1
|
Karajannis MA, Onar-Thomas A, Lin T, Baxter PA, Boué DR, Cole BL, Fuller C, Haque S, Jabado N, Lucas JT, MacDonald SM, Matsushima C, Patel N, Pierson CR, Souweidane MM, Thomas DL, Walsh MF, Zaky W, Leary SES, Gajjar A, Fouladi M, Cohen KJ. Phase 2 trial of veliparib, local irradiation, and temozolomide in patients with newly diagnosed high-grade glioma: a Children's Oncology Group study. Neuro Oncol 2025; 27:1092-1101. [PMID: 39560182 PMCID: PMC12083075 DOI: 10.1093/neuonc/noae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The outcome for pediatric patients with high-grade glioma (HGG) remains poor. Veliparib, a potent oral poly(adenosine diphosphate-ribose) polymerase (PARP) 1/2 inhibitor, enhances the activity of radiotherapy and DNA-damaging chemotherapy. METHODS We conducted a single-arm, non-randomized phase 2 clinical trial to determine whether treatment with veliparib and radiotherapy, followed by veliparib and temozolomide, improves progression-free survival in pediatric patients with newly diagnosed HGG without H3 K27M or BRAF mutations, compared to patient-level data from historical cohorts with closely matching clinical and molecular features. Following surgical resection, newly diagnosed children with non-metastatic HGG were screened by rapid central pathology review and molecular testing. Eligible patients were enrolled on Stratum 1 (IDH wild-type) or Stratum 2 (IDH mutant). RESULTS Both strata were closed to accrual for futility after planned interim analyses. Among the 23 eligible patients who enrolled on Stratum 1 and received protocol therapy, the 1-year event-free survival (EFS) was 23% (standard error, SE = 9%) and the 1-year overall survival (OS) was 64% (SE = 10%). Among the 14 eligible patients who enrolled on Stratum 2 and received protocol therapy, the 1-year EFS was 57% (SE = 13%) and 1-year OS was 93% (SE = 0.7%). CONCLUSIONS Rapid central pathology review and molecular testing for eligibility were feasible. The protocol therapy including radiation, veliparib, and temozolomide was well tolerated but failed to improve outcomes compared to clinically and molecularly matched historical control cohorts treated with higher doses of alkylator chemotherapy. CLINICALTRIALS.GOV IDENTIFIER NCT03581292 (first posted: July 10, 2018).
Collapse
Affiliation(s)
- Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Patricia A Baxter
- Department of Pediatrics, Texas Children’s Hospital/Baylor College of Medicine, Houston, Texas
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, New York, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste Matsushima
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Namrata Patel
- Department of Pharmacy, Stanford Medicine Children’s Health, Palo Alto, California, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wafik Zaky
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E S Leary
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
2
|
Pham J, Cote DJ, Kang K, Briggs RG, Gomez D, Prasad A, Daggupati S, Sisti J, Chow F, Attenello F, Chen CC, Zada G. Treatment practices and survival outcomes for IDH-wildtype glioblastoma patients according to MGMT promoter methylation status: insights from the U.S. National Cancer Database. J Neurooncol 2025; 172:655-665. [PMID: 39907975 PMCID: PMC11968476 DOI: 10.1007/s11060-025-04952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is an important prognostic marker in glioblastoma (GBM); however, its implementation in clinical practice remains understudied. Here, we assessed the prevalence of MGMT methylation status among GBM patients in the United States. Additionally, we evaluated treatment practices and survival outcomes of GBM patients according to MGMT promoter methylation status. METHODS The National Cancer Database was queried to identify all adult U.S. patients (≥ 18 years) diagnosed with IDH-wildtype GBM between 2018 and 2020. Treatment regimen was grouped into no chemotherapy and no radiotherapy, chemotherapy alone (without radiotherapy), radiotherapy alone (without chemotherapy), and chemoradiotherapy (chemotherapy and radiotherapy). Survival data were analyzed using Kaplan-Meier survival curves, log-rank tests, and multivariable Cox proportional hazard modeling. RESULTS A total of 20,734 patients were included, of whom 6,404 (30.9%) had MGMT-methylated GBM, 9,065 (43.7%) had MGMT-unmethylated tumors, and 5,265 (25.4%) had unknown methylation status. The median and three-year overall survival were 12.4 months and 15.5%, respectively, for the entire cohort (16.4 months and 23.9% for MGMT-methylated patients and 11.8 months and 9.8% for MGMT-unmethylated patients, p < 0.001). Chemoradiotherapy was less commonly used for elderly (≥ 70 years, 58.5%) than non-elderly (< 70 years, 79.2%) patients. Among elderly patients, radiotherapy alone was more commonly administered than chemotherapy alone for patients with MGMT-unmethylated tumors (11.2% vs. 2.1%) and MGMT-methylated tumors (6.6% vs. 3.9%). However, chemotherapy alone was associated with a lower mortality risk (HR 0.71, 95% CI 0.51-0.99, p = 0.04) than radiotherapy alone for elderly patients with MGMT-methylated tumors, while chemotherapy alone was associated with a higher mortality risk (HR 1.63, 95% CI 1.09-2.44, p = 0.02) than radiotherapy alone for elderly patients with MGMT-unmethylated tumors. Patients who were elderly, uninsured, insured through Medicaid, lived in zip codes with lower median education levels, or received care at non-academic programs were less likely to undergo MGMT testing. CONCLUSION A high proportion of GBM patients in the United States undergo MGMT promoter testing, though significant sociodemographic disparities exist. While there was a decrease in chemoradiotherapy use with increasing age, radiotherapy alone was more commonly administered to elderly patients than chemotherapy alone irrespective of MGMT promoter methylation status.
Collapse
Affiliation(s)
- John Pham
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - David J Cote
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Keiko Kang
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - David Gomez
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Apurva Prasad
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Sindhu Daggupati
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Jonathan Sisti
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Frances Chow
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Frank Attenello
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Clark C Chen
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Huang Y, Chen L, Zhang Z, Liu Y, Huang L, Liu Y, Liu P, Song F, Li Z, Zhang Z. Integration of histopathological image features and multi-dimensional omics data in predicting molecular features and survival in glioblastoma. Front Med (Lausanne) 2025; 12:1510793. [PMID: 40337276 PMCID: PMC12055811 DOI: 10.3389/fmed.2025.1510793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Objectives Glioblastoma (GBM) is a highly malignant brain tumor with complex molecular mechanisms. Histopathological images provide valuable morphological information of tumors. This study aims to evaluate the predictive potential of quantitative histopathological image features (HIF) for molecular characteristics and overall survival (OS) in GBM patients by integrating HIF with multi-omics data. Methods We included 439 GBM patients with eligible histopathological images and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of 550 image features were extracted from the histopathological images. Machine learning algorithms were employed to identify molecular characteristics, with random forest (RF) models demonstrating the best predictive performance. Predictive models for OS were constructed based on HIF using RF. Additionally, we enrolled tissue microarrays of 67 patients as an external validation set. The prognostic histopathological image features (PHIF) were identified using two machine learning algorithms, and prognosis-related gene modules were discovered through WGCNA. Results The RF-based OS prediction model achieved significant prognostic accuracy (5-year AUC = 0.829). Prognostic models were also developed using single-omics, the integration of HIF and single-omics (HIF + genomics, HIF + transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-omics model achieved the best prediction performance (1-, 3- and 5-year AUCs of 0.820, 0.926 and 0.878, respectively). Conclusion Our study indicated a certain prognostic value of HIF, and the integrated multi-omics model may enhance the prognostic prediction of GBM, offering improved accuracy and robustness for clinical application.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Leizhen Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Pengcheng Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengqin Song
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhou Z, Teng Z, Zhu J, Tang RS. An improved biomarker-guided adaptive patient enrichment design for oncology trials. J Biopharm Stat 2025:1-17. [PMID: 40268526 DOI: 10.1080/10543406.2025.2489292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025]
Abstract
The use of biomarkers to guide adaptive enrichment designs in oncology trials presents a promising strategy for increasing trial efficiency and improving the chance of identifying efficacious treatment in the right population. With a well-defined biomarker, such designs can enhance study power and reduce costs by adapting the trial focus to promising populations. However, existing adaptive enrichment designs may not have sufficiently flexible interim decision-making rules, testing procedures, and sample size re-estimation, limiting their full potential. In this research, we propose an improved biomarker-guided adaptive enrichment design that supports dynamic interim decision-making based on treatment effects observed in biomarker-positive, biomarker-negative, and overall populations. The design includes options for early stopping for efficacy or futility in both biomarker-positive and overall populations and incorporates sample size re-estimation using an improved conditional power method to optimize study power. Simulation results show that the proposed design maintains strong control of type I error and delivers high statistical power, with a high probability of correct interim decisions in cases where treatment is effective in either the biomarker-positive or overall population. This novel framework provides a more flexible and efficient approach to conducting oncology trials with heterogenous populations, ensuring that the most appropriate patient populations are selected as the trial progresses.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Amgen, Global Biostatistical Science, Thousand Oaks, CA, USA
| | - Zhaoyang Teng
- Servier Bio-Innovation, Global Biometrics, Boston, MA, USA
| | - Jian Zhu
- Servier Bio-Innovation, Global Biometrics, Boston, MA, USA
| | - Rui Sammi Tang
- Astellas Pharma, Quantitative Sciences and Evidence Generation, Boston, MA, USA
| |
Collapse
|
5
|
Schilter KF, Nie Q, Adams JN, Jagadish R, Acevedo A, Larson A, Vo SA, Domagala BA, Hernandez KM, Douville C, Wang Y, Coe B, Bettegowda C, Reddi HV. Analytical validation of the Belay Vantage™ assay for evaluation of MGMT promoter methylation using enzymatically converted tumorDNA from cerebrospinal fluid. Cancer Genet 2025; 294-295:94-98. [PMID: 40250264 DOI: 10.1016/j.cancergen.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
MGMT promoter methylation status (hypermethylation) is one of the strongest prognostic and predictive biomarkers in glioblastoma (GBM) and is associated with a more favorable response to alkylating chemotherapies such as Temozolomide (TMZ). Additionally, it is associated with pseudo progression in GBM, a phenomenon in which early radiographic changes after treatment are indicative of possible tumor recurrence though on histological examination it is consistent with treatment effect. Current methods for evaluation of MGMT promoter methylation status are limited to tumor tissue, requiring invasive biopsy or surgery, prompting the need for a liquid biopsy-based assay to expand and manage therapeutic interventions. The Belay Vantage™ assay evaluates MGMT promoter methylation status in cerebrospinal fluid (CSF) of individuals with known or suspected central nervous system tumors using low input DNA. The assay uses quantitative polymerase chain reaction (qPCR) on DNA extracted from CSF after enzymatic conversion and has an analytical sensitivity of 95.5 % and specificity of 100 %.
Collapse
Affiliation(s)
- Kala F Schilter
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Qian Nie
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Jennifer N Adams
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | | | - Anthony Acevedo
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Alexandra Larson
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Samantha A Vo
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Brett A Domagala
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Kyle M Hernandez
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | | | - Yuxuan Wang
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Brian Coe
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Chetan Bettegowda
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA
| | - Honey V Reddi
- Belay Diagnostics, Suite 530, 1375W. Fulton St, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Chen Q, Wang L, Deng Z, Wang R, Wang L, Jian C, Zhu YM. Cooperative multi-task learning and interpretable image biomarkers for glioma grading and molecular subtyping. Med Image Anal 2025; 101:103435. [PMID: 39778265 DOI: 10.1016/j.media.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Deep learning methods have been widely used for various glioma predictions. However, they are usually task-specific, segmentation-dependent and lack of interpretable biomarkers. How to accurately predict the glioma histological grade and molecular subtypes at the same time and provide reliable imaging biomarkers is still challenging. To achieve this, we propose a novel cooperative multi-task learning network (CMTLNet) which consists of a task-common feature extraction (CFE) module, a task-specific unique feature extraction (UFE) module and a unique-common feature collaborative classification (UCFC) module. In CFE, a segmentation-free tumor feature perception (SFTFP) module is first designed to extract the tumor-aware features in a classification manner rather than a segmentation manner. Following that, based on the multi-scale tumor-aware features extracted by SFTFP module, CFE uses convolutional layers to further refine these features, from which the task-common features are learned. In UFE, based on orthogonal projection and conditional classification strategies, the task-specific unique features are extracted. In UCFC, the unique and common features are fused with an attention mechanism to make them adaptive to different glioma prediction tasks. Finally, deep features-guided interpretable radiomic biomarkers for each glioma prediction task are explored by combining SHAP values and correlation analysis. Through the comparisons with recent reported methods on a large multi-center dataset comprising over 1800 cases, we demonstrated the superiority of the proposed CMTLNet, with the mean Matthews correlation coefficient in validation and test sets improved by (4.1%, 10.7%), (3.6%, 23.4%), and (2.7%, 22.7%) respectively for glioma grading, 1p/19q and IDH status prediction tasks. In addition, we found that some radiomic features are highly related to uninterpretable deep features and that their variation trends are consistent in multi-center datasets, which can be taken as reliable imaging biomarkers for glioma diagnosis. The proposed CMTLNet provides an interpretable tool for glioma multi-task prediction, which is beneficial for glioma precise diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Qijian Chen
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lihui Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
| | - Zeyu Deng
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Rongpin Wang
- Radiology department, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Li Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Caiqing Jian
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Yue-Min Zhu
- University Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR5220, U1206, Lyon 69621, France
| |
Collapse
|
7
|
Zhao Q, Li Y, Sun Q, Wang R, Lu H, Zhang X, Gao L, Cai Q, Liu B, Deng G. Self-assembled genistein nanoparticles suppress the epithelial-mesenchymal transition in glioblastoma by targeting MMP9. Mater Today Bio 2025; 31:101606. [PMID: 40104644 PMCID: PMC11919400 DOI: 10.1016/j.mtbio.2025.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary malignant brain tumor in adults, known for its poor prognosis and resistance to conventional treatments. The blood-brain barrier (BBB) presents a significant challenge in delivering effective treatments. In this study, we developed a carrier-free, self-assembled nanosystem using genistein (GE), a naturally occurring isoflavone, to enhance therapeutic delivery across the BBB. GE nanoparticles (GE NPs) were synthesized via solvent emulsification evaporation, in uniform spherical particles (∼180 nm), stabilized by hydrogen bonding and π-π interactions. The GE NPs demonstrated optimal physicochemical properties, including stability, high BBB permeability, prolonged circulation time. In vitro studies revealed that GE NPs inhibited GBM cell proliferation, induced apoptosis and suppressed epithelial-mesenchymal transition (EMT) by promoting the degradation of MMP9. In vivo, GE NPs significantly reduced tumor growth and extended survival in an orthotopic GBM mouse model, outperforming temozolomide treatment. Mechanistic analysis indicated that GE NPs inhibited the degradation of the extracellular matrix by targeting the catalytic domain of MMP9, thereby effectively suppressing the EMT of GBM. This research highlights the potential of GE NPs as a novel therapeutic approach for GBM, addressing drug delivery challenges while improving anti-tumor efficacy. Further optimization for enhanced tumor retention and exploration of combination therapies may improve clinical outcomes (Graphical Abstract).
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ronggui Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Haoran Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xinyi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
8
|
Dinakaran D, Moore-Palhares D, Yang F, Hill JB. Precision radiotherapy with molecular-profiling of CNS tumours. J Neurooncol 2025; 172:51-75. [PMID: 39699761 DOI: 10.1007/s11060-024-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Diagnoses of CNS malignancies in the primary and metastatic setting have significantly advanced in the last decade with the advent of molecular pathology. Using a combination of immunohistochemistry, next-generation sequencing, and methylation profiling integrated with traditional histopathology, patient prognosis and disease characteristics can be understood to a much greater extent. This has recently manifested in predicting response to targeted drug therapies that are redefining management practices of CNS tumours. Radiotherapy, along with surgery, still remains an integral part of treating the majority of CNS tumours. However, the rapid advances in CNS molecular diagnostics have not yet been effectively translated into improving CNS radiotherapy. We explore several promising strategies under development to integrate molecular oncology into radiotherapy, and explore future directions that can serve to use molecular diagnostics to personalize radiotherapy. Evolving the management of CNS tumours with molecular profiling will be integral to supporting the future of precision radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
- Department of Medical Biophysics and Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
| | - Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Fan Yang
- Radiation Oncology, Mayo Clinic Arizona, 5881 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jordan B Hill
- Banner MD Anderson Cancer Center, 925 E. McDowell Rd, Phoenix, AZ, 85006, USA
| |
Collapse
|
9
|
Maragno E, Ricchizzi S, Winter NR, Hellwig SJ, Stummer W, Hahn T, Holling M. Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex. Acta Neurochir (Wien) 2025; 167:52. [PMID: 39992425 PMCID: PMC11850473 DOI: 10.1007/s00701-025-06441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex. METHODS To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure. RESULTS The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most. CONCLUSION In summary, here we provide a novel approach allowing to predict GBM patient's survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.
Collapse
Affiliation(s)
- Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Sarah Ricchizzi
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sönke Josua Hellwig
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany.
| |
Collapse
|
10
|
Wang H, Liu Z, Peng Z, Lv P, Fu P, Jiang X. Identification and validation of TSPAN13 as a novel temozolomide resistance-related gene prognostic biomarker in glioblastoma. PLoS One 2025; 20:e0316552. [PMID: 39903772 PMCID: PMC11793784 DOI: 10.1371/journal.pone.0316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary tumor of the central nervous system, with its resistance to treatment posing significant challenges. This study aims to develop a comprehensive prognostic model to identify biomarkers associated with temozolomide (TMZ) resistance. We employed a multifaceted approach, combining differential expression and univariate Cox regression analyses to screen for TMZ resistance-related differentially expressed genes (TMZR-RDEGs) in GBM. Using LASSO Cox analysis, we selected 12 TMZR-RDEGs to construct a risk score model, which was evaluated for performance through survival analysis, time-dependent ROC, and stratified analyses. Functional enrichment and mutation analyses were conducted to explore the underlying mechanisms of the risk score and its relationship with immune cell infiltration levels in GBM. The prognostic risk score model, based on the 12 TMZR-RDEGs, demonstrated high efficacy in predicting GBM patient outcomes and emerged as an independent predictive factor. Additionally, we focused on the molecule TSPAN13, whose role in GBM is not well understood. We assessed cell proliferation, migration, and invasion capabilities through in vitro assays (including CCK-8, Edu, wound healing, and transwell assays) and quantitatively analyzed TSPAN13 expression levels in clinical glioma samples using tissue microarray immunohistochemistry. The impact of TSPAN13 on TMZ resistance in GBM cells was validated through in vitro experiments and a mouse orthotopic xenograft model. Notably, TSPAN13 was upregulated in GBM and correlated with poorer patient prognosis. Knockdown of TSPAN13 inhibited GBM cell proliferation, migration, and invasion, and enhanced sensitivity to TMZ treatment. This study provides a valuable prognostic tool for GBM and identifies TSPAN13 as a critical target for therapeutic intervention.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Cai H, Tian S, Liu A, Xie G, Zhang H, Wu X, Wan J, Li S. Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma. Eur J Med Res 2025; 30:17. [PMID: 39780198 PMCID: PMC11715937 DOI: 10.1186/s40001-024-02192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely. METHODS We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints. We also explored potential associations with drug sensitivity. To assess the impact on glioma cell proliferation and apoptosis, we employed various assays, including the Cell Counting Kit-8, colony formation assay, and flow cytometry. RESULTS CTF1 gene and protein expression were significantly elevated in glioma tissues, and correlated with malignancy and poor prognosis. CTF1 was an independent prognostic factor and negatively associated with DNA methylation. The involvement of CTF1 in m6A modifications contributed to glioma progression. Enrichment analysis revealed immune response pathways linked with CTF1 in glioma, including natural killer cell cytotoxicity, NOD-like receptor signaling, Toll-like receptor signaling, antigen processing, chemokine signaling, and cytokine receptor interactions. CTF1 expression correlated positively with pathways related to apoptosis, inflammation, proliferation, and epithelial-mesenchymal transition, and PI3K-AKT-mTOR signaling. Additionally, CTF1 expression was positively associated with macrophage, eosinophil, and neutrophil contents and immune checkpoint-related genes, but negatively associated with sensitivity to 14 drugs. In vitro experiments confirmed that CTF1 knockdown inhibited glioma cell proliferation and promoted apoptosis. CONCLUSION This study identifies CTF1 as a significant independent prognostic factor that is closely associated with the tumor immune microenvironment in glioma. Additionally, reduced expression of CTF1 suppresses the proliferation and induces apoptosis of glioma cells in vitro. Consequently, CTF1 is a potentially promising novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Hongqing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Tian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angsi Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanchao Xie
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Hongsheng Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Xiaogang Wu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, No 424 Changjiang West Road, Shushan District, Hefei, Anhui, 230000, People's Republic of China.
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| | - Sai Li
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Gu W, Tang J, Liu P, Gan J, Lai J, Xu J, Deng J, Liu C, Wang Y, Zhang G, Yu F, Shi C, Fang K, Qiu F. Development and Validation of a Prognostic Molecular Phenotype and Clinical Characterization in Grade III Diffuse Gliomas Treatment with Radio-Chemotherapy. Ther Clin Risk Manag 2025; 21:35-53. [PMID: 39802957 PMCID: PMC11721490 DOI: 10.2147/tcrm.s478905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Background The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration. Methods The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors. The nomogram model was established, and its accuracy was determined via the calibration plots. Results A total of 215 and 88 patients had grade III glioma and grade IV glioma, respectively. Grade III oligodendroglioma (OG-G3) patients had the longest mPFS and mOS than other grade III pathology, while grade III astrocytoma (AA-G3) patients were close to IDH-1 wildtype glioblastoma (GBM) and had a poor prognosis. The IDH-1 mutant group had a better mPFS and mOS than the IDH-1 wildtype group in all grade III patients, OG-G3 and AA-G3 patients. Furthermore, 1p/19q co-deletion group had a longer mPFS and mOS than 1p/19q non-deletion group in all grade III patients. IDH-1 mutation and 1p/19q co-deletion patients had the best prognosis than other molecular types. Also, the MGMT methylation and IDH-1 mutation or 1p/19q co-deletion group had a longer mPFS and mOS than the MGMT unmethylation and IDH-1 wildtype or 1p/19q non-codeletion of grade III patients. In addition, the low Ki-67 expression group had a better prognosis than high Ki-67 expression group in grade III patients. Univariate and multivariate COX showed that 1p/19q co-deletion and MGMT methylation were the independent prognostic factors for mPFS and mOS. The calibration curve showed that the established nomogram could well predict the survival based on these covariates. Conclusion The AA-G3 with IDH-1 wildtype, MGMT unmethylation or 1p/19q non-codeletion patients was resistant to radiotherapy and chemotherapy, has a poor prognosis and needs a more active treatment.
Collapse
Affiliation(s)
- Weiguo Gu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaming Tang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Penghui Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jinyu Gan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianfei Lai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jinbiao Xu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianxiong Deng
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chaoxing Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yuhua Wang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| | - Ke Fang
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Feng Qiu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, People’s Republic of China
| |
Collapse
|
14
|
Wu T, Du M, Zeng L, Wang H, Li X. Increased UBD Is a Potential Diagnostic and Prognostic Biomarker in Glioma. ENVIRONMENTAL TOXICOLOGY 2024; 39:5250-5263. [PMID: 39155575 DOI: 10.1002/tox.24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan-Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial-mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-β signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mengyu Du
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xinfang Li
- Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| |
Collapse
|
15
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
16
|
Shah S, Nag A, Sachithanandam SV, Lucke-Wold B. Predictive and Prognostic Significance of Molecular Biomarkers in Glioblastoma. Biomedicines 2024; 12:2664. [PMID: 39767571 PMCID: PMC11727522 DOI: 10.3390/biomedicines12122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/08/2025] Open
Abstract
Glioblastoma multiforme (GBM), a WHO grade 4 glioma, is the most common and aggressive primary brain tumor, characterized by rapid progression and poor prognosis. The heterogeneity of GBM complicates diagnosis and treatment, driving research into molecular biomarkers that can offer insights into tumor behavior and guide personalized therapies. This review explores recent advances in molecular biomarkers, highlighting their potential to improve diagnosis and treatment outcomes in GBM patients. Key biomarkers such as MGMT promoter methylation, IDH1/2 mutations, EGFR amplification, and TERT promoter mutations, etc., are examined for their roles in prognosis, therapeutic response, and tumor classification. While molecular biomarkers offer valuable insights for tailoring GBM treatments, their clinical application is hindered by tumor heterogeneity, dynamic genetic evolution, and the lack of standardized testing methods. Future research should aim to confirm new biomarkers and incorporate them into regular clinical practice to improve prognosis and treatment choices. Advances in genomic and proteomic technologies, along with consistent biomarker detection, could transform GBM care and enhance patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (A.N.); (S.V.S.)
| | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (A.N.); (S.V.S.)
| |
Collapse
|
17
|
Yin B, Cai Y, Chen L, Li Z, Li X. Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol 2024; 141:112922. [PMID: 39137632 DOI: 10.1016/j.intimp.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiheng Cai
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | | | - Xiaofei Li
- Department of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
18
|
Huang G, Ouyang M, Xiao K, Zhou H, Zhong Z, Long S, Li Z, Zhang Y, Li L, Xiang S, Ding X. AP-2α decreases TMZ resistance of recurrent GBM by downregulating MGMT expression and improving DNA damage. Life Sci 2024; 357:123111. [PMID: 39369843 DOI: 10.1016/j.lfs.2024.123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
AIMS The incidence of recurrent gliomas is high, exerting low survival rates and poor prognoses. Transcription factor AP-2α has been reported to regulate the progression of primary glioblastoma (GBM). However, the function of AP-2α in recurrent gliomas is largely unclear. METHODS The expression of AP-2α and O6-methylguanine DNA-methyltransferase (MGMT) was detected in recurrent glioma tissues and cell lines by Western blots, the regulation mechanisms between AP-2α/MGMT promoter and RA/AP-2α promoter were studied by luciferase reporter assays, EMSA, and chIP assays. The effects of AP-2α and TMZ/RA treatment on cell viability in vitro and in vivo were investigated by MTT assays, γH2AX staining, comet assays and intracranial injection. KEY FINDINGS AP-2α expression negatively correlates with the expression of MGMT in glioma samples. AP-2α could directly bind with the promoter of the MGMT gene, suppresses transcriptional levels of MGMT and downregulate MGMT expression in TMZ-resistant U87MG-R and T98G cells, but TMZ treatment decreases AP-2α expression and increases MGMT expression. The extended TMZ treatment and increased TMZ concentrations reversed these effects. Moreover, AP-2α overexpression combines with TMZ to decrease cell viability, concurrently with improved DNA damage marker γH2AX. Furthermore, retinoic acid (RA) activates RAR/RXR heterodimers, which bind to RA-responsive elements (RAREs) of the AP-2α promoter, and activates AP-2α expression in recurrent glioma cells. Finally, in intracranial relapsed glioma mouse model, both RA and TMZ could retard tumor development and prolong the mouse survival. SIGNIFICANCE AP-2α activation by gene overexpression or RA treatment reveals the suppressive effects on glioma relapse, providing a novel therapeutic strategy against malignant refractory gliomas.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Middle Aged
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Brain Neoplasms/metabolism
- Cell Line, Tumor
- DNA Damage/drug effects
- DNA Modification Methylases/metabolism
- DNA Modification Methylases/genetics
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Promoter Regions, Genetic
- Temozolomide/pharmacology
- Transcription Factor AP-2/genetics
- Transcription Factor AP-2/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guixiang Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Kai Xiao
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410013, China
| | - Shengwen Long
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yiru Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China.
| | - Shuanglin Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
19
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Li J, Long S, Yang Z, Wei W, Yu S, Liu Q, Hui X, Li X, Wang Y. Single-cell transcriptomics reveals IRF7 regulation of the tumor microenvironment in isocitrate dehydrogenase wild-type glioma. MedComm (Beijing) 2024; 5:e754. [PMID: 39492838 PMCID: PMC11531655 DOI: 10.1002/mco2.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) are important markers of glioma prognosis. However, few studies have examined the gene expression regulatory network (GRN) in IDH-mutant and wild-type gliomas. In this study, single-cell RNA sequencing and spatial transcriptome sequencing were used to analyze the GRN of cell subsets in patients with IDH-mutant and wild-type gliomas. Through gene transcriptional regulation analysis, we identified the M4 module, whose transcription factor activity is highly expressed in IDH wild-type gliomas compared to IDH-mutants. Enrichment analysis revealed that these genes were predominantly expressed in microglia and macrophages, with significant enrichment in interferon-related signaling pathways. Interferon regulatory factor 7 (IRF7), a transcription factor within this pathway, showed the highest percentage of enrichment and was primarily localized in the core region of wild-type IDH tumors. A machine-learning prognostic model identified novel subgroups within the wild-type IDH population. Additionally, IRF7 was shown to promote the proliferation and migration of T98G and U251 cells in vitro, and its knockdown affected glioma cell proliferation in vivo. This study systematically established the regulatory mechanism of IDH transcriptional activity in gliomas at the single-cell level and drew a corresponding cell map. The study presents a transcriptional regulatory activity map for IDH wild-type gliomas, involving single-cell RNA sequencing and spatial transcriptomics to identify gene regulatory networks, machine learning models for IDH subtyping, and experimental validation, highlighting the role of IRF7 in glioma progression.
Collapse
Affiliation(s)
- Jinwei Li
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Shengrong Long
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhang Yang
- Department of Vascular SurgeryFuwai Yunnan Cardiovascular HospitalAffiliated Cardiovascular Hospital of Kunming Medical UniversityKunmingChina
| | - Wei Wei
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shuangqi Yu
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Quan Liu
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
| | - Xuhui Hui
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Xiang Li
- Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Brain Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
21
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 PMCID: PMC12007431 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
23
|
Zhuang Z, Lin J, Wan Z, Weng J, Yuan Z, Xie Y, Liu Z, Xie P, Mao S, Wang Z, Wang X, Huang M, Luo Y, Yu H. Radiogenomic profiling of global DNA methylation associated with molecular phenotypes and immune features in glioma. BMC Med 2024; 22:352. [PMID: 39218882 PMCID: PMC11367996 DOI: 10.1186/s12916-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Collapse
Affiliation(s)
- Zhuokai Zhuang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zongchao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Institute, Beijing, 100142, China
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Siyue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Huo X, Li H, Xing Y, Liu W, Chen P, Du F, Song L, Yu Z, Cao X, Tian J. Two decades of progress in glioma methylation research: the rise of temozolomide resistance and immunotherapy insights. Front Neurosci 2024; 18:1440756. [PMID: 39286478 PMCID: PMC11402815 DOI: 10.3389/fnins.2024.1440756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Aims This study aims to systematically analyze the global trends in glioma methylation research using bibliometric methodologies. We focus on identifying the scholarly trajectory and key research interests, and we utilize these insights to predict future research directions within the epigenetic context of glioma. Methods We performed a comprehensive literature search of the Web of Science Core Collection (WoSCC) to identify articles related to glioma methylation published from January 1, 2004, to December 31, 2023. The analysis included full-text publications in the English language and excluded non-research publications. Analysis and visualization were performed using GraphPad Prism, CiteSpace, and VOSviewer software. Results The search identified 3,744 publications within the WoSCC database, including 3,124 original research articles and 620 review articles. The research output gradually increased from 2004 to 2007, followed by a significant increase after 2008, which peaked in 2022. A minor decline in publication output was noted during 2020-2021, potentially linked to the coronavirus disease 2019 pandemic. The United States and China were the leading contributors, collectively accounting for 57.85% of the total research output. The Helmholtz Association of Germany, the German Cancer Research Center (DKFZ), and the Ruprecht Karls University of Heidelberg were the most productive institutions. The Journal of Neuro-Oncology led in terms of publication volume, while Neuro-Oncology had the highest Impact Factor. The analysis of publishing authors revealed Michael Weller as the most prolific contributor. The co-citation network analysis identified David N. Louis's article as the most frequently cited. The keyword analysis revealed "temozolomide," "expression," "survival," and "DNA methylation" as the most prominent keywords, while "heterogeneity," "overall survival," and "tumor microenvironment" showed the strongest citation bursts. Conclusions The findings of this study illustrate the increasing scholarly interest in glioma methylation, with a notable increase in research output over the past two decades. This study provides a comprehensive overview of the research landscape, highlighting the importance of temozolomide, DNA methylation, and the tumor microenvironment in glioma research. Despite its limitations, this study offers valuable insights into the current research trends and potential future directions, particularly in the realm of immunotherapy and epigenetic editing techniques.
Collapse
Affiliation(s)
- Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haoyuan Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Yixiang Xing
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang Du
- School of Information Engineering, Ningxia University, Yinchuan, China
- Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Ningxia University, Yinchuan, China
| | - Lijuan Song
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Zhenhua Yu
- School of Information Engineering, Ningxia University, Yinchuan, China
| | - Xiangmei Cao
- Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Jihui Tian
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
25
|
Luo H, Xiao X, Hou W, Cai J, Chen M, Tang Q, Tong Y, Qi Z, Li K, Chen L. MAL2 DNA methylation serves as a biomarker for the diagnosis and prognosis of glioma. Genes Dis 2024; 11:101082. [PMID: 38831979 PMCID: PMC11145215 DOI: 10.1016/j.gendis.2023.101082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 06/05/2024] Open
Affiliation(s)
- Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Xing Xiao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Weiliang Hou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Jing Cai
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai 200040, China
| | - Kaicheng Li
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai 201210, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai 200040, China
| |
Collapse
|
26
|
De Jesus-Acosta A, Mohindroo C. Genomic Landscape of Pancreatic Neuroendocrine Tumors and Implications for Clinical Practice. JCO Precis Oncol 2024; 8:e2400221. [PMID: 39231376 DOI: 10.1200/po.24.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are the second most prevalent neoplasms of the pancreas with variable prognosis and clinical course. Our knowledge of the genetic alterations in patients with pNETs has expanded in the past decade with the availability of whole-genome sequencing and germline testing. This review will focus on potential clinical applications of the genetic testing in patients with pNETs. For somatic testing, we discuss the commonly prevalent somatic mutations and their impact on prognosis and treatment of patients with pNET. We also highlight the relevant genomic biomarkers that predict response to specific treatments. Previously, germline testing was only recommended for high-risk patients with syndromic features (MEN1, VHL, TSC, and NF1), we review the evolving paradigm of germline testing in pNETs as recent studies have now shown that sporadic-appearing pNETs can also harbor germline variants.
Collapse
Affiliation(s)
- Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirayu Mohindroo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Fu X, Ren C, Dai K, Ren M, Yan C. Epithelial-Mesenchymal Transition Related Score Functions as a Predictive Tool for Immunotherapy and Candidate Drugs in Glioma. J Chem Inf Model 2024; 64:6648-6661. [PMID: 39116318 DOI: 10.1021/acs.jcim.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gliomas are aggressive CNS tumors where the epithelial-mesenchymal transition (EMT) is crucial for prognosis. We developed an EMT-based score predicting overall survival (OS) and conducted pathway analyses, revealing functions such as cell proliferation and immune response in glioma progression. The EMT score, correlated with immune functions and cell infiltration, shows potential as an immune response indicator. We identified two promising compounds, BIX02189 and QL-XI-92, as potential glioma treatments based on candidate gene analysis.
Collapse
Affiliation(s)
- Xiaojun Fu
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Changyuan Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South Fourth Ring Road West, Fengtai District, Beijing 100070, China
| | - Kaining Dai
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
- Laboratory for Clinical Medicine, Capital Medical University, No. 10, You'anmenwai, Fengtai District, Beijing 100070, China
| | - Ming Ren
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| | - Changxiang Yan
- Sanbo Brain Hospital, Capital Medical University No. 50, Yikesong Road, Xiangshan, Haidian District, Beijing 100070, China
| |
Collapse
|
28
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. Involvement of multiple epigenetic mechanisms by altered DNA methylation from the early stage of renal carcinogenesis before proliferative lesion formation upon repeated administration of ochratoxin A. Toxicology 2024; 506:153875. [PMID: 38945198 DOI: 10.1016/j.tox.2024.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a rat renal carcinogen that induces karyomegaly and micronuclei in proximal tubular epithelial cells (PTECs). We previously performed comprehensive gene profiling of alterations in promoter-region methylation and gene expression in PTECs of rats treated with OTA for 13 weeks. The OTA-specific gene profile was obtained by excluding genes showing expression changes similar to those upon treatment with 3-chloro-1,2-propanediol, a renal carcinogen not inducing karyomegaly. In this study, we validated the candidate genes using methylated DNA enrichment PCR and real-time RT-PCR, and identified Gen1, Anxa3, Cdkn1a, and Osm as genes showing OTA-specific epigenetic changes. These genes and related molecules were subjected to gene expression and immunohistochemical analyses in the PTECs of rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. Cdkn1a upregulation and increase of p21WAF1/CIP1+ karyomegalic PTECs were observed with OTA, matching the findings associated with micronucleus-inducing carcinogens. This suggested that the increase of p21WAF1/CIP1+ karyomegalic PTECs is linked to micronucleus formation, which in turn accelerates chromosomal instability. The upregulation of Cdkn1a-related genes with OTA suggests the acquisition of a senescence-associated secretory phenotype, which promotes the establishment of a carcinogenic environment. Meanwhile, OTA specifically caused a decrease of GEN1+ PTECs reflecting Gen1 downregulation and an increase of ANXA3+ PTECs reflecting Anxa3 upregulation, as well as Osm upregulation. OTA may efficiently disrupt pathways for repairing the DNA double-strand breaks that it itself causes, via Gen1 downregulation, and enhance cell proliferation through the upregulation of Anxa3 and Osm. This may exacerbate the chromosomal instability from the early stage of OTA-induced renal carcinogenesis before proliferative lesions form. OTA may cause renal carcinogenesis involving multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
29
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
30
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
31
|
Li L, Xiao F, Wang S, Kuang S, Li Z, Zhong Y, Xu D, Cai Y, Li S, Chen J, Liu Y, Li J, Li H, Xu H. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis. Sci Rep 2024; 14:16031. [PMID: 38992201 PMCID: PMC11239670 DOI: 10.1038/s41598-024-66653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shouchao Wang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengyu Kuang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery&Brain Glioma Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Wuhan GE Healthcare, Wuhan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Lu F, Jiang X, Lin K, Zheng P, Wu S, Zeng G, Wei D. Oncogenic Gene CNOT7 Promotes Progression and Induces Poor Prognosis of Glioma. Mol Biotechnol 2024:10.1007/s12033-024-01223-5. [PMID: 38985240 DOI: 10.1007/s12033-024-01223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.
Collapse
Affiliation(s)
- Feng Lu
- Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Xiulong Jiang
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Kun Lin
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Pengfeng Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Shizhong Wu
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Guangming Zeng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, China.
- Department of Neurosurgery, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China.
| |
Collapse
|
33
|
Setyawan NH, Choridah L, Nugroho HA, Malueka RG, Dwianingsih EK, Supriatna Y, Supriyadi B, Hartanto RA. Glioma Grade and Molecular Markers: Comparing Machine-Learning Approaches Using VASARI (Visually AcceSAble Rembrandt Images) Radiological Assessment. Cureus 2024; 16:e63873. [PMID: 39100020 PMCID: PMC11298015 DOI: 10.7759/cureus.63873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
OBJECTIVES This study aimed to leverage Visually AcceSAble Rembrandt Images (VASARI) radiological features, extracted from magnetic resonance imaging (MRI) scans, and machine-learning techniques to predict glioma grade, isocitrate dehydrogenase (IDH) mutation status, and O6-methylguanine-DNA methyltransferase (MGMT) methylation. METHODOLOGY A retrospective evaluation was undertaken, analyzing MRI and molecular data from 107 glioma patients treated at a tertiary hospital. Patients underwent MRI scans using established protocols and were evaluated based on VASARI criteria. Tissue samples were assessed for glioma grade and underwent molecular testing for IDH mutations and MGMT methylation. Four machine learning models, namely, Random Forest, Elastic-Net, multivariate adaptive regression spline (MARS), and eXtreme Gradient Boosting (XGBoost), were trained on 27 VASARI features using fivefold internal cross-validation. The models' predictive performances were assessed using the area under the curve (AUC), sensitivity, and specificity. RESULTS For glioma grade prediction, XGBoost exhibited the highest AUC (0.978), sensitivity (0.879), and specificity (0.964), with f6 (proportion of non-enhancing) and f12 (definition of enhancing margin) as the most important predictors. In predicting IDH mutation status, XGBoost achieved an AUC of 0.806, sensitivity of 0.364, and specificity of 0.880, with f1 (tumor location), f12, and f30 (perpendicular diameter to f29) as primary predictors. For MGMT methylation, XGBoost displayed an AUC of 0.580, sensitivity of 0.372, and specificity of 0.759, highlighting f29 (longest diameter) as the key predictor. CONCLUSIONS This study underscores the robust potential of combining VASARI radiological features with machine learning models in predicting glioma grade, IDH mutation status, and MGMT methylation. The best and most balanced performance was achieved using the XGBoost model. While the prediction of glioma grade showed promising results, the sensitivity in discerning IDH mutations and MGMT methylation still leaves room for improvement. Follow-up studies with larger datasets and more advanced artificial intelligence techniques can further refine our understanding and management of gliomas.
Collapse
Affiliation(s)
- Nurhuda H Setyawan
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Lina Choridah
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Hanung A Nugroho
- Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Rusdy G Malueka
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Ery K Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Yana Supriatna
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing,Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Bambang Supriyadi
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| | - Rachmat A Hartanto
- Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito General Hospital, Universitas Gadjah Mada, Yogyakarta, IDN
| |
Collapse
|
34
|
Satgunaseelan L, Lee M, Iannuzzi S, Hallal S, Deang K, Stanceski K, Wei H, Mason S, Shivalingam B, Sim HW, Buckland ME, Alexander KL. 'The Reports of My Death Are Greatly Exaggerated'-Evaluating the Effect of Necrosis on MGMT Promoter Methylation Testing in High-Grade Glioma. Cancers (Basel) 2024; 16:1906. [PMID: 38791984 PMCID: PMC11120496 DOI: 10.3390/cancers16101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation remains an important predictive biomarker in high-grade gliomas (HGGs). The influence of necrosis on the fidelity of MGMT promoter (MGMTp) hypermethylation testing is currently unknown. Therefore, our study aims to evaluate the effect of varying degrees of necrosis on MGMTp status, as determined by pyrosequencing, in a series of primary and recurrent HGGs; (2) Methods: Within each case, the most viable blocks (assigned as 'true' MGMTp status) and the most necrotic block were determined by histopathology review. MGMTp status was determined by pyrosequencing. Comparisons of MGMTp status were made between the most viable and most necrotic blocks. (3) Results: 163 samples from 64 patients with HGGs were analyzed. MGMTp status was maintained in 84.6% of primary and 78.3% of recurrent HGGs between the most viable and necrotic blocks. A threshold of ≥60% tumor cellularity was established at which MGMTp status was unaltered, irrespective of the degree of necrosis. (4) Conclusions: MGMTp methylation status, as determined by pyrosequencing, does not appear to be influenced by necrosis in the majority of cases at a cellularity of at least 60%. Further investigation into the role of intratumoral heterogeneity on MGMTp status will increase our understanding of this predictive marker.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sebastian Iannuzzi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristine Deang
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristian Stanceski
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sofia Mason
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brindha Shivalingam
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Hao-Wen Sim
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| |
Collapse
|
35
|
Wei C, Gao Y, Li P. THOC6 is a novel biomarker of glioma and a target of anti-glioma drugs: An analysis based on bioinformatics and molecular docking. Medicine (Baltimore) 2024; 103:e37999. [PMID: 38728502 PMCID: PMC11081617 DOI: 10.1097/md.0000000000037999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Glioma is a typical malignant tumor of the nervous system. It is of great significance to identify new biomarkers for accurate diagnosis of glioma. In this context, THOC6 has been studied as a highly diagnostic prognostic biomarker, which contributes to improve the dilemma in diagnosing gliomas. We used online databases and a variety of statistical methods, such as Wilcoxon rank sum test, Dunn test and t test. We analyzed the mutation, location and expression profile of THOC6, revealing the network of THOC6 interaction with disease. Wilcoxon rank sum test showed that THOC6 is highly expressed in gliomas (P < 0.001). Dunn test, Wilcoxon rank sum test and t test showed that THOC6 expression was correlated with multiple clinical features. Logistic regression analysis further confirmed that THOC6 gene expression was a categorical dependent variable related to clinical features of poor prognosis. Kaplan-Meier survival analysis showed that the overall survival (OS) of glioma patients with high expression of THOC6 was poor (P < 0.001). Both univariate (P < 0.001) and multivariate (P = 0.04) Cox analysis confirmed that THOC6 gene expression was an independent risk factor for OS in patients with glioma. ROC curve analysis showed that THOC6 had a high diagnostic value in glioma (AUC = 0.915). Based on this, we constructed a nomogram to predict patient survival. Enrichment analysis showed that THOC6 expression was associated with multiple signal pathways. Immuno-infiltration analysis showed that the expression of THOC6 in glioma was closely related to the infiltration level of multiple immune cells. Molecular docking results showed that THOC6 might be the target of anti-glioma drugs. THOC6 is a novel diagnostic factor and prognostic biomarker of glioma.
Collapse
Affiliation(s)
- Chuang Wei
- Institute for Translational Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yijun Gao
- School of Medicine, Shanghai University, Shanghai, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Pöhlmann J, Weller M, Marcellusi A, Grabe-Heyne K, Krott-Coi L, Rabar S, Pollock RF. High costs, low quality of life, reduced survival, and room for improving treatment: an analysis of burden and unmet needs in glioma. Front Oncol 2024; 14:1368606. [PMID: 38571509 PMCID: PMC10987841 DOI: 10.3389/fonc.2024.1368606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Gliomas are a group of heterogeneous tumors that account for substantial morbidity, mortality, and costs to patients and healthcare systems globally. Survival varies considerably by grade, histology, biomarkers, and genetic alterations such as IDH mutations and MGMT promoter methylation, and treatment, but is poor for some grades and histologies, with many patients with glioblastoma surviving less than a year from diagnosis. The present review provides an introduction to glioma, including its classification, epidemiology, economic and humanistic burden, as well as treatment options. Another focus is on treatment recommendations for IDH-mutant astrocytoma, IDH-mutant oligodendroglioma, and glioblastoma, which were synthesized from recent guidelines. While recommendations are nuanced and reflect the complexity of the disease, maximum safe resection is typically the first step in treatment, followed by radiotherapy and/or chemotherapy using temozolomide or procarbazine, lomustine, and vincristine. Immunotherapies and targeted therapies currently have only a limited role due to disappointing clinical trial results, including in recurrent glioblastoma, for which the nitrosourea lomustine remains the de facto standard of care. The lack of treatment options is compounded by frequently suboptimal clinical practice, in which patients do not receive adequate therapy after resection, including delayed, shortened, or discontinued radiotherapy and chemotherapy courses due to treatment side effects. These unmet needs will require significant efforts to address, including a continued search for novel treatment options, increased awareness of clinical guidelines, improved toxicity management for chemotherapy, and the generation of additional and more robust clinical and health economic evidence.
Collapse
Affiliation(s)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andrea Marcellusi
- Economic Evaluation and HTA (EEHTA)-Centre for Economic and International Studies (CEIS), Faculty of Economics, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Silvia Rabar
- Covalence Research Ltd, Harpenden, United Kingdom
| | | |
Collapse
|
37
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
38
|
Gately L, Mesía C, Sepúlveda JM, Del Barco S, Pineda E, Gironés R, Fuster J, Hong W, Dumas M, Gill S, Navarro LM, Herrero A, Dowling A, de Las Peñas R, Vaz MA, Alonso M, Lwin Z, Harrup R, Peralta S, Long A, Perez-Segura P, Ahern E, Garate CO, Wong M, Campbell R, Cuff K, Jennens R, Gallego O, Underhill C, Martinez-Garcia M, Covela M, Cooper A, Brown S, Rosenthal M, Torres J, Collins IM, Gibbs P, Balana C. A combined analysis of two prospective randomised studies exploring the impact of extended post-radiation temozolomide on survival outcomes in newly diagnosed glioblastoma. J Neurooncol 2024; 166:407-415. [PMID: 38153582 DOI: 10.1007/s11060-023-04513-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The optimal duration of post-radiation temozolomide in newly diagnosed glioblastoma remains unclear, with no published phase III randomised trials. Standard-of-care stipulates 6 months. However, in routine care, it is often extended to 12 months, despite lacking robust supporting data. METHODS GEINO14-01 (Spain) and EX-TEM (Australia) studies enrolled glioblastoma patients without progression at the end of 6 months post-radiation temozolomide. Participants were randomised 1:1 to six additional months of temozolomide or observation. Primary endpoint was 6-month progression free survival from date of randomisation (6mPFS). Secondary endpoints included overall survival (OS) and toxicity. 204 patients were required to detect an improvement in 6mPFS from 50 to 60% (80% power). Neither study recruited sufficient patients. We performed a combined analysis of individual patient data. RESULTS 205 patients were recruited: 159 in GEINO14-01 (2014-2018) and 46 in EX-TEM (2019-2022). Median follow-up was 20.0 and 14.5 months. Baseline characteristics were balanced. There was no significant improvement in 6mPFS (57.2% vs 64.0%, OR0.75, p = 0.4), nor across any subgroups, including MGMT methylated; PFS (HR0.92, p = 0.59, median 7.8 vs 9.7 months); or OS (HR1.03, p = 0.87, median 20.1 vs 19.4 months). During treatment extension, 64% experienced any grade adverse event, mainly fatigue and gastrointestinal (both 54%). Only a minority required treatment changes: 4.5% dose delay, 7.5% dose reduction, 1.5% temozolomide discontinuation. CONCLUSION For glioblastoma patients, extending post-radiation temozolomide from 6 to 12 months is well tolerated but does not improve 6mPFS. We could not identify any subset that benefitted from extended treatment. Six months should remain standard-of-care.
Collapse
Affiliation(s)
- L Gately
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia.
| | - C Mesía
- Medical Oncology Service, Institut Català d'Oncologia, Hospitalet de Llobregat, Barcelona, Spain
| | - J M Sepúlveda
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - S Del Barco
- Medical Oncology Service, Institut Català d'Oncologia Girona, Girona, Spain
| | - E Pineda
- Medical Oncology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - R Gironés
- Medical Oncology Service, Hospital Universitario La Fe, Valencia, Spain
| | - J Fuster
- Medical Oncology Service, Hospital Son Espases, Palma de Mallorca, Spain
| | - W Hong
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Dumas
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - S Gill
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - L M Navarro
- Medical Oncology Service, Hospital de Salamanca, Salamanca, Spain
| | - A Herrero
- Medical Oncology Service, Hospital Miguel Servet, Zaragoza, Spain
| | - A Dowling
- Department of Medical Oncology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - R de Las Peñas
- Medical Oncology Service, Hospital Provincial de Castellón, Castellón, Spain
| | - M A Vaz
- Medical Oncology Service, Hospital Ramón y Cajal, Madrid, Spain
| | - M Alonso
- Medical Oncology Service, Hospital Virgen del Rocio, Seville, Spain
| | - Z Lwin
- Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - R Harrup
- Department of Medical Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - S Peralta
- Medical Oncology Service, Hospital Sant Joan de Reus, Reus, Spain
| | - A Long
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - P Perez-Segura
- Medical Oncology Service, Hospital Clinico San Carlos, Madrid, Spain
| | - E Ahern
- Department of Medical Oncology, Monash Health, Melbourne, VIC, Australia
| | - C O Garate
- Medical Oncology Service, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - M Wong
- Department of Medical Oncology, Westmead Hospital, Westmead, NSW, Australia
| | - R Campbell
- Department of Medical Oncology, Bendigo Health, Bendigo, VIC, Australia
| | - K Cuff
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - R Jennens
- Department of Medical Oncology, Epworth Health, Richmond, VIC, Australia
| | - O Gallego
- Medical Oncology Service, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - C Underhill
- Department of Medical Oncology, Border Medical Oncology, East Albury, NSW, Australia
| | | | - M Covela
- Medical Oncology Service, Hospital Lucus Augusti, Lugo, Spain
| | - A Cooper
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW, Australia
| | - S Brown
- Department of Medical Oncology, Ballarat Health Services, Ballarat, VIC, Australia
| | - M Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - J Torres
- Department of Medical Oncology, Goulburn Valley Health, Shepparton, VIC, Australia
| | - I M Collins
- Department of Medical Oncology, South West Regional Cancer Centre, Geelong, VIC, Australia
| | - P Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - C Balana
- Medical Oncology Service, Institut Català d'Oncologia, Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
39
|
Zhang Y, Shao Y, Li Y, Li X, Zhang X, E Q, Wang W, Jiang Z, Gan W, Huang Y. The generation of glioma organoids and the comparison of two culture methods. Cancer Med 2024; 13:e7081. [PMID: 38457217 PMCID: PMC10923046 DOI: 10.1002/cam4.7081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The intra- and inter-tumoral heterogeneity of gliomas and the complex tumor microenvironment make accurate treatment of gliomas challenging. At present, research on gliomas mainly relies on cell lines, stem cell tumor spheres, and xenotransplantation models. The similarity between traditional tumor models and patients with glioma is very low. AIMS In this study, we aimed to address the limitations of traditional tumor models by generating patient-derived glioma organoids using two methods that summarized the cell diversity, histological features, gene expression, and mutant profiles of their respective parent tumors and assess the feasibility of organoids for personalized treatment. MATERIALS AND METHODS We compared the organoids generated using two methods through growth analysis, immunohistological analysis, genetic testing, and the establishment of xenograft models. RESULTS Both types of organoids exhibited rapid infiltration when transplanted into the brains of adult immunodeficient mice. However, organoids formed using the microtumor method demonstrated more similar cellular characteristics and tissue structures to the parent tumors. Furthermore, the microtumor method allowed for faster culture times and more convenient operational procedures compared to the Matrigel method. DISCUSSION Patient-derived glioma organoids, especially those generated through the microtumor method, present a promising avenue for personalized treatment strategies. Their capacity to faithfully mimic the cellular and molecular characteristics of gliomas provides a valuable platform for elucidating tumor biology and evaluating therapeutic modalities. CONCLUSION The success rates of the Matrigel and microtumor methods were 45.5% and 60.5%, respectively. The microtumor method had a higher success rate, shorter establishment time, more convenient passage and cryopreservation methods, better simulation of the cellular and histological characteristics of the parent tumor, and a high genetic guarantee.
Collapse
Affiliation(s)
- Yang Zhang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yunxiang Shao
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanyan Li
- Department of NeurosurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuetao Li
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuewen Zhang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qinzhi E
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Weichao Wang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zuoyu Jiang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenjuan Gan
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yulun Huang
- Department of NeurosurgeryThe Fourth Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
40
|
An W, Yang Q, Xi Y, Pan H, Huang H, Chen Q, Wang Y, Hua D, Shi C, Wang Q, Sun C, Luo W, Li X, Yu S, Zhou X. Identification of SRSF10 as a promising prognostic biomarker with functional significance among SRSFs for glioma. Life Sci 2024; 338:122392. [PMID: 38160788 DOI: 10.1016/j.lfs.2023.122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
AIMS The serine/arginine-rich splicing factor (SRSF) protein family members are essential mediators of the alternative splicing (AS) regulatory network, which is tightly implicated in cancer progression. However, the expression, clinical correlation, immune infiltration, and prognostic value of SRSFs in gliomas remain unclear. MATERIALS AND METHODS Glioma samples were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Several databases, such as HPA, DAVID, UALCAN were used to comprehensively explore the roles of SRSFs. In addition, experimental validation of SRSF10 was also conducted. KEY FINDINGS Here, we found the expression alterations of the SRSF family in glioma samples using data from the TCGA and CGGA_325 datasets. Among the 12 genes, most were found to be closely associated with glioma clinical features, which linked to poor prognosis in glioma patients. Interestingly, survival analysis identified only SRSF10 as a potential independent risk prognostic biomarker for glioma patients. Immune analysis indicated that glioma patients with high SRSF10 expression may respond well to immunotherapies targeting immune checkpoint (ICP) genes. Finally, knocking down SRSF10 reduced glioma cell viability, induced G1 cell cycle arrest, and induced the exclusion of bcl-2-associated transcription factor 1 (BCLAF1) exon 5a. SIGNIFICANCE Overall, this study uncovers the oncogenic roles of most SRSF family members in glioma, with the exception of SRSF5, while highlighting SRSF10 as a potential novel independent prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Wenzhe An
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Qingqing Yang
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yunlan Xi
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hua Huang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Qiang Chen
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, PR China; Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, PR China
| | - Yixuan Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Dan Hua
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Qian Wang
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
41
|
Weber R, Weller M, Reifenberger G, Vasella F. Epigenetic modification and characterization of the MGMT promoter region using CRISPRoff in glioblastoma cells. Front Oncol 2024; 14:1342114. [PMID: 38357209 PMCID: PMC10864556 DOI: 10.3389/fonc.2024.1342114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Flavio Vasella
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Li L, Xia S, Zhao Z, Deng L, Wang H, Yang D, Hu Y, Ji J, Huang D, Xin T. EMP3 as a prognostic biomarker correlates with EMT in GBM. BMC Cancer 2024; 24:89. [PMID: 38229014 DOI: 10.1186/s12885-023-11796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Siyu Xia
- Department of Oncology, The Beidahuang Group General Hospital, Harbin, 150006, China
| | - Zitong Zhao
- Department of Anesthesiology and Pain Rehabilitation, School of Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China
| | - Lili Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dongbo Yang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dayong Huang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Tao Xin
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
43
|
Wang Z, Liu Z, Wang PS, Lin HP, Rea M, Kondo K, Yang C. Epigenetic downregulation of O 6-methylguanine-DNA methyltransferase contributes to chronic hexavalent chromium exposure-caused genotoxic effect and cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122978. [PMID: 37995958 PMCID: PMC11372728 DOI: 10.1016/j.envpol.2023.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer and other types of cancer in humans, although the mechanism of Cr(VI) carcinogenesis remains elusive. Cr(VI) has been considered as a genotoxic carcinogen, but accumulating evidence indicates that Cr(VI) also causes various epigenetic toxic effects that play important roles in Cr(VI) carcinogenesis. However, it is not clear how Cr(VI)-caused epigenetic dysregulations contributes to Cr(VI) carcinogenesis. This study investigates whether Cr(VI) epigenetic toxic effect has an impact on its genotoxic effect. It was found that chronic low dose of Cr(VI) exposure time-dependently down-regulates the expression of a critical DNA damage repair protein O6-methylguanine-DNA methyltransferase (MGMT), leading to the increases of the levels of the highly mutagenic and carcinogenic DNA lesion O6-methylguanine (O6-MeG) in human bronchial epithelial BEAS-2B cells. Moreover, the levels of MGMT and O6-MeG in chronic Cr(VI) exposure-caused human lung cancer tissues are also significantly lower and higher than that in the adjacent normal lung tissues, respectively. It was further determined that chronic low dose of Cr(VI) exposure-transformed BEAS-2B cells display impaired DNA damage repair capacity and a high sensitivity to the toxicity of the alkylating chemotherapeutic drug Temozolomide. In contrast, stably overexpressing MGMT in parental BEAS-2B cells reverses chronic low dose of Cr(VI) exposure-caused DNA damage repair deficiency and significantly reduces cell transformation by Cr(VI). Further mechanistical studies revealed that chronic low dose of Cr(VI) exposure down-regulates MGMT expression through epigenetic mechanisms by increasing DNA methylation and histone H3 repressive modifications. Taken together, these findings suggest that epigenetic down-regulation of a crucial DNA damage repair protein MGMT contributes significantly to the genotoxic effect and cell transformation caused by chronic low dose of Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
44
|
Kushihara Y, Tanaka S, Kobayashi Y, Nagaoka K, Kikuchi M, Nejo T, Yamazawa E, Nambu S, Kugasawa K, Takami H, Takayanagi S, Saito N, Kakimi K. Glioblastoma with high O6-methyl-guanine DNA methyltransferase expression are more immunologically active than tumors with low MGMT expression. Front Immunol 2024; 15:1328375. [PMID: 38288307 PMCID: PMC10824125 DOI: 10.3389/fimmu.2024.1328375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Background Glioblastoma (GBM) is a highly lethal brain tumor. The effectiveness of temozolomide (TMZ) treatment in GBM is linked to the methylation status of O6-methyl-guanine DNA methyltransferase (MGMT) promoter. Patients with unmethylated MGMT promoter have limited treatment options available. Consequently, there is a pressing need for alternative therapeutic strategies for such patients. Methods Data, including transcriptomic and clinical information, as well as information on MGMT promoter methylation status in primary GBM, were obtained from The Cancer Genome Atlas (TCGA) (n=121) and Chinese Glioma Genome Atlas (CGGA) (n=83) datasets. Samples were categorized into high and low MGMT expression groups, MGMT-high (MGMT-H) and MGMT-low (MGMT-L) tumors. A comprehensive transcriptome analysis was conducted to explore the tumor-immune microenvironment. Furthermore, we integrated transcriptome data from 13 GBM patients operated at our institution with findings from tumor-infiltrating lymphocyte (TIL) cultures, specifically investigating their response to autologous tumors. Results Gene signatures associated with various immune cells, including CD8 T cells, helper T cells, B cells, and macrophages, were noted in MGMT-H tumors. Pathway analysis confirmed the enrichment of immune cell-related pathways. Additionally, biological processes involved in the activation of monocytes and lymphocytes were observed in MGMT-H tumors. Furthermore, TIL culture experiments showed a greater presence of tumor-reactive T cells in MGMT-H tumors compared to MGMT-L tumors. These findings suggest that MGMT-H tumors has a potential for enhanced immune response against tumors mediated by CD8 T cells. Conclusion Our study provides novel insights into the immune cell composition of MGMT-H tumors, which is characterized by the infiltration of type 1 helper T cells and activated B cells, and also the presence of tumor-reactive T cells evidenced by TIL culture. These findings contribute to a better understanding of the immune response in MGMT-H tumors, emphasizing their potential for immunotherapy. Further studies are warranted to investigate on the mechanisms of MGMT expression and antitumor immunity.
Collapse
Affiliation(s)
- Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Miyu Kikuchi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Science and Medicine, Research center for Advanced Science and technology, The University of Tokyo, Tokyo, Japan
| | - Shohei Nambu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuha Kugasawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
- Department of Immunology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
45
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
46
|
Stadnicka I, Strzałka-Mrozik B, Kimsa-Dudek M, Kaspera W, Plewka A, Szopa W, Stadnicki A. Kinin Receptors and Kinin-Related Gene Expression in Astrocytic Brain Tumors. Cancers (Basel) 2024; 16:241. [PMID: 38254732 PMCID: PMC10813509 DOI: 10.3390/cancers16020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Kinins are a set of peptides present in tissues that are involved in the inflammatory response and cancer progression. However, studies showing the expression of kinin receptors in human glioma samples are still incomplete and contradictory. The aim of the present study was to ascertain the expression of BDKRB1 and BDKRB2 genes, as well as the level of B1R and B2R proteins in human gliomas, depending on the degree of malignancy. Additionally, representative kinin-dependent genes with altered expression were indicated. The expression profile of kinin-dependent genes was determined using oligonucleotide microarray technique. In addition, RT-qPCR was used to assess the expression level of selected differentiating genes. The location of kinin receptors in brain gliomas was assessed using immunohistochemical methods. The oligonucleotide microarray method was used to identify 12 mRNA IDs of kinin-related genes whose expression was upregulated or downregulated in gliomas of different grades. In immunohistochemically stained samples, the concentrations of BR1 and BR2 proteins, measured by optical density, were statistically significantly higher in grade G3 vs. G2 and G4 vs. G3. Increased expression of kinin receptors BDKRB1 and BDKRB2 in brain gliomas, depending on the degree of malignancy, suggests the involvement of kinins and their receptors in the disease's pathogenesis. Quantitative assessment of mRNA BDKRB1, PRKAR1A, MAP2K, and EGFR in patients with brain tumors may hold diagnostic and therapeutic significance.
Collapse
Affiliation(s)
- Izabela Stadnicka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (W.K.); (W.S.)
| | - Andrzej Plewka
- Institute of Health Sciences, University of Opole, 45-040 Opole, Poland;
| | - Wojciech Szopa
- Department of Neurosurgery, Medical University of Silesia, St. Barbara Hospital, 41-200 Sosnowiec, Poland; (W.K.); (W.S.)
| | - Antoni Stadnicki
- Faculty of Medicine, Jan Długosz University in Częstochowa, 42-200 Częstochowa, Poland;
- Section of Gastroenterology, Multidisciplinary Hospital, 43-600 Jaworzno, Poland
| |
Collapse
|
47
|
Archana B, D'Cruze L, Sundaram S, Ramanathan K, Ganesh K. Immunohistochemical expression of histone modification pattern in adult glioblastoma. J Cancer Res Ther 2024; 20:52-56. [PMID: 38554298 DOI: 10.4103/jcrt.jcrt_257_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite the growing advances in molecular research and therapeutics, glioblastomas are still considered highly invasive aggressive tumors with a median survival of 15 months. Genetic alterations have been studied in detail; however, additionally, there is now growing evidence on the role of epigenetic alterations in glioblastoma. Recently, histone modification patterns have been found to have a significant part in gene expression and prognosis. However, further research in this field is warranted to establish its role for the betterment of these patients with the deadly disease. AIMS To determine the immunohistochemical expression of histone modifications like histone-3-lysine-18 acetylation (H3K18Ac) and histone-4-lysine 20 trimethylation (H4K20triMe) in glioblastoma patients. MATERIALS AND METHODS This is a retrospective study of 48 glioblastoma patients who underwent surgery. Immunohistochemistry (IHC) for tri-methyl-histone-H4 (Lys20) (H4K20triMe) and acetyl-histone-H3 (Lys18) (H3K18Ac) was performed in paraffin-embedded tissues manually, and the expression was noted. Data on the mitotic index and overall survival was collected and statistically analyzed. RESULTS The mean age was 50 years with a M: F ratio of 1.6:1. Out of 48 cases, 60% (28 cases) demonstrated positivity for H3K18Ac and 98% (46 cases) for H4K20triMe. The pattern of expression was nuclear with increased expression adjacent to necrosis and at the invasive front. The overall median Q score for H3K18Ac was 1/12 and for H4K20triMe was 6/12. No significant statistical significance was observed between histone expression, Ki67%, and overall survival. CONCLUSION Histone modification patterns are being explored in detail in an array of tumors. They also have a potential role in glioblastoma for risk stratification and instituting appropriate treatment based on the prognosis. Epigenetic changes like histone modification patterns, in addition to genetics, can pave the way for a better molecular understanding of glioblastomas and provide hope in the future to improve the survival of these patients with deadly diseases.
Collapse
Affiliation(s)
- B Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Lawrence D'Cruze
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Krishnakumar Ramanathan
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Krishnamurthy Ganesh
- Department of Neurosurgery, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
48
|
Pashirova TN, Nemtarev AV, Buzyurova DN, Shaihutdinova ZM, Dimukhametov MN, Babaev VM, Voloshina AD, Mironov VF. Terpenes-Modified Lipid Nanosystems for Temozolomide, Improving Cytotoxicity against Glioblastoma Human Cancer Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:55. [PMID: 38202510 PMCID: PMC10780480 DOI: 10.3390/nano14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Currently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% w/w), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% w/w) abietic acid and Abies sibirica Ledeb. resin (A. sibirica). Different concentrations and combinations of terpene-lipid systems were employed to treat human cancer cell lines T 98G (glioblastoma), M-Hela (carcinoma of the cervix) and human liver cell lines (Chang liver). The terpene-lipid systems appeared to be unilamellar and of spherical shape under transmission electron microscopy (TEM). The creation of a TMZ-loaded terpene-lipid nanosystem was about 100 nm in diameter with a negative surface charge found by dynamic light scattering. The 74% encapsulation efficiency allowed the release time of TMZ to be prolonged. The modification by terpenes of TMZ-loaded lipid nanoparticles improved by four times the cytotoxicity against human cancer T 98G cells and decreased the cytotoxicity against human normal liver cells. Terpene-modified delivery lipid systems are of potential interest as a combination therapy.
Collapse
Affiliation(s)
- Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daina N. Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Zukhra M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| |
Collapse
|
49
|
De Simone M, Conti V, Palermo G, De Maria L, Iaconetta G. Advancements in Glioma Care: Focus on Emerging Neurosurgical Techniques. Biomedicines 2023; 12:8. [PMID: 38275370 PMCID: PMC10813759 DOI: 10.3390/biomedicines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Despite significant advances in understanding the molecular pathways of glioma, translating this knowledge into effective long-term solutions remains a challenge. Indeed, gliomas pose a significant challenge to neurosurgical oncology because of their diverse histopathological features, genetic heterogeneity, and clinical manifestations. Relevant sections: This study focuses on glioma complexity by reviewing recent advances in their management, also considering new classification systems and emerging neurosurgical techniques. To bridge the gap between new neurosurgical approaches and standards of care, the importance of molecular diagnosis and the use of techniques such as laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) are emphasized, exploring how the integration of molecular knowledge with emerging neurosurgical approaches can personalize and improve the treatment of gliomas. CONCLUSIONS The choice between LITT and FUS should be tailored to each case, considering factors such as tumor characteristics and patient health. LITT is favored for larger, complex tumors, while FUS is standard for smaller, deep-seated ones. Both techniques are equally effective for small and superficial tumors. Our study provides clear guidance for treating pediatric low-grade gliomas and highlights the crucial roles of LITT and FUS in managing high-grade gliomas in adults. This research sets the stage for improved patient care and future developments in the field of neurosurgery.
Collapse
Affiliation(s)
- Matteo De Simone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| | - Giuseppina Palermo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
| | - Lucio De Maria
- Unit of Neurosurgery, Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy;
- Unit of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Giorgio Iaconetta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (V.C.); (G.P.); (G.I.)
- Neurosurgery Unit, University Hospital “San Giovanni di Dio e Ruggi, D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
50
|
Wang Z, Li L, Wang Z, Chen X, Zhang Z. The clinical, radiological, and surgical characteristics of anterior perforated substance glioma: a retrospective study. Chin Neurosurg J 2023; 9:36. [PMID: 38111070 PMCID: PMC10729556 DOI: 10.1186/s41016-023-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND To explore the clinical, radiological, and surgical characteristics of anterior perforated substance (APS) gliomas. METHODS Twenty patients with APS glioma who were treated with surgery between March 2019 and January 2022 from Tiantan hospital were retrospectively reviewed. The clinical, histological and radiological data were collected. RESULTS Twenty patients, including 7 males (55%) and 13 females (45%), with a mean age at diagnosis of 37.9 years (range, 28-53 years) underwent operative intervention for APS. Headaches and dizziness were the most common preoperative symptoms in the majority patients (14, 70%). Based on radiological features of MRI, the APS was classified into two subtypes, type A and type B. Seven patients (40%) in type A indicated a clear tumor margin, while 13 patients (60%) in type B showed an ill-defined margin. The surgical approach including frontal, temporal, and coronal frontal incisions for type A and type B tumors, respectively. Three patients in type A received total resection, while one patient in type B were total resected. Pathologically, 12 cases (60%, 12/20) were diagnosed as astrocytoma and 8 cases (20%, 8/20) were oligodendroglioma. Meanwhile, 17 cases (85%, 17/20) had MGMT promotor methylation. CONCLUSION In this study, we performed the first systematic research of patients with APS glioma. Most of patients with APS presented headaches and dizziness symptoms. The APS glioma was further divided into two major radiological subtypes with relevant different surgical approaches. The APS glioma in type A were more likely to receive total resection.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China
| | - Lianwang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China
| | - Xuzhu Chen
- Department of Radiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China.
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Beijing, 100070, People's Republic of China.
| |
Collapse
|