1
|
Feng X, Spiering MM, de Luna Almeida Santos R, Benkovic SJ, Li H. Structural basis of the T4 bacteriophage primosome assembly and primer synthesis. Nat Commun 2023; 14:4396. [PMID: 37474605 PMCID: PMC10359460 DOI: 10.1038/s41467-023-40106-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The T4 bacteriophage gp41 helicase and gp61 primase assemble into a primosome to couple DNA unwinding with RNA primer synthesis for DNA replication. How the primosome is assembled and how the primer length is defined are unclear. Here we report a series of cryo-EM structures of T4 primosome assembly intermediates. We show that gp41 alone is an open spiral, and ssDNA binding triggers a large-scale scissor-like conformational change that drives the ring closure and activates the helicase. Helicase activation exposes a cryptic hydrophobic surface to recruit the gp61 primase. The primase binds the helicase in a bipartite mode in which the N-terminal Zn-binding domain and the C-terminal RNA polymerase domain each contain a helicase-interacting motif that bind to separate gp41 N-terminal hairpin dimers, leading to the assembly of one primase on the helicase hexamer. Our study reveals the T4 primosome assembly process and sheds light on the RNA primer synthesis mechanism.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Michelle M Spiering
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | | | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
2
|
Feng X, Spiering MM, de Luna Almeida Santos R, Benkovic SJ, Li H. Structural basis of the T4 bacteriophage primosome assembly and primer synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539249. [PMID: 37205424 PMCID: PMC10187150 DOI: 10.1101/2023.05.03.539249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The T4 bacteriophage gp41 helicase and gp61 primase assemble into a primosome complex to couple DNA unwinding with RNA primer synthesis for DNA replication. How a primosome is assembled and how the length of the RNA primer is defined in the T4 bacteriophage, or in any model system, are unclear. Here we report a series of cryo-EM structures of T4 primosome assembly intermediates at resolutions up to 2.7 Å. We show that the gp41 helicase is an open spiral in the absence of ssDNA, and ssDNA binding triggers a large-scale scissor-like conformational change that drives the open spiral to a closed ring that activates the helicase. We found that the activation of the gp41 helicase exposes a cryptic hydrophobic primase-binding surface allowing for the recruitment of the gp61 primase. The primase binds the gp41 helicase in a bipartite mode in which the N-terminal Zn-binding domain (ZBD) and the C-terminal RNA polymerase domain (RPD) each contain a helicase-interacting motif (HIM1 and HIM2, respectively) that bind to separate gp41 N-terminal hairpin dimers, leading to the assembly of one primase on the helicase hexamer. Based on two observed primosome conformations - one in a DNA-scanning mode and the other in a post RNA primer-synthesis mode - we suggest that the linker loop between the gp61 ZBD and RPD contributes to the T4 pentaribonucleotide primer. Our study reveals T4 primosome assembly process and sheds light on RNA primer synthesis mechanism.
Collapse
|
3
|
Residues located in the primase domain of the bacteriophage T7 primase-helicase are essential for loading the hexameric complex onto DNA. J Biol Chem 2022; 298:101996. [PMID: 35500649 PMCID: PMC9198812 DOI: 10.1016/j.jbc.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
The T7 primase-helicase plays a pivotal role in the replication of T7 DNA. Using affinity isolation of peptide–nucleic acid crosslinks and mass spectrometry, we identify protein regions in the primase-helicase and T7 DNA polymerase that form contacts with the RNA primer and DNA template. The contacts between nucleic acids and the primase domain of the primase-helicase are centered in the RNA polymerase subdomain of the primase domain, in a cleft between the N-terminal subdomain and the topoisomerase-primase fold. We demonstrate that residues along a beta sheet in the N-terminal subdomain that contacts the RNA primer are essential for phage growth and primase activity in vitro. Surprisingly, we found mutations in the primase domain that had a dramatic effect on the helicase. Substitution of a residue conserved in other DnaG-like enzymes, R84A, abrogates both primase and helicase enzymatic activities of the T7 primase-helicase. Alterations in this residue also decrease binding of the primase-helicase to ssDNA. However, mass photometry measurements show that these mutations do not interfere with the ability of the protein to form the active hexamer.
Collapse
|
4
|
Soffer A, Eisdorfer SA, Ifrach M, Ilic S, Afek A, Schussheim H, Vilenchik D, Akabayov B. Inferring primase-DNA specific recognition using a data driven approach. Nucleic Acids Res 2021; 49:11447-11458. [PMID: 34718733 PMCID: PMC8599759 DOI: 10.1093/nar/gkab956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
DNA–protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.
Collapse
Affiliation(s)
- Adam Soffer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarah A Eisdorfer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morya Ifrach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hallel Schussheim
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Vilenchik
- Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Peter B, Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel) 2020; 11:genes11040408. [PMID: 32283748 PMCID: PMC7231222 DOI: 10.3390/genes11040408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian mitochondria contain a circular genome (mtDNA) which encodes subunits of the oxidative phosphorylation machinery. The replication and maintenance of mtDNA is carried out by a set of nuclear-encoded factors—of which, helicases form an important group. The TWINKLE helicase is the main helicase in mitochondria and is the only helicase required for mtDNA replication. Mutations in TWINKLE cause a number of human disorders associated with mitochondrial dysfunction, neurodegeneration and premature ageing. In addition, a number of other helicases with a putative role in mitochondria have been identified. In this review, we discuss our current knowledge of TWINKLE structure and function and its role in diseases of mtDNA maintenance. We also briefly discuss other potential mitochondrial helicases and postulate on their role(s) in mitochondria.
Collapse
|
6
|
Bergsch J, Allain FHT, Lipps G. Recent advances in understanding bacterial and archaeoeukaryotic primases. Curr Opin Struct Biol 2019; 59:159-167. [PMID: 31585372 DOI: 10.1016/j.sbi.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
DNA replication in all forms of life relies upon the initiation of synthesis on a single strand template by formation of a short oligonucleotide primer, which is subsequently elongated by DNA polymerases. Two structurally distinct classes of enzymes have evolved to perform this function, namely the bacterial DnaG-type primases and the Archaeal and Eukaryotic primases (AEP). Structural and mechanistic insights have provided a clear understanding of the role of the different domains of these enzymes in the context of the replisome and recent work sheds light upon primase-substrate interactions. We herein review the emerging picture of the primase mechanism on the basis of the structural knowledge obtained to date and propose future directions of this essential aspect of DNA replication.
Collapse
Affiliation(s)
- Jan Bergsch
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland; Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Georg Lipps
- Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Hofackerstrasses 30, 4132 Muttenz, Switzerland.
| |
Collapse
|
7
|
Oakley AJ. A structural view of bacterial DNA replication. Protein Sci 2019; 28:990-1004. [PMID: 30945375 DOI: 10.1002/pro.3615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/11/2022]
Abstract
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.
Collapse
Affiliation(s)
- Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
8
|
Martinez SE, Bauman JD, Das K, Arnold E. Structure of HIV-1 reverse transcriptase/d4TTP complex: Novel DNA cross-linking site and pH-dependent conformational changes. Protein Sci 2018; 28:587-597. [PMID: 30499174 DOI: 10.1002/pro.3559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Stavudine (d4T, 2',3'-didehydro-2',3'-dideoxythymidine) was one of the first chain-terminating nucleoside analogs used to treat HIV infection. We present the first structure of the active, triphosphate form of d4T (d4TTP) bound to a catalytic complex of HIV-1 RT/dsDNA template-primer. We also present a new strategy for disulfide (S-S) chemical cross-linking between N6 of a modified adenine at the second overhang base to I63C in the fingers subdomain of RT. The cross-link site is upstream of the duplex-binding region of RT, however, the structure is very similar to published RT structures with cross-linking to Q258C in the thumb, which suggests that cross-linking at either site does not appreciably perturb the RT/DNA structures. RT has a catalytic maximum at pH 7.5. We determined the X-ray structures of the I63C-RT/dsDNA/d4TTP cross-linked complexes at pH 7, 7.5, 8, 8.5, 9, and 9.5. We found small (~0.5 Å), pH-dependent motions of the fingers subdomain that folds in to form the dNTP-binding pocket. We propose that the pH-activity profile of RT relates to this motion of the fingers. Due to side effects of neuropathy and lipodystrophy, use of d4T has been stopped in most countries, however, chemical modification of d4T might lead to the development of a new class of nucleoside analogs targeting RNA and DNA polymerases.
Collapse
Affiliation(s)
- Sergio E Martinez
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Kalyan Das
- Rega Institute for Medical Research and Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
9
|
Hou C, Biswas T, Tsodikov OV. Structures of the Catalytic Domain of Bacterial Primase DnaG in Complexes with DNA Provide Insight into Key Priming Events. Biochemistry 2018; 57:2084-2093. [PMID: 29558114 DOI: 10.1021/acs.biochem.8b00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial primase DnaG is an essential nucleic acid polymerase that generates primers for replication of chromosomal DNA. The mechanism of DnaG remains unclear due to the paucity of structural information on DnaG in complexes with other replisome components. Here we report the first crystal structures of noncovalent DnaG-DNA complexes, obtained with the RNA polymerase domain of Mycobacterium tuberculosis DnaG and various DNA ligands. One structure, obtained with ds DNA, reveals interactions with DnaG as it slides on ds DNA and suggests how DnaG binds template for primer synthesis. In another structure, DNA in the active site of DnaG mimics the primer, providing insight into mechanisms for the nucleotide transfer and DNA translocation. In conjunction with the recent cryo-EM structure of the bacteriophage T7 replisome, this study yields a model for primer elongation and hand-off to DNA polymerase.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Tapan Biswas
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| |
Collapse
|
10
|
Felczak MM, Chodavarapu S, Kaguni JM. DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase. J Biol Chem 2017; 292:20871-20882. [PMID: 29070678 DOI: 10.1074/jbc.m117.807644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Former studies relying on hydrogen/deuterium exchange analysis suggest that DnaC bound to DnaB alters the conformation of the N-terminal domain (NTD) of DnaB to impair the ability of this DNA helicase to interact with primase. Supporting this idea, the work described herein based on biosensor experiments and enzyme-linked immunosorbent assays shows that the DnaB-DnaC complex binds poorly to primase in comparison with DnaB alone. Using a structural model of DnaB complexed with the C-terminal domain of primase, we found that Ile-85 is located at the interface in the NTD of DnaB that contacts primase. An alanine substitution for Ile-85 specifically interfered with this interaction and impeded DnaB function in DNA replication, but not its activity as a DNA helicase or its ability to bind to ssDNA. By comparison, substitutions of Asn for Ile-136 (I136N) and Thr for Ile-142 (I142T) in a subdomain previously named the helical hairpin in the NTD of DnaB altered the conformation of the helical hairpin and/or compromised its pairwise arrangement with the companion subdomain in each brace of protomers of the DnaB hexamer. In contrast with the I85A mutant, the latter were defective in DNA replication due to impaired binding to both ssDNA and primase. In view of these findings, we propose that DnaC controls the ability of DnaB to interact with primase by modifying the conformation of the NTD of DnaB.
Collapse
Affiliation(s)
- Magdalena M Felczak
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Sundari Chodavarapu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jon M Kaguni
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
11
|
Structural Insight into the Specific DNA Template Binding to DnaG primase in Bacteria. Sci Rep 2017; 7:659. [PMID: 28386108 PMCID: PMC5429622 DOI: 10.1038/s41598-017-00767-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Bacterial primase initiates the repeated synthesis of short RNA primers that are extended by DNA polymerase to synthesize Okazaki fragments on the lagging strand at replication forks. It remains unclear how the enzyme recognizes specific initiation sites. In this study, the DnaG primase from Bacillus subtilis (BsuDnaG) was characterized and the crystal structure of the RNA polymerase domain (RPD) was determined. Structural comparisons revealed that the tethered zinc binding domain plays an important role in the interactions between primase and specific template sequence. Structural and biochemical data defined the ssDNA template binding surface as an L shape, and a model for the template ssDNA binding to primase is proposed. The flexibility of the DnaG primases from B. subtilis and G. stearothermophilus were compared, and the results implied that the intrinsic flexibility of the primase may facilitate the interactions between primase and various partners in the replisome. These results shed light on the mechanism by which DnaG recognizes the specific initiation site.
Collapse
|
12
|
Jameson KH, Wilkinson AJ. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes (Basel) 2017; 8:E22. [PMID: 28075389 PMCID: PMC5295017 DOI: 10.3390/genes8010022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.
Collapse
Affiliation(s)
- Katie H Jameson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
13
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
14
|
Kaguni LS, Oliveira MT. Structure, function and evolution of the animal mitochondrial replicative DNA helicase. Crit Rev Biochem Mol Biol 2015; 51:53-64. [PMID: 26615986 DOI: 10.3109/10409238.2015.1117056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial replicative DNA helicase is essential for animal mitochondrial DNA (mtDNA) maintenance. Deleterious mutations in the gene that encodes it cause mitochondrial dysfunction manifested in developmental delays, defects and arrest, limited life span, and a number of human pathogenic phenotypes that are recapitulated in animals across taxa. In fact, the replicative mtDNA helicase was discovered with the identification of human disease mutations in its nuclear gene, and based upon its deduced amino acid sequence homology with bacteriophage T7 gene 4 protein (T7 gp4), a bi-functional primase-helicase. Since that time, numerous investigations of its structure, mechanism, and physiological relevance have been reported, and human disease alleles have been modeled in the human, mouse, and Drosophila systems. Here, we review this literature and draw evolutionary comparisons that serve to shed light on its divergent features.
Collapse
Affiliation(s)
- Laurie S Kaguni
- a Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine , Michigan State University , East Lansing , MI , USA .,b Institute of Biosciences and Medical Technology, University of Tampere , Tampere , Finland , and
| | - Marcos T Oliveira
- c Departamento de Tecnologia , Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal , Brazil
| |
Collapse
|
15
|
Fernández-Millán P, Lázaro M, Cansız-Arda Ş, Gerhold JM, Rajala N, Schmitz CA, Silva-Espiña C, Gil D, Bernadó P, Valle M, Spelbrink JN, Solà M. The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res 2015; 43:4284-95. [PMID: 25824949 PMCID: PMC4417153 DOI: 10.1093/nar/gkv189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/21/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.
Collapse
Affiliation(s)
- Pablo Fernández-Millán
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Melisa Lázaro
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Şirin Cansız-Arda
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Joachim M Gerhold
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Nina Rajala
- Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Claus-A Schmitz
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Cristina Silva-Espiña
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - David Gil
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier I&II. Montpellier, F-34090, France
| | - Mikel Valle
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Maria Solà
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| |
Collapse
|
16
|
Vaithiyalingam S, Arnett DR, Aggarwal A, Eichman BF, Fanning E, Chazin WJ. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J Mol Biol 2013; 426:558-69. [PMID: 24239947 DOI: 10.1016/j.jmb.2013.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8-10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal that eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique subdomain not found in the archaeal and bacterial primases. Calorimetry experiments reveal that Mn(2+) but not Mg(2+) significantly enhances the binding of nucleotide to primase, which correlates with higher catalytic efficiency in vitro. The structure of p48 with bound UTP and Mn(2+) provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding alter nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions are not viable. Our results reveal that two residues (S160 and H166) in direct contact with the nucleotide were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis.
Collapse
Affiliation(s)
- Sivaraja Vaithiyalingam
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Diana R Arnett
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | - Amit Aggarwal
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Specificity in suppression of SOS expression by recA4162 and uvrD303. DNA Repair (Amst) 2013; 12:1072-80. [PMID: 24084169 DOI: 10.1016/j.dnarep.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023]
Abstract
Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap).
Collapse
|
18
|
You Z, De Falco M, Kamada K, Pisani FM, Masai H. The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase α-primase and stimulate its ability to synthesize RNA primers. PLoS One 2013; 8:e72408. [PMID: 23977294 PMCID: PMC3748026 DOI: 10.1371/journal.pone.0072408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 07/16/2013] [Indexed: 01/14/2023] Open
Abstract
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
19
|
Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori. J Bacteriol 2013; 195:2826-38. [PMID: 23585534 DOI: 10.1128/jb.00091-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.
Collapse
|
20
|
Rannou O, Le Chatelier E, Larson MA, Nouri H, Dalmais B, Laughton C, Jannière L, Soultanas P. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Nucleic Acids Res 2013; 41:5303-20. [PMID: 23563155 PMCID: PMC3664799 DOI: 10.1093/nar/gkt207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacillus subtilis has two replicative DNA polymerases. PolC is a processive high-fidelity replicative polymerase, while the error-prone DnaEBs extends RNA primers before hand-off to PolC at the lagging strand. We show that DnaEBs interacts with the replicative helicase DnaC and primase DnaG in a ternary complex. We characterize their activities and analyse the functional significance of their interactions using primase, helicase and primer extension assays, and a ‘stripped down’ reconstituted coupled assay to investigate the coordinated displacement of the parental duplex DNA at a replication fork, synthesis of RNA primers along the lagging strand and hand-off to DnaEBs. The DnaG–DnaEBs hand-off takes place after de novo polymerization of only two ribonucleotides by DnaG, and does not require other replication proteins. Furthermore, the fidelity of DnaEBs is improved by DnaC and DnaG, likely via allosteric effects induced by direct protein–protein interactions that lower the efficiency of nucleotide mis-incorporations and/or the efficiency of extension of mis-aligned primers in the catalytic site of DnaEBs. We conclude that de novo RNA primer synthesis by DnaG and initial primer extension by DnaEBs are carried out by a lagging strand–specific subcomplex comprising DnaG, DnaEBs and DnaC, which stimulates chromosomal replication with enhanced fidelity.
Collapse
Affiliation(s)
- Olivier Rannou
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bauer RJ, Graham BW, Trakselis MA. Novel interaction of the bacterial-Like DnaG primase with the MCM helicase in archaea. J Mol Biol 2013; 425:1259-73. [PMID: 23357171 DOI: 10.1016/j.jmb.2013.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
DNA priming and unwinding activities are coupled within bacterial primosome complexes to initiate synthesis on the lagging strand during DNA replication. Archaeal organisms contain conserved primase genes homologous to both the bacterial DnaG and archaeo-eukaryotic primase families. The inclusion of multiple DNA primases within a whole domain of organisms complicates the assignment of the metabolic roles of each. In support of a functional bacterial-like DnaG primase participating in archaeal DNA replication, we have detected an interaction of Sulfolobus solfataricus DnaG (SsoDnaG) with the replicative S. solfataricus minichromosome maintenance (SsoMCM) helicase on DNA. The interaction site has been mapped to the N-terminal tier of SsoMCM analogous to bacterial primosome complexes. Mutagenesis within the metal binding site of SsoDnaG verifies a functional homology with bacterial DnaG that perturbs priming activity and DNA binding. The complex of SsoDnaG with SsoMCM stimulates the ATPase activity of SsoMCM but leaves the priming activity of SsoDnaG unchanged. Competition for binding DNA between SsoDnaG and SsoMCM can reduce the unwinding ability. Fluorescent gel shift experiments were used to quantify the binding of the ternary SsoMCM-DNA-SsoDnaG complex. This direct interaction of a bacterial-like primase with a eukaryotic-like helicase suggests that formation of a unique but homologous archaeal primosome complex is possible but may require other components to stimulate activities. Identification of this archaeal primosome complex broadly impacts evolutionary relationships of DNA replication.
Collapse
Affiliation(s)
- Robert J Bauer
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 801 Chevron, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
22
|
Mansfield RE, Dixon NE. Priming the engine of DNA synthesis. Structure 2013; 20:1447-8. [PMID: 22958638 DOI: 10.1016/j.str.2012.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Structure, Rymer and colleagues present the first crystal structures of a bacterial DnaG primase with bound substrate NTPs and alarmone inhibitors. A thoughtful comparative structural analysis provides important insights into the chemical mechanism of primase.
Collapse
Affiliation(s)
- Robyn E Mansfield
- School of Chemistry, University of Wollongong, New South Wales 2522, Australia
| | | |
Collapse
|
23
|
Robinson A, Causer RJ, Dixon NE. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 2012; 13:352-72. [PMID: 22206257 PMCID: PMC3290774 DOI: 10.2174/138945012799424598] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022]
Abstract
New antibiotics with novel modes of action are required to combat the growing threat posed by multi-drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad-spectrum antibacterials. DNA replication is a conserved and essential process, and the large number of proteins that interact to replicate DNA in bacteria are distinct from those in eukaryotes and archaea; yet none of the antibiotics in current clinical use acts directly on the replication machinery. Bacterial DNA synthesis thus appears to be an underexploited drug target. However, before this system can be targeted for drug design, it is important to understand which parts are conserved and which are not, as this will have implications for the spectrum of activity of any new inhibitors against bacterial species, as well as the potential for development of drug resistance. In this review we assess similarities and differences in replication components and mechanisms across the bacteria, highlight current progress towards the discovery of novel replication inhibitors, and suggest those aspects of the replication machinery that have the greatest potential as drug targets.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
24
|
Rymer RU, Solorio FA, Tehranchi AK, Chu C, Corn JE, Keck JL, Wang JD, Berger JM. Binding mechanism of metal⋅NTP substrates and stringent-response alarmones to bacterial DnaG-type primases. Structure 2012; 20:1478-89. [PMID: 22795082 PMCID: PMC3438381 DOI: 10.1016/j.str.2012.05.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/17/2012] [Accepted: 05/25/2012] [Indexed: 11/30/2022]
Abstract
Primases are DNA-dependent RNA polymerases found in all cellular organisms. In bacteria, primer synthesis is carried out by DnaG, an essential enzyme that serves as a key component of DNA replication initiation, progression, and restart. How DnaG associates with nucleotide substrates and how certain naturally prevalent nucleotide analogs impair DnaG function are unknown. We have examined one of the earliest stages in primer synthesis and its control by solving crystal structures of the S. aureus DnaG catalytic core bound to metal ion cofactors and either individual nucleoside triphosphates or the nucleotidyl alarmones, pppGpp and ppGpp. These structures, together with both biochemical analyses and comparative studies of enzymes that use the same catalytic fold as DnaG, pinpoint the predominant nucleotide-binding site of DnaG and explain how the induction of the stringent response in bacteria interferes with primer synthesis.
Collapse
Affiliation(s)
- Richard U Rymer
- California Institute for Quantitative Biosciences, 374D Stanley Hall #3220, University of California, Berkeley, Berkeley, CA 94720-3220, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Crenshaw CM, Nam K, Oo K, Kutchukian PS, Bowman BR, Karplus M, Verdine GL. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem 2012; 287:24916-28. [PMID: 22511791 PMCID: PMC3408145 DOI: 10.1074/jbc.m111.316497] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.
Collapse
Affiliation(s)
- Charisse M. Crenshaw
- From the Departments of Molecular and Cellular Biology, ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Kwangho Nam
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | - Peter S. Kutchukian
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Brian R. Bowman
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Karplus
- Chemical and Chemical Biology, and ,the L'Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Gregory L. Verdine
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, ,the Program in Cancer Chemical Biology and Chemical Biology Initiative, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and , To whom correspondence should be addressed. 12 Oxford St., Cambridge, MA 02138. Fax: 617-495-8755; E-mail:
| |
Collapse
|
26
|
Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, Vila S, Gai D, Fanning E, Chen XS. Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase α-primase. J Biol Chem 2012; 287:26854-66. [PMID: 22700977 DOI: 10.1074/jbc.m112.363655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Heinze RJ, Sekerina S, Winkler I, Biertümpfel C, Oretskaya TS, Kubareva E, Friedhoff P. Covalently trapping MutS on DNA to study DNA mismatch recognition and signaling. MOLECULAR BIOSYSTEMS 2012; 8:1861-4. [DOI: 10.1039/c2mb25086a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Im DW, Kim TO, Jung HY, Oh JE, Lee SJ, Heo YS. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the RNA polymerase domain of primase from Streptococcus mutans strain UA159. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:98-100. [PMID: 22232183 DOI: 10.1107/s1744309111050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Primase is the enzyme that synthesizes RNA primers on single-stranded DNA during normal DNA replication. In this study, the catalytic core domain of primase from Streptococcus mutans UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 1.60 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P4(1) or P4(3), with unit-cell parameters a = b = 52.63, c = 110.31 Å. The asymmetric unit is likely to contain one molecule, with a corresponding V(M) of 1.77 Å(3) Da(-1) and a solvent content of 30.7%.
Collapse
Affiliation(s)
- Dong-Won Im
- Department of Chemistry, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
29
|
Patel SS, Pandey M, Nandakumar D. Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol 2011; 15:595-605. [PMID: 21865075 DOI: 10.1016/j.cbpa.2011.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 01/05/2023]
Abstract
Helicases are molecular motor proteins that couple NTP hydrolysis to directional movement along nucleic acids. A class of helicases characterized by their ring-shaped hexameric structures translocate processively and unidirectionally along single-stranded (ss) DNA to separate the strands of double-stranded (ds) DNA, aiding both in the initiation and fork progression during DNA replication. These replicative ring-shaped helicases are found from virus to human. We review recent biochemical and structural studies that have expanded our understanding on how hexameric helicases use the NTPase reaction to translocate on ssDNA, unwind dsDNA, and how their physical and functional interactions with the DNA polymerase and primase enzymes coordinate replication of the two strands of dsDNA.
Collapse
Affiliation(s)
- Smita S Patel
- UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | |
Collapse
|
30
|
Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 2011; 15:606-13. [PMID: 21856207 DOI: 10.1016/j.cbpa.2011.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which involves the hydrolysis of ATP bound to DnaC. Recent evidence indicates that DnaC acts as a checkpoint in the transition from initiation to the elongation stage of DNA replication. Freed from DnaC, DnaB helicase unwinds the parental duplex DNA while interacting the cellular replicase, DNA polymerase III holoenzyme, and primase as it intermittently forms primers that are extended by the replicase in duplicating the chromosome.
Collapse
|
31
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
32
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
33
|
Bowman BR, Lee S, Wang S, Verdine GL. Structure of Escherichia coli AlkA in complex with undamaged DNA. J Biol Chem 2010; 285:35783-91. [PMID: 20843803 PMCID: PMC2975202 DOI: 10.1074/jbc.m110.155663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Indexed: 11/06/2022] Open
Abstract
Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.
Collapse
Affiliation(s)
| | | | | | - Gregory L. Verdine
- From the Departments of Stem Cell and Regenerative Biology
- Chemistry and Chemical Biology, and
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 and
- the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
35
|
Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase. Proc Natl Acad Sci U S A 2010; 107:13684-9. [PMID: 20643958 DOI: 10.1073/pnas.1002009107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA replication requires priming of DNA templates by enzymes known as primases. Although DNA primase structures are available from archaea and bacteria, the mechanism of DNA priming in higher eukaryotes remains poorly understood in large part due to the absence of the structure of the unique, highly conserved C-terminal regulatory domain of the large subunit (p58C). Here, we present the structure of this domain determined to 1.7-A resolution by X-ray crystallography. The p58C structure reveals a novel arrangement of an evolutionarily conserved 4Fe-4S cluster buried deeply within the protein core and is not similar to any known protein structure. Analysis of the binding of DNA to p58C by fluorescence anisotropy measurements revealed a strong preference for ss/dsDNA junction substrates. This approach was combined with site-directed mutagenesis to confirm that the binding of DNA occurs to a distinctively basic surface on p58C. A specific interaction of p58C with the C-terminal domain of the intermediate subunit of replication protein A (RPA32C) was identified and characterized by isothermal titration calorimetry and NMR. Restraints from NMR experiments were used to drive computational docking of the two domains and generate a model of the p58C-RPA32C complex. Together, our results explain functional defects in human DNA primase mutants and provide insights into primosome loading on RPA-coated ssDNA and regulation of primase activity.
Collapse
|
36
|
Direct role for the RNA polymerase domain of T7 primase in primer delivery. Proc Natl Acad Sci U S A 2010; 107:9099-104. [PMID: 20439755 DOI: 10.1073/pnas.1004220107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene 4 protein (gp4) encoded by bacteriophage T7 contains a C-terminal helicase and an N-terminal primase domain. After synthesis of tetraribonucleotides, gp4 must transfer them to the polymerase for use as primers to initiate DNA synthesis. In vivo gp4 exists in two molecular weight forms, a 56-kDa form and the full-length 63-kDa form. The 56-kDa gp4 lacks the N-terminal Cys(4) zinc-binding motif important in the recognition of primase sites in DNA. The 56-kDa gp4 is defective in primer synthesis but delivers a wider range of primers to initiate DNA synthesis compared to the 63-kDa gp4. Suppressors exist that enable the 56-kDa gp4 to support the growth of T7 phage lacking gene 4 (T7Delta4). We have identified 56-kDa DNA primases defective in primer delivery by screening for their ability to support growth of T7Delta4 phage in the presence of this suppressor. Trp69 is critical for primer delivery. Replacement of Trp69 with lysine in either the 56- or 63-kDa gp4 results in defective primer delivery with other functions unaffected. DNA primase harboring lysine at position 69 fails to stabilize the primer on DNA. Thus, a primase subdomain not directly involved in primer synthesis is involved in primer delivery. The stabilization of the primer by DNA primase is necessary for DNA polymerase to initiate synthesis.
Collapse
|
37
|
Characterization of a Functional DnaG-Type Primase in Archaea: Implications for a Dual-Primase System. J Mol Biol 2010; 397:664-76. [DOI: 10.1016/j.jmb.2010.01.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 11/20/2022]
|
38
|
Two distantly homologous DnaG primases from Thermoanaerobacter tengcongensis exhibit distinct initiation specificities and priming activities. J Bacteriol 2010; 192:2670-81. [PMID: 20348261 DOI: 10.1128/jb.01511-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primase, encoded by dnaG in bacteria, is a specialized DNA-dependent RNA polymerase that synthesizes RNA primers de novo for elongation by DNA polymerase. Genome sequence analysis has revealed two distantly related dnaG genes, TtdnaG and TtdnaG(2), in the thermophilic bacterium Thermoanaerobacter tengcongensis. Both TtDnaG (600 amino acids) and TtDnaG2 (358 amino acids) exhibit primase activities in vitro at a wide range of temperatures. Interestingly, the template recognition specificities of these two primases are quite distinctive. When trinucleotide-specific templates were tested, TtDnaG initiated RNA primer synthesis efficiently only on templates containing the trinucleotide 5'-CCC-3', not on the other 63 possible trinucleotides. When the 5'-CCC-3' sequence was flanked by additional cytosines or guanines, the initiation efficiency of TtDnaG increased remarkably. Significantly, TtDnaG could specifically and efficiently initiate RNA primer synthesis on a limited set of tetranucleotides composed entirely of cytosines and guanines, indicating that TtDnaG initiated RNA primer synthesis more preferably on GC-containing tetranucleotides. In contrast, it seemed that TtDnaG2 had no specific initiation nucleotides, as it could efficiently initiate RNA primer synthesis on all templates tested. The DNA binding affinity of TtDnaG2 was usually 10-fold higher than that of TtDnaG, which might correlate with its high activity but low template specificity. These distinct priming activities and specificities of TtDnaG and TtDnaG2 might shed new light on the diversity in the structure and function of the primases.
Collapse
|
39
|
Makowska-Grzyska M, Kaguni JM. Primase directs the release of DnaC from DnaB. Mol Cell 2010; 37:90-101. [PMID: 20129058 DOI: 10.1016/j.molcel.2009.12.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/03/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
An AAA+ ATPase, DnaC, delivers DnaB helicase at the E. coli chromosomal origin by a poorly understood process. This report shows that mutant proteins bearing alanine substitutions for two conserved arginines in a motif named box VII are defective in DNA replication, but this deficiency does not arise from impaired interactions with ATP, DnaB, or single-stranded DNA. Despite their ability to deliver DnaB to the chromosomal origin to form the prepriming complex, this intermediate is inactive. Quantitative analysis of the prepriming complex suggests that the DnaB-DnaC complex contains three DnaC monomers per DnaB hexamer and that the interaction of primase with DnaB and primer formation triggers the release of DnaC, but not the mutants, from DnaB. The interaction of primase with DnaB and the release of DnaC mark discrete events in the transition from initiation to the elongation stage of DNA replication.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
40
|
Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 2009; 462:940-3. [PMID: 19924126 DOI: 10.1038/nature08611] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/26/2009] [Indexed: 11/08/2022]
Abstract
Genomic DNA is replicated by two DNA polymerase molecules, one of which works in close association with the helicase to copy the leading-strand template in a continuous manner while the second copies the already unwound lagging-strand template in a discontinuous manner through the synthesis of Okazaki fragments. Considering that the lagging-strand polymerase has to recycle after the completion of every Okazaki fragment through the slow steps of primer synthesis and hand-off to the polymerase, it is not understood how the two strands are synthesized with the same net rate. Here we show, using the T7 replication proteins, that RNA primers are made 'on the fly' during ongoing DNA synthesis and that the leading-strand T7 replisome does not pause during primer synthesis, contrary to previous reports. Instead, the leading-strand polymerase remains limited by the speed of the helicase; it therefore synthesizes DNA more slowly than the lagging-strand polymerase. We show that the primase-helicase T7 gp4 maintains contact with the priming sequence during ongoing DNA synthesis; the nascent lagging-strand template therefore organizes into a priming loop that keeps the primer in physical proximity to the replication complex. Our findings provide three synergistic mechanisms of coordination: first, primers are made concomitantly with DNA synthesis; second, the priming loop ensures efficient primer use and hand-off to the polymerase; and third, the lagging-strand polymerase copies DNA faster, which allows it to keep up with leading-strand DNA synthesis overall.
Collapse
|
41
|
Kuchta RD, Stengel G. Mechanism and evolution of DNA primases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1180-9. [PMID: 19540940 DOI: 10.1016/j.bbapap.2009.06.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/11/2009] [Accepted: 06/02/2009] [Indexed: 01/31/2023]
Abstract
DNA primase synthesizes short RNA primers that replicative polymerases further elongate in order to initiate the synthesis of all new DNA strands. Thus, primase owes its existence to the inability of DNA polymerases to initiate DNA synthesis starting with 2 dNTPs. Here, we discuss the evolutionary relationships between the different families of primases (viral, eubacterial, archael, and eukaryotic) and the catalytic mechanisms of these enzymes. This includes how they choose an initiation site, elongate the growing primer, and then only synthesize primers of defined length via an inherent ability to count. Finally, the low fidelity of primases along with the development of primase inhibitors is described.
Collapse
Affiliation(s)
- Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
42
|
Structure and function of primase RepB' encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode. Proc Natl Acad Sci U S A 2009; 106:7810-5. [PMID: 19416864 DOI: 10.1073/pnas.0902910106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB' (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5'- and 3'-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7-27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB' consisting of an N-terminal catalytic domain separated by a long alpha-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5'-terminal single-stranded nucleotides and the C7-G27 base pair of ssiA, its single-stranded 3'-terminus being deleted. The catalytic domains of RepB' and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB' lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB' are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.
Collapse
|
43
|
|