the identification of virulence factors. The application of CRISPR/Cas9 and its variations have helped fill these gaps but the generation of knockout mutants remains challenging because double-strand breaks (DSBs) inflicted by Cas9 nuclease are lethal to Leptospira cells. The novel CRISPR prime editing (PE) strategy is the first precise genome-editing technology that allows deletions, insertions, and base substitutions without introducing DSBs. This revolutionary technique utilizes a nickase Cas9 that cleaves a single strand of DNA, coupled with an engineered reverse transcriptase and a modified single-guide RNA (termed prime editing guide RNA) containing an extended 3' end with the desired edits. We demonstrate the application of CRISPR-PE in both saprophytic and pathogenic Leptospira from multiple species and serovars by introducing deletions or insertions into target DNA with a remarkable precision of just one nucleotide. Additionally, we demonstrate the ability to genetically manipulate Leptospira borgpetersenii, a prevalent pathogenic species of humans, domestic cattle, and wildlife animals. Rapid plasmid loss by mutated strains in liquid culture allows for the generation of knockout strains without selective markers, which can be readily used to elucidate virulence factors and develop optimized bacterin and/or live vaccines against leptospirosis.IMPORTANCELeptospirosis is a geographically widespread bacterial zoonosis. Genetic manipulation of pathogenic Leptospira spp. has been laborious and difficult to perform, limiting our ability to understand how leptospires cause disease. The application of the CRISPR/Cas9 system to Leptospira enhanced our ability to generate knockdown and knockout mutants; however, the latter remains challenging. Here, we demonstrate the application of the CRISPR prime editing technique in Leptospira, allowing the generation of knockout mutants in several pathogenic species, with mutations comprising just a single nucleotide resolution. Notably, we generated a mutant in the Leptospira borgpetersenii background, a prevalent pathogenic species of humans and cattle. Our application of this method opens new avenues for studying pathogenic mechanisms of Leptospira and the identification of virulence factors across multiple species. These methods can also be used to facilitate the generation of marker-less knockout strains for updated and improved bacterin and/or live vaccines.
Collapse
Affiliation(s)
| | - Camila Hamond
- National Veterinary Services Laboratories, USDA Animal and Plant Health Inspection Service, National Center for Animal Health, Ames, Iowa, USA
| | - Bienvenido W Tibbs-Cortes
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Ellie J Putz
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Steven C Olsen
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Mitchell V Palmer
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Jarlath E Nally
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
13
|
Lee YU, Fox BW, Guo R, Curtis BJ, Yu J, Kim S, Nanda S, Baumann V, Yilmaz LS, Haynes CM, Schroeder FC, Walhout AJM. Host-microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency. Nat Metab 2024; 6:1584-1600. [PMID: 39117959 PMCID: PMC11670331 DOI: 10.1038/s42255-024-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host-bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed.
Collapse
Affiliation(s)
- Yong-Uk Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Rui Guo
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Science, Hangzhou, P. R. China
| | - Brian J Curtis
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Baumann
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Sun M, Gao J, Tang H, Wu T, Ma Q, Zhang S, Zuo Y, Li Q. Increasing CRISPR/Cas9-mediated gene editing efficiency in T7 phage by reducing the escape rate based on insight into the survival mechanism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:937-944. [PMID: 38761011 PMCID: PMC11294054 DOI: 10.3724/abbs.2024030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/18/2024] [Indexed: 05/20/2024] Open
Abstract
Bacteriophages have been used across various fields, and the utilization of CRISPR/Cas-based genome editing technology can accelerate the research and applications of bacteriophages. However, some bacteriophages can escape from the cleavage of Cas protein, such as Cas9, and decrease the efficiency of genome editing. This study focuses on the bacteriophage T7, which is widely utilized but whose mechanism of evading the cleavage of CRISPR/Cas9 has not been elucidated. First, we test the escape rates of T7 phage at different cleavage sites, ranging from 10 -2 to 10 -5. The sequencing results show that DNA point mutations and microhomology-mediated end joining (MMEJ) at the target sites are the main causes. Next, we indicate the existence of the hotspot DNA region of MMEJ and successfully reduce MMEJ events by designing targeted sites that bypass the hotspot DNA region. Moreover, we also knock out the ATP-dependent DNA ligase 1. 3 gene, which may be involved in the MMEJ event, and the frequency of MMEJ at 4. 3 is reduced from 83% to 18%. Finally, the genome editing efficiency in T7 Δ 1. 3 increases from 20% to 100%. This study reveals the mechanism of T7 phage evasion from the cleavage of CRISPR/Cas9 and demonstrates that the special design of editing sites or the deletion of key gene 1. 3 can reduce MMEJ events and enhance gene editing efficiency. These findings will contribute to advancing CRISPR/Cas-based tools for efficient genome editing in phages and provide a theoretical foundation for the broader application of phages.
Collapse
Affiliation(s)
- Mingjun Sun
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Jie Gao
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Hongjie Tang
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Ting Wu
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Qinqin Ma
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Suyi Zhang
- Luzhou Laojiao CoLtdLuzhou646000China
- National Engineering Research Center of Solid-State BrewingLuzhou646000China
| | - Yong Zuo
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| | - Qi Li
- College of Life SciencesSichuan Normal UniversityChengdu610101China
| |
Collapse
|
15
|
Ishikawa M, Hori K. The elimination of two restriction enzyme genes allows for electroporation-based transformation and CRISPR-Cas9-based base editing in the non-competent Gram-negative bacterium Acinetobacter sp. Tol 5. Appl Environ Microbiol 2024; 90:e0040024. [PMID: 38722179 PMCID: PMC11218613 DOI: 10.1128/aem.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 06/19/2024] Open
Abstract
Environmental isolates are promising candidates for new chassis of synthetic biology because of their inherent capabilities, which include efficiently converting a wide range of substrates into valuable products and resilience to environmental stresses; however, many remain genetically intractable and unamenable to established genetic tools tailored for model bacteria. Acinetobacter sp. Tol 5, an environmentally isolated Gram-negative bacterium, possesses intriguing properties for use in synthetic biology applications. Despite the previous development of genetic tools for the engineering of strain Tol 5, its genetic manipulation has been hindered by low transformation efficiency via electroporation, rendering the process laborious and time-consuming. This study demonstrated the genetic refinement of the Tol 5 strain, achieving efficient transformation via electroporation. We deleted two genes encoding type I and type III restriction enzymes. The resulting mutant strain not only exhibited marked efficiency of electrotransformation but also proved receptive to both in vitro and in vivo DNA assembly technologies, thereby facilitating the construction of recombinant DNA without reliance on intermediate Escherichia coli constructs. In addition, we successfully adapted a CRISPR-Cas9-based base-editing platform developed for other Acinetobacter species. Our findings provide genetic modification strategies that allow for the domestication of environmentally isolated bacteria, streamlining their utilization in synthetic biology applications.IMPORTANCERecent synthetic biology has sought diverse bacterial chassis from environmental sources to circumvent the limitations of laboratory Escherichia coli strains for industrial and environmental applications. One of the critical barriers in cell engineering of bacterial chassis is their inherent resistance to recombinant DNA, propagated either in vitro or within E. coli cells. Environmental bacteria have evolved defense mechanisms against foreign DNA as a response to the constant threat of phage infection. The ubiquity of phages in natural settings accounts for the genetic intractability of environmental isolates. The significance of our research is in demonstrating genetic modification strategies for the cell engineering of such genetically intractable bacteria. This research marks a pivotal step in the domestication of environmentally isolated bacteria, promising candidates for emerging synthetic biology chassis. Our work thus significantly contributes to advancing their applications across industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, Japan
| |
Collapse
|
16
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
17
|
Pan J, Singh A, Hanning K, Hicks J, Williamson A. A role for the ATP-dependent DNA ligase lig E of Neisseria gonorrhoeae in biofilm formation. BMC Microbiol 2024; 24:29. [PMID: 38245708 PMCID: PMC10799422 DOI: 10.1186/s12866-024-03193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. RESULTS This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. CONCLUSIONS These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.
Collapse
Affiliation(s)
- Jolyn Pan
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Avi Singh
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- School of Health, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
18
|
Lammens EM, Volke DC, Schroven K, Voet M, Kerremans A, Lavigne R, Hendrix H. A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for Pseudomonas with efficient vector curing. Microbiol Spectr 2023; 11:e0270723. [PMID: 37975669 PMCID: PMC10715078 DOI: 10.1128/spectrum.02707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE The CRISPR-Cas3 editing system as presented here facilitates the creation of genomic alterations in Pseudomonas putida and Pseudomonas aeruginosa in a straightforward manner. By providing the Cas3 system as a vector set with Golden Gate compatibility and different antibiotic markers, as well as by employing the established Standard European Vector Architecture (SEVA) vector set to provide the homology repair template, this system is flexible and can readily be ported to a multitude of Gram-negative hosts. Besides genome editing, the Cas3 system can also be used as an effective and universal tool for vector curing. This is achieved by introducing a spacer that targets the origin-of-transfer, present on the majority of established (SEVA) vectors. Based on this, the Cas3 system efficiently removes up to three vectors in only a few days. As such, this curing approach may also benefit other genomic engineering methods or remove naturally occurring plasmids from bacteria.
Collapse
Affiliation(s)
| | - Daniel Christophe Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kaat Schroven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Alison Kerremans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Liu C, Yue Y, Xue Y, Zhou C, Ma Y. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion. Microb Cell Fact 2023; 22:211. [PMID: 37838676 PMCID: PMC10576340 DOI: 10.1186/s12934-023-02214-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. RESULTS Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. CONCLUSIONS This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.
Collapse
Affiliation(s)
- Chunyan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
- Beijing Key Laboratory for Utilization of Biomass Wastes, Beijing, 100023, China.
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Schwarz MGA, Corrêa PR, Mendonça-Lima L. Transcriptional Profiling of Homologous Recombination Pathway Genes in Mycobacterium bovis BCG Moreau. Microorganisms 2023; 11:2534. [PMID: 37894192 PMCID: PMC10609372 DOI: 10.3390/microorganisms11102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (P.R.C.); (L.M.-L.)
| | | | | |
Collapse
|
21
|
Khan H, Ochi T. Plant PAXX has an XLF-like function and stimulates DNA end joining by the Ku-DNA ligase IV/XRCC4 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:58-68. [PMID: 37340932 DOI: 10.1111/tpj.16359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.
Collapse
Affiliation(s)
- Hira Khan
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Takashi Ochi
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, Fang L. Efficient Knocking Out of the Organophosphorus Insecticides Degradation Gene opdB in Cupriavidus nantongensis X1 T via CRISPR/ Cas9 with Red System. Int J Mol Sci 2023; 24:ijms24066003. [PMID: 36983076 PMCID: PMC10056268 DOI: 10.3390/ijms24066003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cupriavidus nantongensis X1T is a type strain of the genus Cupriavidus, that can degrade eight kinds of organophosphorus insecticides (OPs). Conventional genetic manipulations in Cupriavidus species are time-consuming, difficult, and hard to control. The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) system has emerged as a powerful tool for genome editing applied in prokaryotes and eukaryotes due to its simplicity, efficiency, and accuracy. Here, we combined CRISPR/Cas9 with the Red system to perform seamless genetic manipulation in the X1T strain. Two plasmids, pACasN and pDCRH were constructed. The pACasN plasmid contained Cas9 nuclease and Red recombinase, and the pDCRH plasmid contained the dual single-guide RNA (sgRNA) of organophosphorus hydrolase (OpdB) in the X1T strain. For gene editing, two plasmids were transferred to the X1T strain and a mutant strain in which genetic recombination had taken place, resulting in the targeted deletion of opdB. The incidence of homologous recombination was over 30%. Biodegradation experiments suggested that the opdB gene was responsible for the catabolism of organophosphorus insecticides. This study was the first to use the CRISPR/Cas9 system for gene targeting in the genus Cupriavidus, and it furthered our understanding of the process of degradation of organophosphorus insecticides in the X1T strain.
Collapse
Affiliation(s)
- Yufei Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuehan Geng
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengyang Li
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Taozhong Shi
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xin Ma
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| | - Liancheng Fang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Li Q, Sun M, Lv L, Zuo Y, Zhang S, Zhang Y, Yang S. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synth Biol 2023; 12:672-680. [PMID: 36867054 DOI: 10.1021/acssynbio.2c00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Due to the high specificity in targeting DNA and highly convenient programmability, CRISPR-Cas-based antimicrobials applied for eliminating specific strains such as antibiotic-resistant bacteria in the microbiome were gradually developed. However, the generation of escapers makes the elimination efficiency far lower than the acceptable rate (10-8) recommended by the National Institutes of Health. Here, a systematic study was carried out providing insight into the escaping mechanisms in Escherichia coli, and strategies for reducing the escapers were devised accordingly. We first showed an escape rate of 10-5-10-3 in E. coli MG1655 under the editing of pEcCas/pEcgRNA established previously. Detailed analysis of the escapers obtained at ligA site in E. coli MG1655 uncovered that the disruption of cas9 was the main cause of the generation of survivors, notably the frequent insertion of IS5. Hence, the sgRNA was next designed to target the "perpetrator" IS5, and subsequently the killing efficiency was improved 4-fold. Additionally, the escape rate in IS-free E. coli MDS42 was also tested at the ligA site, ∼10-fold decrease compared with MG1655, but the disruption of cas9 was still observed in all survivors manifested in the form of frameshifts or point mutations. Thus, we optimized the tool itself by increasing the copy number of cas9 to retain some cas9 that still has the correct DNA sequence. Fortunately, the escape rates dropped below 10-8 at 9 of the 16 tested genes. Furthermore, the λ-Red recombination system was added to generate the pEcCas-2.0, and a 100% gene deletion efficiency was achieved at genes cadA, maeB, and gntT in MG1655, whereas those genes were edited with low efficiency previously. Last, the application of pEcCas-2.0 was then expanded to the E. coli B strain BL21(DE3) and W strain ATCC9637. This study reveals the mechanism of E. coli surviving Cas9-mediated death, and a highly efficient editing tool is established based on the mechanism, which will accelerate the further application of CRISPR-Cas.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lu Lv
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan China
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| |
Collapse
|
24
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
26
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
27
|
Rzoska-Smith E, Stelzer R, Monterio M, Cary SC, Williamson A. DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol 2023; 14:1156817. [PMID: 37125210 PMCID: PMC10140301 DOI: 10.3389/fmicb.2023.1156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiota inhabiting the Dry Valleys of Antarctica are subjected to multiple stressors that can damage deoxyribonucleic acid (DNA) such as desiccation, high ultraviolet light (UV) and multiple freeze-thaw cycles. To identify novel or highly-divergent DNA-processing enzymes that may enable effective DNA repair, we have sequenced metagenomes from 30 sample-sites which are part of the most extensive Antarctic biodiversity survey undertaken to date. We then used these to construct wide-ranging sequence similarity networks from protein-coding sequences and identified candidate genes involved in specialized repair processes including unique nucleases as well as a diverse range of adenosine triphosphate (ATP) -dependent DNA ligases implicated in stationary-phase DNA repair processes. In one of the first direct investigations of enzyme function from these unique samples, we have heterologously expressed and assayed a number of these enzymes, providing insight into the mechanisms that may enable resident microbes to survive these threats to their genomic integrity.
Collapse
Affiliation(s)
- Elizabeth Rzoska-Smith
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Ronja Stelzer
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Maria Monterio
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Stephen C. Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
- *Correspondence: Adele Williamson,
| |
Collapse
|
28
|
Takacs CN, Nakajima Y, Haber JE, Jacobs-Wagner C. Cas9-mediated endogenous plasmid loss in Borrelia burgdorferi. PLoS One 2022; 17:e0278151. [PMID: 36441794 PMCID: PMC9704580 DOI: 10.1371/journal.pone.0278151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The spirochete Borrelia burgdorferi, which causes Lyme disease, has the most segmented genome among known bacteria. In addition to a linear chromosome, the B. burgdorferi genome contains over 20 linear and circular endogenous plasmids. While many of these plasmids are dispensable under in vitro culture conditions, they are maintained during the natural life cycle of the pathogen. Plasmid-encoded functions are required for colonization of the tick vector, transmission to the vertebrate host, and evasion of host immune defenses. Different Borrelia strains can vary substantially in the type of plasmids they carry. The gene composition within the same type of plasmid can also differ from strain to strain, impeding the inference of plasmid function from one strain to another. To facilitate the investigation of the role of specific B. burgdorferi plasmids, we developed a Cas9-based approach that targets a plasmid for removal. As a proof-of-principle, we showed that targeting wild-type Cas9 to several loci on the endogenous plasmids lp25 or lp28-1 of the B. burgdorferi type strain B31 results in sgRNA-specific plasmid loss even when homologous sequences (i.e., potential sequence donors for DNA recombination) are present nearby. Cas9 nickase versions, Cas9D10A or Cas9H840A, also cause plasmid loss, though not as robustly. Thus, sgRNA-directed Cas9 DNA cleavage provides a highly efficient way to eliminate B. burgdorferi endogenous plasmids that are non-essential in axenic culture.
Collapse
Affiliation(s)
- Constantin N. Takacs
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| | - Yuko Nakajima
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
29
|
Devi R, Chauhan S, Dhillon TS. Genome editing for vegetable crop improvement: Challenges and future prospects. Front Genet 2022; 13:1037091. [PMID: 36482900 PMCID: PMC9723405 DOI: 10.3389/fgene.2022.1037091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Collapse
Affiliation(s)
- Ruma Devi
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
30
|
Gozzi K, Tran NT, Modell JW, Le TBK, Laub MT. Prophage-like gene transfer agents promote Caulobacter crescentus survival and DNA repair during stationary phase. PLoS Biol 2022; 20:e3001790. [PMID: 36327213 PMCID: PMC9632790 DOI: 10.1371/journal.pbio.3001790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
Gene transfer agents (GTAs) are prophage-like entities found in many bacterial genomes that cannot propagate themselves and instead package approximately 5 to 15 kbp fragments of the host genome that can then be transferred to related recipient cells. Although suggested to facilitate horizontal gene transfer (HGT) in the wild, no clear physiological role for GTAs has been elucidated. Here, we demonstrate that the α-proteobacterium Caulobacter crescentus produces bona fide GTAs. The production of Caulobacter GTAs is tightly regulated by a newly identified transcription factor, RogA, that represses gafYZ, the direct activators of GTA synthesis. Cells lacking rogA or expressing gafYZ produce GTAs harboring approximately 8.3 kbp fragment of the genome that can, after cell lysis, be transferred into recipient cells. Notably, we find that GTAs promote the survival of Caulobacter in stationary phase and following DNA damage by providing recipient cells a template for homologous recombination-based repair. This function may be broadly conserved in other GTA-producing organisms and explain the prevalence of this unusual HGT mechanism.
Collapse
Affiliation(s)
- Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ngat T. Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Joshua W. Modell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tung B. K. Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Sowa DJ, Warner MM, Tetenych A, Koechlin L, Balari P, Rascon Perez JP, Caba C, Andres SN. The Mycobacterium tuberculosis Ku C-terminus is a multi-purpose arm for binding DNA and LigD and stimulating ligation. Nucleic Acids Res 2022; 50:11040-11057. [PMID: 36250639 PMCID: PMC9638933 DOI: 10.1093/nar/gkac906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial non-homologous end joining requires the ligase, LigD and Ku. Ku finds the break site, recruits LigD, and then assists LigD to seal the phosphodiester backbone. Bacterial Ku contains a core domain conserved with eukaryotes but has a unique C-terminus that can be divided into a minimal C-terminal region that is conserved and an extended C-terminal region that varies in sequence and length between species. Here, we examine the role of Mycobacterium tuberculosis Ku C-terminal variants, where we removed either the extended or entire C-terminus to investigate the effects on Ku–DNA binding, rates of Ku-stimulated ligation, and binding affinity of a direct Ku–LigD interaction. We find that the extended C-terminus limits DNA binding and identify key amino acids that contribute to this effect through alanine-scanning mutagenesis. The minimal C-terminus is sufficient to stimulate ligation of double-stranded DNA, but the Ku core domain also contributes to stimulating ligation. We further show that wildtype Ku and the Ku core domain alone directly bind both ligase and polymerase domains of LigD. Our results suggest that Ku-stimulated ligation involves direct interactions between the Ku core domain and the LigD ligase domain, in addition to the extended Ku C-terminus and the LigD polymerase domain.
Collapse
Affiliation(s)
- Dana J Sowa
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Monica M Warner
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Andriana Tetenych
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Lucas Koechlin
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Pardis Balari
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Jose Pablo Rascon Perez
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Cody Caba
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sara N Andres
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
32
|
Wang BB, Xu JZ, Zhang F, Liu S, Liu J, Zhang WG. Review of DNA repair enzymes in bacteria: With a major focus on AddAB and RecBCD. DNA Repair (Amst) 2022; 118:103389. [PMID: 36030574 DOI: 10.1016/j.dnarep.2022.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
DNA recombination repair systems are essential for organisms to maintain genomic stability. In recent years, we have improved our understanding of the mechanisms of RecBCD/AddAB family-mediated DNA double-strand break repair. In E. coli, it is RecBCD that plays a central role, and in Firmicute Bacillus subtilis it is the AddAB complex that functions. However, there are open questions about the mechanism of DNA repair in bacteria. For example, how bacteria containing crossover hotspot instigator (Chi) sites regulate the activity of proteins. In addition, we still do not know the exact process by which the RecB nuclease or AddA nuclease structural domains load RecA onto DNA. We also know little about the mechanism of DNA repair in the industrially important production bacterium Corynebacterium glutamicum (C. glutamicum). Therefore, exploring DNA repair mechanisms in bacteria may not only deepen our understanding of the DNA repair process in this species but also guide us in the targeted treatment of diseases associated with recombination defects, such as cancer. In this paper, we firstly review the classical proteins RecBCD and AddAB involved in DNA recombination repair, secondly focus on the novel helical nuclease AdnAB found in the genus Mycobacterium.
Collapse
Affiliation(s)
- Bing-Bing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China.
| | - Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China
| | - Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
33
|
Shim H. Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials. Evol Bioinform Online 2022; 18:11769343221103887. [PMID: 35692726 PMCID: PMC9185011 DOI: 10.1177/11769343221103887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022] Open
Abstract
CRISPR-Cas systems are an adaptive immunity that protects prokaryotes against foreign genetic elements. Genetic templates acquired during past infection events enable DNA-interacting enzymes to recognize foreign DNA for destruction. Due to the programmability and specificity of these genetic templates, CRISPR-Cas systems are potential alternative antibiotics that can be engineered to self-target antimicrobial resistance genes on the chromosome or plasmid. However, several fundamental questions remain to repurpose these tools against drug-resistant bacteria. For endogenous CRISPR-Cas self-targeting, antimicrobial resistance genes and functional CRISPR-Cas systems have to co-occur in the target cell. Furthermore, these tools have to outplay DNA repair pathways that respond to the nuclease activities of Cas proteins, even for exogenous CRISPR-Cas delivery. Here, we conduct a comprehensive survey of CRISPR-Cas genomes. First, we address the co-occurrence of CRISPR-Cas systems and antimicrobial resistance genes in the CRISPR-Cas genomes. We show that the average number of these genes varies greatly by the CRISPR-Cas type, and some CRISPR-Cas types (IE and IIIA) have over 20 genes per genome. Next, we investigate the DNA repair pathways of these CRISPR-Cas genomes, revealing that the diversity and frequency of these pathways differ by the CRISPR-Cas type. The interplay between CRISPR-Cas systems and DNA repair pathways is essential for the acquisition of new spacers in CRISPR arrays. We conduct simulation studies to demonstrate that the efficiency of these DNA repair pathways may be inferred from the time-series patterns in the RNA structure of CRISPR repeats. This bioinformatic survey of CRISPR-Cas genomes elucidates the necessity to consider multifaceted interactions between different genes and systems, to design effective CRISPR-based antimicrobials that can specifically target drug-resistant bacteria in natural microbial communities.
Collapse
Affiliation(s)
- Hyunjin Shim
- Center for Biosystems and Biotech Data Science,
Ghent University Global Campus, Incheon, South Korea
| |
Collapse
|
34
|
Prostova M, Shilkin E, Kulikova AA, Makarova A, Ryazansky S, Kulbachinskiy A. Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases. Nucleic Acids Res 2022; 50:6398-6413. [PMID: 35657103 PMCID: PMC9226535 DOI: 10.1093/nar/gkac461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity. The noncanonical PolXs contain substitutions of the key catalytic residues and deletions in their polymerase and dNTP binding sites in the palm and fingers domains, but contain functional nuclease domains, similar to canonical PolXs. We demonstrate that representative noncanonical PolXs from the Deinococcus genus are indeed inactive as DNA polymerases but are highly efficient as 3'-5' exonucleases. We show that both canonical and noncanonical PolXs are often encoded together with the components of the non-homologous end joining pathway and may therefore participate in double-strand break repair, suggesting an evolutionary conservation of this PolX function. This is a remarkable example of polymerases that have lost their main polymerase activity, but retain accessory functions in DNA processing and repair.
Collapse
Affiliation(s)
| | - Evgeniy Shilkin
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexandra A Kulikova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alena Makarova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 4991960015; Fax: +7 4991960015;
| |
Collapse
|
35
|
Fernandes LGV, Nascimento ALTO. A Novel Breakthrough in Leptospira spp. Mutagenesis: Knockout by Combination of CRISPR/Cas9 and Non-homologous End-Joining Systems. Front Microbiol 2022; 13:915382. [PMID: 35722349 PMCID: PMC9199861 DOI: 10.3389/fmicb.2022.915382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Leptospirosis is of general concern as it is a widespread zoonotic disease caused by pathogenic species of the genus Leptospira, although this genus also includes free-living saprophytic strains. Understanding the pathophysiology of leptospirosis is still in its infancy even after several years of its discovery, because of the lack of effective genetic tools. The use of the Streptococcus pyogenes CRISPR/Cas9 system and its variations have pushed the leptospirosis research forward, relying on the simplicity of the technique. However, the lethality of double-strand breaks (DSB) induced by the RNA-guided Cas9 enzyme has limited the generation of knockout mutants. In this work, we demonstrated sustained cell viability after concurrent expression of CRISPR/Cas9 and Mycobacterium tuberculosis non-homologous end-joining components in a single-plasmid strategy in L. biflexa. Scarless mutations resulting in null phenotypes could be observed in most of the colonies recovered, with deletions in the junctional site ranging from 3 to almost 400 bp. After plasmid curing by in vitro passages in a medium without antibiotic, selected marker-free and targeted mutants could be recovered. Knockout mutants for LipL32 protein in the pathogen L. interrogans could be obtained using M. smegmatis NHEJ machinery, with deletions ranging from 10 to 345 bp. In conclusion, we now have a powerful genetic tool for generating scarless and markerless knockout mutants for both saprophytic and pathogenic strains of Leptospira.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Luis G. V. Fernandes,
| | - Ana L. T. O. Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, São Paulo, Brazil
| |
Collapse
|
36
|
Stukenberg D, Hoff J, Faber A, Becker A. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Commun Biol 2022; 5:265. [PMID: 35338236 PMCID: PMC8956659 DOI: 10.1038/s42003-022-03150-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The fast-growing bacterium Vibrio natriegens has recently gained increasing attention as a novel chassis organism for fundamental research and biotechnology. To fully harness the potential of this bacterium, highly efficient genome editing methods are indispensable to create strains tailored for specific applications. V. natriegens is able to take up free DNA and incorporate it into its genome by homologous recombination. This highly efficient natural transformation is able to mediate uptake of multiple DNA fragments, thereby allowing for multiple simultaneous edits. Here, we describe NT-CRISPR, a combination of natural transformation with CRISPR-Cas9 counterselection. In two temporally distinct steps, we first performed a genome edit by natural transformation and second, induced CRISPR-Cas9 targeting the wild type sequence, and thus leading to death of non-edited cells. Through cell killing with efficiencies of up to 99.999%, integration of antibiotic resistance markers became dispensable, enabling scarless and markerless edits with single-base precision. We used NT-CRISPR for deletions, integrations and single-base modifications with editing efficiencies of up to 100%. Further, we confirmed its applicability for simultaneous deletion of multiple chromosomal regions. Lastly, we showed that the near PAM-less Cas9 variant SpG Cas9 is compatible with NT-CRISPR and thereby broadens the target spectrum. Stukenberg et al. present NT-CRISPR, a method for performing genome editing in the marine bacterium Vibrio natriegens without using antibiotic resistance or other types of markers. This method combines V. natriegens’ capability for highly efficient natural transformation with an extremely efficient CRISPR-Cas9-based counterselection step for editing efficiencies of up to 100% and highly efficient simultaneous deletion of multiple sequences.
Collapse
Affiliation(s)
- Daniel Stukenberg
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Josef Hoff
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Faber
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany. .,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
37
|
Bendia AG, Callefo F, Araújo MN, Sanchez E, Teixeira VC, Vasconcelos A, Battilani G, Pellizari VH, Rodrigues F, Galante D. Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars. ASTROBIOLOGY 2022; 22:293-312. [PMID: 34694925 DOI: 10.1089/ast.2021.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.
Collapse
Affiliation(s)
- Amanda G Bendia
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maicon N Araújo
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Evelyn Sanchez
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandra Vasconcelos
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Gislaine Battilani
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Vivian H Pellizari
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
38
|
Xu T, Tao X, Kempher ML, Zhou J. Cas9 Nickase-Based Genome Editing in Clostridium cellulolyticum. Methods Mol Biol 2022; 2479:227-243. [PMID: 35583742 DOI: 10.1007/978-1-0716-2233-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clostridium cellulolyticum is a model mesophilic, cellulolytic bacterium, with the potential to produce biofuels from lignocellulose. However, the natural cellulose utilization efficiency is quite low and, therefore, metabolically engineered strains with increased efficiency can decrease both the overall cost and time required for biofuel production. Traditional genetic tools are inefficient, expensive, and time-consuming, but recent developments in the use of CRISPR-Cas genetic editing systems have greatly expanded our ability to reprogram cells. Here we describe an established protocol enabling one-step versatile genome editing in C. cellulolyticum. It integrates Cas9 nickase (Cas9n) which introduces a single nick that triggers repair via homologous recombination (SNHR) to edit genomic loci with high efficiency and accuracy. This one-step editing is achieved by transforming an all-in-one vector to coexpress Cas9n and a single guide RNA (gRNA) and carries a user-defined homologous donor template to promote SNHR at a desired target site. Additionally, this system has high specificity and allows for various types of genomic editing, including markerless insertions, deletions, substitutions, and even multiplex editing.
Collapse
Affiliation(s)
- Tao Xu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Megan L Kempher
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
39
|
Amare B, Mo A, Khan N, Sowa DJ, Warner MM, Tetenych A, Andres SN. LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining. Front Mol Biosci 2021; 8:787709. [PMID: 34901162 PMCID: PMC8656161 DOI: 10.3389/fmolb.2021.787709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
DNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ requires proteins to anchor the DNA double-strand break, recruit additional repair proteins, and then depending on the damage at the DNA ends, fill in nucleotide gaps or add or remove phosphate groups before final ligation. In eukaryotes, NHEJ uses a multitude of proteins to carry out processing and ligation of the DNA double-strand break. Bacterial NHEJ, though, accomplishes repair primarily with only two proteins-Ku and LigD. While Ku binds the initial break and recruits LigD, it is LigD that is the primary DNA end processing machinery. Up to three enzymatic domains reside within LigD, dependent on the bacterial species. These domains are a polymerase domain, to fill in nucleotide gaps with a preference for ribonucleotide addition; a phosphoesterase domain, to generate a 3'-hydroxyl DNA end; and the ligase domain, to seal the phosphodiester backbone. To date, there are no experimental structures of wild-type LigD, but there are x-ray and nuclear magnetic resonance structures of the individual enzymatic domains from different bacteria and archaea, along with structural predictions of wild-type LigD via AlphaFold. In this review, we will examine the structures of the independent domains of LigD from different bacterial species and the contributions these structures have made to understanding the NHEJ repair mechanism. We will then examine how the experimental structures of the individual LigD enzymatic domains combine with structural predictions of LigD from different bacterial species and postulate how LigD coordinates multiple enzymatic activities to carry out DNA double-strand break repair in bacteria.
Collapse
Affiliation(s)
- Benhur Amare
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anthea Mo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Noorisah Khan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dana J. Sowa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Monica M. Warner
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Andriana Tetenych
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sara N. Andres
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Yang FY, Wei N, Zhang ZH, Wang M, Liu YC, Zhang LF, Gu F. Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnol Lett 2021; 43:2273-2281. [PMID: 34669078 DOI: 10.1007/s10529-021-03195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Corynebacterium glutamicum (C. glutamicum) has been harnessed for multi-million-ton scale production of glutamate and lysine. To further increase its amino acid production for fermentation industry, there is an acute need to develop next-generation genome manipulation tool for its metabolic engineering. All reported methods for genome editing triggered with CRISPR-Cas are based on the homologous recombination. While, it requires the generation of DNA repair template, which is a bottle-neck for its extensive application. RESULTS In this study, we developed a method for gene knockout in C. glutamicum via CRISPR-Cpf1-coupled non-homologous end-joining (CC-NHEJ). Specifically, CRISPR-Cpf1 introduced double-strand breaks in the genome of C. glutamicum, which was further repaired by ectopically expressed two NHEJ key proteins (Mycobacterium tuberculosis Ku and ligase D). We provide the proof of concept, for CC-NHEJ, by the successful knockout of the crtYf/e gene in C. glutamicum with the efficiency of 22.00 ± 5.56%, or something like that. CONCLUSION The present study reported a novel genome manipulation method for C. glutamicum.
Collapse
Affiliation(s)
- Fa-Yu Yang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Nan Wei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhi-Hao Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying-Chun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Li-Fang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
41
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
42
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
RecA is required for the assembly of RecN into DNA repair complexes on the nucleoid. J Bacteriol 2021; 203:e0024021. [PMID: 34339298 DOI: 10.1128/jb.00240-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination requires the coordinated effort of several proteins to complete break resection, homologous pairing and resolution of DNA crossover structures. RecN is a conserved bacterial protein important of double strand break repair and a member of the Structural Maintenance of Chromosomes (SMC) protein family. Current models in Bacillus subtilis propose that RecN responds to double stranded breaks prior to RecA and end processing suggesting that RecN is among the very first proteins responsible for break detection. Here, we investigate the contribution of RecA and end processing by AddAB to RecN recruitment into repair foci in vivo. Using this approach, we found that recA is required for RecN-GFP focus formation on the nucleoid during normal growth and in response to DNA damage. In the absence of recA function, RecN foci form in a low percentage of cells, RecN localizes away from the nucleoid, and RecN fails to assemble in response to DNA damage. In contrast, we show that the response of RecA-GFP foci to DNA damage is unchanged in the presence or absence of recN. In further support of RecA activity preceding RecN we show that ablation of the double-strand break end processing enzyme addAB results in a failure of RecN to form foci in response to DNA damage. With these results, we conclude that RecA and end processing function prior to RecN establishing a critical step for the recruitment and participation of RecN during DNA break repair in Bacillus subtilis. IMPORTANCE Homologous recombination is important for the repair of DNA double-strand breaks. RecN is a highly conserved protein that has been shown to be important for sister chromatid cohesion and for survival to break-inducing clastogens. Here, we show that the assembly of RecN into repair foci on the bacterial nucleoid requires the end processing enzyme AddAB and the recombinase RecA. In the absence of either recA or end processing RecN-GFP foci are no longer DNA damage inducible and foci form in a subset of cells as large complexes in regions away from the nucleoid. Our results establish the stepwise order of action, where double-strand break end processing and RecA association precede the participation of RecN during break repair in Bacillus subtilis.
Collapse
|
44
|
Wu X, Zhu J, Tao P, Rao VB. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair. mBio 2021; 12:e0136121. [PMID: 34154416 PMCID: PMC8262927 DOI: 10.1128/mbio.01361-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria and bacteriophages (phages) have evolved potent defense and counterdefense mechanisms that allowed their survival and greatest abundance on Earth. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is a bacterial defense system that inactivates the invading phage genome by introducing double-strand breaks at targeted sequences. While the mechanisms of CRISPR defense have been extensively investigated, the counterdefense mechanisms employed by phages are poorly understood. Here, we report a novel counterdefense mechanism by which phage T4 restores the genomes broken by CRISPR cleavages. Catalyzed by the phage-encoded recombinase UvsX, this mechanism pairs very short stretches of sequence identity (minihomology sites), as few as 3 or 4 nucleotides in the flanking regions of the cleaved site, allowing replication, repair, and stitching of genomic fragments. Consequently, a series of deletions are created at the targeted site, making the progeny genomes completely resistant to CRISPR attack. Our results demonstrate that this is a general mechanism operating against both type II (Cas9) and type V (Cas12a) CRISPR-Cas systems. These studies uncovered a new type of counterdefense mechanism evolved by T4 phage where subtle functional tuning of preexisting DNA metabolism leads to profound impact on phage survival. IMPORTANCE Bacteriophages (phages) are viruses that infect bacteria and use them as replication factories to assemble progeny phages. Bacteria have evolved powerful defense mechanisms to destroy the invading phages by severing their genomes soon after entry into cells. We discovered a counterdefense mechanism evolved by phage T4 to stitch back the broken genomes and restore viral infection. In this process, a small amount of genetic material is deleted or another mutation is introduced, making the phage resistant to future bacterial attack. The mutant virus might also gain survival advantages against other restriction conditions or DNA damaging events. Thus, bacterial attack not only triggers counterdefenses but also provides opportunities to generate more fit phages. Such defense and counterdefense mechanisms over the millennia led to the extraordinary diversity and the greatest abundance of bacteriophages on Earth. Understanding these mechanisms will open new avenues for engineering recombinant phages for biomedical applications.
Collapse
Affiliation(s)
- Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
45
|
Li YP, Bu QT, Li JF, Xie H, Su YT, Du YL, Li YQ. Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability. BIORESOURCE TECHNOLOGY 2021; 330:124982. [PMID: 33743279 DOI: 10.1016/j.biortech.2021.124982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microbial fermentation is currently still the major way to produce structural complicated clinical drugs. Yet, the low productivity and genetic instability of producing strains remain the bottlenecks in microbial pharmaceutical industry. Fidaxomicin is a microbial drug against the Clostridium difficile infection. Here, a genome-based combinatorial engineering strategy was established to improve both fidaxomicin production and the genetic stability of Actinoplanes deccanensis YP-1. Guided by genomic analysis, several genetic instability-associated elements were cumulatively deleted, generating a more genetically stable mutant. Further rational engineering approaches including elimination of a pigment pathway, duplication of the fidaxomicin gene cluster, overexpression of a positive regulator and optimization of the fermentation medium, led to an overall 27-folds improvement in fidaxomicin production. Taken together, the genome-based rational combinatorial engineering strategy was efficient to enhance the fidaxomicin production and ameliorate the genetic stability of YP-1, it can also be widely used in other industrial actinomycetes for strain improvement.
Collapse
Affiliation(s)
- Yue-Ping Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Ji-Feng Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Huang Xie
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ting Su
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ling Du
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
46
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
47
|
Navarrete-Euan H, Rodríguez-Escamilla Z, Pérez-Rueda E, Escalante-Herrera K, Martínez-Núñez MA. Comparing Sediment Microbiomes in Contaminated and Pristine Wetlands along the Coast of Yucatan. Microorganisms 2021; 9:877. [PMID: 33923859 PMCID: PMC8073884 DOI: 10.3390/microorganisms9040877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Microbial communities are important players in coastal sediments for the functioning of the ecosystem and the regulation of biogeochemical cycles. They also have great potential as indicators of environmental perturbations. To assess how microbial communities can change their composition and abundance along coastal areas, we analyzed the composition of the microbiome of four locations of the Yucatan Peninsula using 16S rRNA gene amplicon sequencing. To this end, sediment from two conserved (El Palmar and Bocas de Dzilam) and two contaminated locations (Sisal and Progreso) from the coast northwest of the Yucatan Peninsula in three different years, 2017, 2018 and 2019, were sampled and sequenced. Microbial communities were found to be significantly different between the locations. The most noticeable difference was the greater relative abundance of Planctomycetes present at the conserved locations, versus FBP group found with greater abundance in contaminated locations. In addition to the difference in taxonomic groups composition, there is a variation in evenness, which results in the samples of Bocas de Dzilam and Progreso being grouped separately from those obtained in El Palmar and Sisal. We also carry out the functional prediction of the metabolic capacities of the microbial communities analyzed, identifying differences in their functional profiles. Our results indicate that landscape of the coastal microbiome of Yucatan sediment shows changes along the coastline, reflecting the constant dynamics of coastal environments and their impact on microbial diversity.
Collapse
Affiliation(s)
- Herón Navarrete-Euan
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Zuemy Rodríguez-Escamilla
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, Yucatán 97302, Mexico;
| | - Karla Escalante-Herrera
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| |
Collapse
|
48
|
Abstract
Developments in genome editing offer potential solutions to challenges in agriculture, industry, medicine, and the environment. However, many technologies remain unexploited due to limitations in the use of genetically altered organisms. In this study, we use B. subtilis spores to explore the possibility of bioengineering organisms while leaving their genome intact. Taking advantage of the differential expression between the mother cell and the fore-spore compartments during sporulation, we created plasmids programmed to modify the spore phenotype from the mother cell compartment, but to "self-digest" in the fore-spore. At the end of sporulation, the mother cell undergoes lysis and releases the phenotypically engineered, genetically unaltered spores. Using this approach, we demonstrated the potential to express foreign proteins in B. subtilis spores without genome alterations by producing spores expressing GFP in their protective coats, where approximately 90% of the spore population had no detectable plasmid or chromosome alterations. In a separate demonstration, we programmed KinA overexpression during vegetative growth to artificially induce sporulation, and also obtained spores with nearly 90% of them free of detectable plasmid. Artificial induction of sporulation could potentially simplify the bioprocess for industrial spore production, as it reduces the number of steps involved. Overall, these findings demonstrate the potential to create genetically intact bioengineered organisms.
Collapse
Affiliation(s)
- Juan F. Quijano
- Department of Biological Sciences, Columbia University, New York, 10027, United States
- Department of Biological Sciences and Department of Physics, Columbia University, New York, 10027, United States
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, 10027, United States
- Department of Biological Sciences and Department of Physics, Columbia University, New York, 10027, United States
| |
Collapse
|
49
|
Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms 2021; 9:microorganisms9040844. [PMID: 33920749 PMCID: PMC8071187 DOI: 10.3390/microorganisms9040844] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genome editing in bacteria encompasses a wide array of laborious and multi-step methods such as suicide plasmids. The discovery and applications of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas based technologies have revolutionized genome editing in eukaryotic organisms due to its simplicity and programmability. Nevertheless, this system has not been as widely favored for bacterial genome editing. In this review, we summarize the main approaches and difficulties associated with CRISPR-Cas-mediated genome editing in bacteria and present some alternatives to circumvent these issues, including CRISPR nickases, Cas12a, base editors, CRISPR-associated transposases, prime-editing, endogenous CRISPR systems, and the use of pre-made ribonucleoprotein complexes of Cas proteins and guide RNAs. Finally, we also address fluorescent-protein-based methods to evaluate the efficacy of CRISPR-based systems for genome editing in bacteria. CRISPR-Cas still holds promise as a generalized genome-editing tool in bacteria and is developing further optimization for an expanded application in these organisms. This review provides a rarely offered comprehensive view of genome editing. It also aims to familiarize the microbiology community with an ever-growing genome-editing toolbox for bacteria.
Collapse
|
50
|
ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress. Genes (Basel) 2021; 12:genes12040547. [PMID: 33918798 PMCID: PMC8068969 DOI: 10.3390/genes12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated. Here, we evaluated the sensitivity of Mycolicibacterium smegmatis mutants defective in the synthesis of Ku, Ku-LigD, and LigC1-LigC2-PrimC, as well as mutants deprived of all these proteins to oxidative and nitrosative stresses, with the most prominent effect observed in mutants defective in the synthesis of Ku protein. Mutants defective in the synthesis of LigD or PrimC/LigC presented a lower frequency of spontaneous mutations than the wild-type strain or the strain defective in the synthesis of Ku protein. As identified by whole-genome sequencing, the most frequent substitutions in all investigated strains were T→G and A→C. Double substitutions, as well as insertions of T or CG, were exclusively identified in the strains carrying functional Ku and LigD proteins. On the other hand, the inactivation of Ku/LigD increased the efficiency of the deletion of G in the mutant strain.
Collapse
|