1
|
Jonas F, Navon Y, Barkai N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nat Rev Genet 2025; 26:424-435. [PMID: 39984675 DOI: 10.1038/s41576-025-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Transcription factors (TFs) contribute to organismal development and function by regulating gene expression. Despite decades of research, the factors determining the specificity and speed at which eukaryotic TFs detect their target binding sites remain poorly understood. Recent studies have pointed to intrinsically disordered regions (IDRs) within TFs as key regulators of the process by which TFs find their target sites on DNA (the TF target search). However, IDRs are challenging to study because they can confer specificity despite low sequence complexity and can be functionally conserved despite rapid sequence divergence. Nevertheless, emerging computational and experimental approaches are beginning to elucidate the sequence-function relationship within the IDRs of TFs. Additional insights are informing potential mechanisms underlying the IDR-directed search for the DNA targets of TFs, including incorporation into biomolecular condensates, facilitating TF co-localization, and the hypothesis that IDRs recognize and directly interact with specific genomic regions.
Collapse
Affiliation(s)
- Felix Jonas
- School of Science, Constructor University, Bremen, Germany.
| | - Yoav Navon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Muñoz V, Goluguri RR, Ghosh C, Tanielian B, Sadqi M. Mechanisms for DNA Interplay in Eukaryotic Transcription Factors. Annu Rev Biophys 2025; 54:121-139. [PMID: 39879549 DOI: 10.1146/annurev-biophys-071524-111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes. Recent findings are revealing the profound, unforeseen implications of such characteristics for the mechanisms of DNA interplay. In this review we discuss these implications and how they are shaping the eukaryotic transcription control paradigm into one of promiscuous signal recognition, highly dynamic interactions, heterogeneous DNA scanning, and multiprong conformational control.
Collapse
Affiliation(s)
- Victor Muñoz
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| | - Rama Reddy Goluguri
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
- Department of Biochemistry, Stanford University, Palo Alto, California, USA
| | - Catherine Ghosh
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| | - Benjamin Tanielian
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California, USA
| | - Mourad Sadqi
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| |
Collapse
|
3
|
Paul T, Lee IR, Pangeni S, Rashid F, Yang O, Antony E, Berger JM, Myong S, Ha T. Mechanistic insights into direct DNA and RNA strand transfer and dynamic protein exchange of SSB and RPA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.643995. [PMID: 40236217 PMCID: PMC11996528 DOI: 10.1101/2025.04.01.643995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for genome stability, facilitating replication, repair, and recombination by binding ssDNA, recruiting other proteins, and dynamically relocating in response to cellular demands. Using single-molecule fluorescence resonance energy transfer (smFRET) assays, we elucidated the mechanisms underlying direct strand transfer from one locale to another, protein exchange, and RNA interactions at high resolution. Both bacterial SSB and eukaryotic replication protein A (RPA) exhibited direct strand transfer to competing ssDNA, with rates strongly influenced by ssDNA length. Strand transfer proceeded through multiple failed attempts before a successful transfer, forming a ternary intermediate complex with transient interactions, supporting a direct transfer mechanism. Both proteins efficiently exchanged DNA-bound counterparts with freely diffusing molecules, while hetero-protein exchange revealed that SSB and RPA could replace each other on ssDNA in a length-dependent manner, indicating that protein exchange does not require specific protein-protein interactions. Additionally, both proteins bound RNA and underwent strand transfer to competing RNA, with RPA demonstrating faster RNA transfer kinetics. Competitive binding assays confirmed a strong preference for DNA over RNA. These findings provide critical insights into the dynamic behavior of SSB and RPA in nucleic acid interactions, advancing our understanding of their essential roles in genome stability, regulating RNA metabolism, and orchestrating nucleic acid processes.
Collapse
|
4
|
Wan B, Yu J. Protein target search diffusion-association/dissociation free energy landscape around DNA binding site with flanking sequences. Biophys J 2025; 124:677-692. [PMID: 39818622 PMCID: PMC11900189 DOI: 10.1016/j.bpj.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements. We also show that the sequence-dependent protein sliding or stepping patterns along DNA are regulated by collective interfacial HB dynamics, which also determines the ruggedness of the protein diffusion free energy landscape on the local DNA. In comparison, protein association or binding with DNA are generically dictated by the protein-DNA electrostatic interactions, with an interaction zone of nanometers around DNA. Extra degrees of freedom (DOFs) of the protein such as rotations and conformational fluctuations can be well accommodated within the protein-DNA electrostatic interaction zone. As such we demonstrate that the protein binding or association free energy profiling along DNA smoothens over the 1D diffusion free energy landscape, which leads to population variations for an order of magnitude upon a marginal free energetic smoothening around the specific or consensus sites. We further show that the protein unbinding or dissociation from a comparatively high-binding affinity DNA site is dominated by lateral diffusion to the flanking low-affinity sites. The results predict that experimental characterizations on the relative protein-DNA binding affinities or population profiling on the DNA are systematically and physically impacted by the extra DOFs of protein motions aside from 1D translation or helical tracking, as well as from flanking DNA sequences due to protein 1D diffusion and nonspecific binding/unbinding.
Collapse
Affiliation(s)
- Biao Wan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.
| |
Collapse
|
5
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 PMCID: PMC11745332 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y. Tse
- Department of Materials Science, Stanford University, Stanford, CA94305
| | | |
Collapse
|
6
|
Wakabayashi H, Zhu M, Grayhack EJ, Mathews DH, Ermolenko DN. 40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630811. [PMID: 39803544 PMCID: PMC11722282 DOI: 10.1101/2024.12.30.630811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in Saccharomyces cerevisiae cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis. These observations indicate that mRNA scanning is not rate limiting in yeast cells. Conversely, the presence of secondary structures in the 5' UTR strongly inhibits translation. Loss-of-function mutations in translational RNA helicases eIF4A and Ded1, as well as mutations in other initiation factors implicated in mRNA scanning, namely eIF4G, eIF4B, eIF3g and eIF3i, produced a similar decrease in translation of GFP reporters with short and long unstructured 5' UTRs. As expected, mutations in Ded1, eIF4B and eIF3i severely diminished translation of the reporters with structured 5' UTRs. Evidently, while RNA helicases eIF4A and Ded1 facilitate 40S recruitment and secondary structure unwinding, they are not rate-limiting for the 40S movement along the 5' UTR. Hence, our data indicate that, instead of helicase-driven translocation, one-dimensional diffusion predominately drives mRNA scanning by the 40S subunits in yeast cells.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
Easo George J, Basak R, Yadav I, Tan CJ, van Kan JA, Wien F, Arluison V, van der Maarel JRC. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA. LAB ON A CHIP 2024; 24:5137-5144. [PMID: 39363842 DOI: 10.1039/d4lc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Regulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy was employed to monitor the movement of Hfq along double-stranded DNA, which was stretched due to confinement within a nanofluidic channel. The mobility of Hfq is significantly influenced by DNA methylation. Our results underscore the importance of bacterial epigenetic modifications in governing the movement of nucleoid associated proteins such as Hfq. Increased levels of methylation result in enhanced binding affinity, which in turn slows down the diffusion of Hfq on DNA. The reported control of protein mobility by DNA methylation has potential implications for the mechanisms involved in target DNA search processes and dynamic modelling of the bacterial chromosome.
Collapse
Affiliation(s)
- Jijo Easo George
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Rajib Basak
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Indresh Yadav
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Chuan Jie Tan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du vivant, Université Paris Cité, 75006 Paris, France
| | | |
Collapse
|
8
|
Motezakker A, Greca LG, Boschi E, Siqueira G, Lundell F, Rosén T, Nyström G, Söderberg LD. Stick, Slide, or Bounce: Charge Density Controls Nanoparticle Diffusion. ACS NANO 2024; 18:28636-28648. [PMID: 39378149 PMCID: PMC11503907 DOI: 10.1021/acsnano.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The diffusion and interaction dynamics of charged nanoparticles (NPs) within charged polymer networks are crucial for understanding various biological and biomedical applications. Using a combination of coarse-grained molecular dynamics simulations and experimental diffusion studies, we investigate the effects of the NP size, relative surface charge density (ζ), and concentration on the NP permeation length and time. We propose a scaling law for the relative diffusion of NPs with respect to concentration and ζ, highlighting how these factors influence the NP movement within the network. The analyses reveal that concentration and ζ significantly affect NP permeation length and time, with ζ being critical, as critical as concentration. This finding is corroborated by controlled release experiments. Further, we categorize NP dynamics into sticking, sliding, and bouncing regimes, demonstrating how variations in ζ, concentration, and NP size control these behaviors. Through normalized attachment time (NAT) analyses, we elucidate the roles of electrostatic interactions, steric hindrance, and hydrodynamic forces in governing NP dynamics. These insights provide guidance for optimizing NP design in targeted drug delivery and advanced material applications, enhancing our understanding of NP behavior in complex environments.
Collapse
Affiliation(s)
- Ahmad
Reza Motezakker
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Stockholm, SE 100 44, Sweden
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Luiz G. Greca
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Enrico Boschi
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Gilberto Siqueira
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Fredrik Lundell
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Stockholm, SE 100 44, Sweden
| | - Tomas Rosén
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Gustav Nyström
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - L. Daniel Söderberg
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Stockholm, SE 100 44, Sweden
| |
Collapse
|
9
|
Goluguri RR, Ghosh C, Quintong J, Sadqi M, Muñoz V. How to scan naked DNA using promiscuous recognition and no clamping: a model for pioneer transcription factors. Nucleic Acids Res 2024; 52:11098-11114. [PMID: 39287129 PMCID: PMC11472051 DOI: 10.1093/nar/gkae790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Most DNA scanning proteins uniquely recognize their cognate sequence motif and slide on DNA assisted by some sort of clamping interface. The pioneer transcription factors that control cell fate in eukaryotes must forgo both elements to gain access to DNA in naked and chromatin forms; thus, whether or how these factors scan naked DNA is unknown. Here, we use single-molecule techniques to investigate naked DNA scanning by the Engrailed homeodomain (enHD) as paradigm of highly promiscuous recognition and open DNA binding interface. We find that enHD scans naked DNA quite effectively, and about 200000-fold faster than expected for a continuous promiscuous slide. To do so, enHD scans about 675 bp of DNA in 100 ms and then redeploys stochastically to another location 530 bp afar in just 10 ms. During the scanning phase enHD alternates between slow- and medium-paced modes every 3 and 40 ms, respectively. We also find that enHD binds nucleosomes and does so with enhanced affinity relative to naked DNA. Our results demonstrate that pioneer-like transcription factors can in principle do both, target nucleosomes and scan active DNA efficiently. The hybrid scanning mechanism used by enHD appears particularly well suited for the highly complex genomic signals of eukaryotic cells.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Catherine Ghosh
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Joshua Quintong
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Mourad Sadqi
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| | - Victor Muñoz
- CREST Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA 95343, USA
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
10
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
11
|
Alcón P, Kaczmarczyk AP, Ray KK, Liolios T, Guilbaud G, Sijacki T, Shen Y, McLaughlin SH, Sale JE, Knipscheer P, Rueda DS, Passmore LA. FANCD2-FANCI surveys DNA and recognizes double- to single-stranded junctions. Nature 2024; 632:1165-1173. [PMID: 39085614 PMCID: PMC11358013 DOI: 10.1038/s41586-024-07770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.
Collapse
Affiliation(s)
- Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Artur P Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Korak Kumar Ray
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, London, UK
| | - Themistoklis Liolios
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Yichao Shen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, London, UK.
| | | |
Collapse
|
12
|
Mishra SK, Sangeeta, Heermann DW, Bhattacherjee A. The role of nucleotide opening dynamics in facilitated target search by DNA-repair proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195026. [PMID: 38641240 DOI: 10.1016/j.bbagrm.2024.195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles. Our findings reveal that the dynamics of a non-canonical base generate an entropic signal that guides the one-dimensional search of a repair protein, thereby facilitating the recognition of the lesion site. The width of the funnel perfectly aligns with the one-dimensional diffusion length of DNA-binding proteins. The generic mechanism provides a physical basis for rapid recognition and specificity of DNA damage sensing and recognition.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Caraglio M, Kaur H, Fiderer LJ, López-Incera A, Briegel HJ, Franosch T, Muñoz-Gil G. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles. SOFT MATTER 2024; 20:2008-2016. [PMID: 38328899 PMCID: PMC10900891 DOI: 10.1039/d3sm01680c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Finding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, i.e. the navigation mode, in response to the type and the duration of the current phase. Our findings reveal that the target-search efficiency increases with the particle's self-propulsion during the active phase and that, while the optimal duration of the passive case decreases monotonically with the activity, the optimal duration of the active phase displays a non-monotonic behavior.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Harpreet Kaur
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Lukas J Fiderer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Andrea López-Incera
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Hans J Briegel
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| | - Gorka Muñoz-Gil
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Zhang X, Dai X, Habib MA, Gao L, Chen W, Wei W, Tang Z, Qi X, Gong X, Jiang L, Yan LT. Unconventionally fast transport through sliding dynamics of rodlike particles in macromolecular networks. Nat Commun 2024; 15:525. [PMID: 38225267 PMCID: PMC10789817 DOI: 10.1038/s41467-024-44765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is ubiquitous. Here, we solve this issue by combining experiments, simulations and theory. We find a nonmonotonic dependence of translational diffusion on rod length, characterized by length commensuration-governed unconventionally fast dynamics which is in striking contrast to the monotonic dependence for thin rods. Our results clarify that such a fast diffusion of thick rods with length of integral multiple of mesh size follows sliding dynamics and demonstrate it to be anomalous yet Brownian. Moreover, good agreement between theoretical analysis and simulations corroborates that the sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and provides a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. The findings yield a principle, that is, length commensuration, for optimal design of rodlike particles with highly efficient transport in confined environments of macromolecular networks, and might enrich the physics of the diffusion dynamics in heterogeneous media.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Md Ahsan Habib
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Zhongqiu Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Xianyu Qi
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
15
|
Gidi Y, Robert A, Tordo A, Lovell TC, Ramos-Sanchez J, Sakaya A, Götte M, Cosa G. Binding and Sliding Dynamics of the Hepatitis C Virus Polymerase: Hunting the 3' Terminus. ACS Infect Dis 2023; 9:1488-1498. [PMID: 37436367 DOI: 10.1021/acsinfecdis.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Anaïs Robert
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alix Tordo
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
16
|
Sun R, Lv J, Xue X, Yu S, Tan Z. Chemical Sensors using Single-Molecule Electrical Measurements. Chem Asian J 2023; 18:e202300181. [PMID: 37080926 DOI: 10.1002/asia.202300181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Driven by the digitization and informatization of contemporary society, electrical sensors are developing toward minimal structure, intelligent function, and high detection resolution. Single-molecule electrical measurement techniques have been proven to be capable of label-free molecular recognition and detection, which opens a new strategy for the design of efficient single-molecule detection sensors. In this review, we outline the main advances and potentials of single-molecule electronics for qualitative identification and recognition assays at the single-molecule level. Strategies for single-molecule electro-sensing and its main applications are reviewed, mainly in the detection of ions, small molecules, oligomers, genetic materials, and proteins. This review summarizes the remaining challenges in the current development of single-molecule electrical sensing and presents some potential perspectives for this field.
Collapse
Affiliation(s)
- Ruiqin Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jieyao Lv
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xinyi Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Shiyong Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhibing Tan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
17
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Mondal A, Felipe C, Kolomeisky AB. Nucleosome Breathing Facilitates the Search for Hidden DNA Sites by Pioneer Transcription Factors. J Phys Chem Lett 2023; 14:4096-4103. [PMID: 37125729 DOI: 10.1021/acs.jpclett.3c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transfer of genetic information starts with transcription factors (TFs) binding to specific sites on DNA. But in living cells, DNA is mostly covered by nucleosomes. There are proteins, known as pioneer TFs, that can efficiently reach the DNA sites hidden by nucleosomes, although the underlying mechanisms are not understood. Using the recently proposed idea of interaction-compensation mechanism, we develop a stochastic model for the target search on DNA with nucleosome breathing. It is found that nucleosome breathing can significantly accelerate the search by pioneer TFs in comparison to situations without breathing. We argue that this is the result of the interaction-compensation mechanism that allows proteins to enter the inner nucleosome region through the outer DNA segment. It is suggested that nature optimized pioneer TFs to take advantage of nucleosome breathing. The presented theoretical picture provides a possible microscopic explanation for the successful invasion of nucleosome-buried genes.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Cayke Felipe
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Schaich MA, Schnable BL, Kumar N, Roginskaya V, Jakielski R, Urban R, Zhong Z, Kad NM, Van Houten B. Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). Nucleic Acids Res 2023; 51:e39. [PMID: 36861323 PMCID: PMC10123111 DOI: 10.1093/nar/gkad095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.
Collapse
Affiliation(s)
- Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Brittani L Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rachel C Jakielski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Roman Urban
- School of Biosciences, University of Kent, Kent, UK
| | - Zhou Zhong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- LUMICKS, Waltham, MA, USA
| | - Neil M Kad
- School of Biosciences, University of Kent, Kent, UK
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Singh RK, Singh S. Capture of a diffusing lamb by a diffusing lion when both return home. Phys Rev E 2022; 106:064118. [PMID: 36671194 DOI: 10.1103/physreve.106.064118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A diffusing lion pursues a diffusing lamb when both of them are allowed to get back to their homes intermittently. Identifying the system with a pair of vicious random walkers, we study their dynamics under Poissonian and sharp resetting. In the absence of any resets, the location of intersection of the two walkers follows a Cauchy distribution. In the presence of resetting, the distribution of the location of annihilation is composed of two parts: one in which the trajectories cross without being reset (center) and the other where trajectories are reset at least once before they cross each other (tails). We find that the tail part decays exponentially for both the resetting protocols. The central part of the distribution, on the other hand, depends on the nature of the restart protocol, with Cauchy for Poisson resetting and Gaussian for sharp resetting. We find good agreement of the analytical results with numerical calculations.
Collapse
Affiliation(s)
- R K Singh
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sadhana Singh
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
21
|
Ren H, Taylor RB, Downing TL, Read EL. Locally correlated kinetics of post-replication DNA methylation reveals processivity and region specificity in DNA methylation maintenance. J R Soc Interface 2022; 19:20220415. [PMID: 36285438 PMCID: PMC9597173 DOI: 10.1098/rsif.2022.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation occurs predominantly on cytosine-phosphate-guanine (CpG) dinucleotides in the mammalian genome, and the methylation landscape is maintained over mitotic cell division. It has been posited that coupling of maintenance methylation activity among neighbouring CpGs is critical to stability over cellular generations; however, the mechanism is unclear. We used mathematical models and stochastic simulation to analyse data from experiments that probe genome-wide methylation of nascent DNA post-replication in cells. We find that DNA methylation maintenance rates on individual CpGs are locally correlated, and the degree of this correlation varies by genomic regional context. By using theory of protein diffusion along DNA, we show that exponential decay of methylation rate correlation with genomic distance is consistent with enzyme processivity. Our results provide quantitative evidence of genome-wide methyltransferase processivity in vivo. We further developed a method to disentangle different mechanistic sources of kinetic correlations. From the experimental data, we estimate that an individual methyltransferase methylates neighbour CpGs processively if they are 36 basepairs apart, on average. But other mechanisms of coupling dominate for longer inter-CpG distances. Our study demonstrates that quantitative insights into enzymatic mechanisms can be obtained from replication-associated, cell-based genome-wide measurements, by combining data-driven statistical analyses with hypothesis-driven mathematical modelling.
Collapse
Affiliation(s)
- Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Robert B. Taylor
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA,Department of Physics, University of California, Irvine, CA 92697, USA
| | - Timothy L. Downing
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA,Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Elizabeth L. Read
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA 92697, USA,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA,Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Purkait D, Islam F, Mishra PP. A single-molecule approach to unravel the molecular mechanism of the action of Deinococcus radiodurans RecD2 and its interaction with SSB and RecA in DNA repair. Int J Biol Macromol 2022; 221:653-664. [PMID: 36096248 DOI: 10.1016/j.ijbiomac.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Helicases are ATP-driven molecular machines that directionally remodel nucleic acid polymers in all three domains of life. They are responsible for resolving double-stranded DNA (dsDNA) into single-strands, which is essential for DNA replication, nucleotide excision repair, and homologous recombination. RecD2 from Deinococcus radiodurans (DrRecD2) has important contributions to the organism's unusually high tolerance to gamma radiation and hydrogen peroxide. Although the results from X-ray Crystallography studies have revealed the structural characteristics of the protein, direct experimental evidence regarding the dynamics of the DNA unwinding process by DrRecD2 in the context of other accessory proteins is yet to be found. In this study, we have probed the exact binding event and processivity of DrRecD2 at single-molecule resolution using Protein-induced fluorescence enhancement (smPIFE) and Forster resonance energy transfer (smFRET). We have found that the protein prefers to bind at the 5' terminal end of the single-stranded DNA (ssDNA) by Drift and has helicase activity even in absence of ATP. However, a faster and iterative mode of DNA unwinding was evident in presence of ATP. The rate of translocation of the protein was found to be slower on dsDNA compared to ssDNA. We also showed that DrRecD2 is recruited at the binding site by the single-strand binding protein (SSB) and during the unwinding, it can displace RecA from ssDNA.
Collapse
Affiliation(s)
- Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Padmaja P Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
23
|
Felipe C, Shin J, Kolomeisky AB. How Pioneer Transcription Factors Search for Target Sites on Nucleosomal DNA. J Phys Chem B 2022; 126:4061-4068. [PMID: 35622093 DOI: 10.1021/acs.jpcb.2c01931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All major biological processes start after protein molecules known as transcription factors detect specific regulatory sequences on DNA and initiate genetic expression by associating to them. But in eukaryotic cells, much of the DNA is covered by nucleosomes and other chromatin structures, preventing transcription factors from binding to their targets. At the same time, experimental studies show that there are several classes of proteins, called "pioneer transcription factors", that are able to reach the targets on nucleosomal DNA; however, the underlying microscopic mechanisms remain not well understood. We propose a new theoretical approach that might explain how pioneer transcription factors can find their targets. It is argued that pioneer transcription factors might weaken the interactions between the DNA and nucleosome by substituting them with similar interactions between transcription factors and DNA. Using this idea, we develop a discrete-state stochastic model that allows for exact calculations of target search dynamics on nucleosomal DNA using first-passage probabilities approach. It is found that the target search on nuclesomal DNA for pioneer transcription factors might be significantly accelerated while the search is slower on naked DNA in comparison with normal transcription factors. Our theoretical predictions are supported by Monte Carlo computer simulations, and they also agree with available experimental observations.
Collapse
Affiliation(s)
- Cayke Felipe
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Jaeoh Shin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
24
|
Tan CJ, Basak R, Yadav I, van Kan JA, Arluison V, van der Maarel JRC. Mobility of Bacterial Protein Hfq on dsDNA: Role of C-Terminus-Mediated Transient Binding. J Phys Chem B 2022; 126:1477-1482. [PMID: 35166115 DOI: 10.1021/acs.jpcb.1c10234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.
Collapse
Affiliation(s)
- Chuan Jie Tan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Rajib Basak
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Véronique Arluison
- Université de Paris, UFR SDV, Paris 75006, France.,Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette 91191, France
| | | |
Collapse
|
25
|
Basak R, Yadav I, Arluison V, van Kan JA, van der Maarel JRC. Probing Amyloid-DNA Interaction with Nanofluidics. Methods Mol Biol 2022; 2538:305-317. [PMID: 35951308 DOI: 10.1007/978-1-0716-2529-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofluidics is an emerging methodology to investigate single biomacromolecules without functionalization and/or attachment of the molecules to a substrate. In conjunction with fluorescence microscopy, it can be used to investigate structural and dynamical aspects of amyloid-DNA interaction. Here, we summarize the methodology for fabricating lab-on-chip devices in relatively cheap polymer resins and featuring quasi one-dimensional nanochannels with a cross-sectional diameter of tens to a few hundred nanometers. Site-specific staining of amyloid-forming protein Hfq with a fluorescence dye is also described. The methodology is illustrated with two application studies. The first study involves assembling bacterial amyloid proteins such as Hfq on double-stranded DNA and monitoring the folding and compaction of DNA in a condensed state. The second study is about the concerted motion of Hfq on DNA and how this is related to DNA's internal motion. Explicit details of procedures and workflows are given throughout.
Collapse
Affiliation(s)
- Rajib Basak
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
- Université de Paris, Paris, France
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
26
|
Wang Z, Deng W. Dynamic transcription regulation at the single-molecule level. Dev Biol 2021; 482:67-81. [PMID: 34896367 DOI: 10.1016/j.ydbio.2021.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Cell fate changes during development, differentiation, and reprogramming are largely controlled at the transcription level. The DNA-binding transcription factors (TFs) often act in a combinatorial fashion to alter chromatin states and drive cell type-specific gene expression. Recent advances in fluorescent microscopy technologies have enabled direct visualization of biomolecules involved in the process of transcription and its regulatory events at the single-molecule level in living cells. Remarkably, imaging and tracking individual TF molecules at high temporal and spatial resolution revealed that they are highly dynamic in searching and binding cognate targets, rather than static and binding constantly. In combination with investigation using techniques from biochemistry, structure biology, genetics, and genomics, a more well-rounded view of transcription regulation is emerging. In this review, we briefly cover the technical aspects of live-cell single-molecule imaging and focus on the biological relevance and interpretation of the single-molecule dynamic features of transcription regulatory events observed in the native chromatin environment of living eukaryotic cells. We also discuss how these dynamic features might shed light on mechanistic understanding of transcription regulation.
Collapse
Affiliation(s)
- Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, 100871, China; School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Salgado-García R. Time-irreversibility test for random-length time series: The matching-time approach applied to DNA. CHAOS (WOODBURY, N.Y.) 2021; 31:123126. [PMID: 34972331 DOI: 10.1063/5.0062805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, especially when the sequences have large correlations or memory. Based on limit theorems for matching times, we derive a maximum likelihood estimator for the entropy rate by assuming that we have a set of moderately short symbolic time series of finite random duration. We show that the proposed estimator has several properties that make it adequate for estimating the entropy rate and entropy production rate (or for testing the irreversibility) when the sample sequences have different lengths, such as the coding sequences of DNA. We test our approach with controlled examples of Markov chains, non-linear chaotic maps, and linear and non-linear autoregressive processes. We also implement our estimators for genomic sequences to show that the degree of irreversibility of coding sequences in human DNA is significantly larger than that for the corresponding non-coding sequences.
Collapse
Affiliation(s)
- R Salgado-García
- Centro de Investigación en Ciencias-IICBA, Physics Department, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, colonia Chamilpa, CP 62209, Cuernavaca Morelos, Mexico
| |
Collapse
|
28
|
Liu W, Li J, Xu Y, Yin D, Zhu X, Fu H, Su X, Guo X. Complete Mapping of DNA‐Protein Interactions at the Single‐Molecule Level. ADVANCED SCIENCE 2021; 8:2101383. [PMCID: PMC8655176 DOI: 10.1002/advs.202101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNA–protein interaction plays an essential role in the storage, expression, and regulation of genetic information. A 1D/3D facilitated diffusion mechanism has been proposed to explain the extraordinarily rapid rate of DNA‐binding protein (DBP) searching for cognate sequence along DNA and further studied by single‐molecule experiments. However, direct observation of the detailed chronological protein searching image is still a formidable challenge. Here, for the first time, a single‐molecule electrical monitoring technique is utilized to realize label‐free detection of the DBP–DNA interaction process based on high‐gain silicon nanowire field‐effect transistors (SiNW FETs). The whole binding process of WRKY domain and DNA has been visualized with high sensitivity and single‐base resolution. Impressively, the swinging of hydrogen bonds between amino acid residues and bases in DNA induce the dynamic collective motion of DBP–DNA. This in situ, label‐free electrical detection platform provides a practical experimental methodology for dynamic studies of various biomolecules.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Shenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Yongping Xu
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Dongbao Yin
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Xin Zhu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Huanyan Fu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Xuefeng Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| |
Collapse
|
29
|
Hu C, Jonchhe S, Pokhrel P, Karna D, Mao H. Mechanical unfolding of ensemble biomolecular structures by shear force. Chem Sci 2021; 12:10159-10164. [PMID: 34377405 PMCID: PMC8336480 DOI: 10.1039/d1sc02257a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s-1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu(i) catalyzed azide-alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry and School of Biomedical Sciences, Advanced Materials and Liquid Crystal Institute, Kent State University Kent OH 44242 USA
| |
Collapse
|
30
|
Bae S, Oh I, Yoo J, Kim JS. Effect of DNA Flexibility on Complex Formation of a Cationic Nanoparticle with Double-Stranded DNA. ACS OMEGA 2021; 6:18728-18736. [PMID: 34337212 PMCID: PMC8319935 DOI: 10.1021/acsomega.1c01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We present extensive molecular dynamics simulations of a cationic nanoparticle and a double-stranded DNA molecule to discuss the effect of DNA flexibility on the complex formation of a cationic nanoparticle with double-stranded DNA. Martini coarse-grained models were employed to describe double-stranded DNA molecules with two different flexibilities and cationic nanoparticles with three different electric charges. As the electric charge of a cationic nanoparticle increases, the degree of DNA bending increases, eventually leading to the wrapping of DNA around the nanoparticle at high electric charges. However, a small increase in the persistence length of DNA by 10 nm requires a cationic nanoparticle with a markedly increased electric charge to bend and wrap DNA around. Thus, a more flexible DNA molecule bends and wraps around a cationic nanoparticle with an intermediate electric charge, whereas a less flexible DNA molecule binds to a nanoparticle with the same electric charge without notable bending. This work provides solid evidence that a small difference in DNA flexibility (as small as 10 nm in persistence length) has a substantial influence on the complex formation of DNA with proteins from a biological perspective and suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnology as a new tool to manipulate the structure of DNA molecules mediated by nanoparticle binding.
Collapse
Affiliation(s)
- Sehui Bae
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Inrok Oh
- LG
Chem Ltd., LG Science Park, Seoul 07796, Republic of Korea
| | - Jejoong Yoo
- Department
of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Soo Kim
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| |
Collapse
|
31
|
Balaguer FDA, Aicart-Ramos C, Fisher GL, de Bragança S, Martin-Cuevas EM, Pastrana CL, Dillingham MS, Moreno-Herrero F. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. eLife 2021; 10:67554. [PMID: 34250901 PMCID: PMC8299390 DOI: 10.7554/elife.67554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.
Collapse
Affiliation(s)
- Francisco de Asis Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Sara de Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M Martin-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
32
|
Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA. Proc Natl Acad Sci U S A 2021; 118:2102621118. [PMID: 34074787 PMCID: PMC8201915 DOI: 10.1073/pnas.2102621118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In transcription factors’ search for target genes, one-dimensional diffusion of the protein along DNA is essential. Experimentally, it remains challenging to resolve the individual diffusional steps of protein on DNA. Here, we report mainly all-atom equilibrium simulations of a WRKY domain protein in association with and diffusion along DNA. We demonstrate a complete stepping cycle of the protein for one base pair on DNA within microseconds, along with stochastic motions. Processive protein diffusions on DNA have been further sampled in a coarse-grained model. We have also found preferential DNA-strand association of the domain protein, which becomes most prominent at specific DNA binding, and it can be common for small-domain proteins to balance movements on the DNA with the sequence recognition. Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein–DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA.
Collapse
|
33
|
Abstract
One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.
Collapse
|
34
|
Belotserkovskii BP. Effects of isolated nonspecific binders upon the search for specific targets: Absolute rates versus competition between the targets. Phys Rev E 2021; 103:022413. [PMID: 33735998 DOI: 10.1103/physreve.103.022413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 11/07/2022]
Abstract
Many biological processes involve macromolecules searching for their specific targets that are surrounded by other objects, and binding to these objects affects the target search. Acceleration of the target search by nonspecific binders was observed experimentally and analyzed theoretically, for example, for DNA-binding proteins. According to existing theories this acceleration requires continuous transfer between the nonspecific binders and the specific target. In contrast, our analysis predicts that (i) nonspecific binders could accelerate the search without continuous transfer to the specific target provided that the searching particle is capable of sliding along the binder; (ii) in some cases such binders could decelerate the target search, but provide an advantage in competition with the "binder-free" target; (iii) nonbinding objects decelerate the target search. We also show that although the target search in the presence of binders could be considered as diffusion in inhomogeneous media, in the general case it cannot be described by the effective diffusion coefficient.
Collapse
|
35
|
Iwahara J, Kolomeisky AB. Discrete-state stochastic kinetic models for target DNA search by proteins: Theory and experimental applications. Biophys Chem 2021; 269:106521. [PMID: 33338872 PMCID: PMC7855466 DOI: 10.1016/j.bpc.2020.106521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
To perform their functions, transcription factors and DNA-repair/modifying enzymes randomly search DNA in order to locate their specific targets on DNA. Discrete-state stochastic kinetic models have been developed to explain how the efficiency of the search process is influenced by the molecular properties of proteins and DNA as well as by other factors such as molecular crowding. These theoretical models not only offer explanations on the relation of microscopic processes to macroscopic behavior of proteins, but also facilitate the analysis and interpretation of experimental data. In this review article, we provide an overview on discrete-state stochastic kinetic models and explain how these models can be applied to experimental investigations using stopped-flow, single-molecule, nuclear magnetic resonance (NMR), and other biophysical and biochemical methods.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Anatoly B Kolomeisky
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| |
Collapse
|
36
|
Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Base and Nucleotide Excision Repair Pathways in DNA Plasmids Harboring Oxidatively Generated Guanine Lesions. Chem Res Toxicol 2021; 34:154-160. [PMID: 33405911 DOI: 10.1021/acs.chemrestox.0c00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. We have demonstrated earlier that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) are excised from double-stranded DNA by competing BER and NER in whole-cell extracts [Shafirovich, V., et al. (2016) J. Biol. Chem. 321, 5309-5319]. In this work we compared the NER and BER yields with single Gh or Sp lesions embedded at the same sites in covalently closed circular pUC19NN plasmid DNA (cccDNA) and in the same but linearized form (linDNA) of this plasmid. The kinetics of the Sp and Gh BER and NER incisions were monitored in HeLa cell extracts. The yield of NER products is ∼5 times greater in covalently closed circular DNA than in the linearized form, while the BER yield is smaller by ∼20-30% depending on the guanine lesion. Control BER experiments with 8-oxo-7,8-dihydroguanine (8-oxoG) show that the BER yield is increased by a factor of only 1.4 ± 0.2 in cccDNA relative to linDNA. These surprising differences in BER and NER activities are discussed in terms of the lack of termini in covalently closed circular DNA and the DNA lesion search dynamics of the NER DNA damage sensor XPC-RAD23B and the BER enzyme OGG1 that recognizes and excises 8-oxoG.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Abraham Aharonoff
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Ana Helena Sales
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, New York 10003-5180, United States
| |
Collapse
|
37
|
Jana T, Brodsky S, Barkai N. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites. Trends Genet 2021; 37:421-432. [PMID: 33414013 DOI: 10.1016/j.tig.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) regulate gene expression by binding DNA sequences recognized by their DNA-binding domains (DBDs). DBD-recognized motifs are short and highly abundant in genomes. The ability of TFs to bind a specific subset of motif-containing sites, and to do so rapidly upon activation, is fundamental for gene expression in all eukaryotes. Despite extensive interest, our understanding of the TF-target search process is fragmented; although binding specificity and detection speed are two facets of this same process, trade-offs between them are rarely addressed. In this opinion article, we discuss potential speed-specificity trade-offs in the context of existing models. We further discuss the recently described 'distributed specificity' paradigm, suggesting that intrinsically disordered regions (IDRs) promote specificity while reducing the TF-target search time.
Collapse
Affiliation(s)
- Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
38
|
D'Acunto M. Protein-DNA target search relies on quantum walk. Biosystems 2020; 201:104340. [PMID: 33387562 DOI: 10.1016/j.biosystems.2020.104340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Protein-DNA interactions play a fundamental role in all life systems. A critical issue of such interactions is given by the strategy of protein search for specific targets on DNA. The mechanisms by which the protein are able to find relatively small cognate sequences, typically 15-20 base pairs (bps) for repressors, and 4-6 bps for restriction enzymes among the millions of bp of non-specific chromosomal DNA have hardly engaged researchers for decades. Recent experimental studies have generated new insights on the basic processes of protein-DNA interactions evidencing the underlying complex dynamic phenomena involved, which combine three-dimensional and one-dimensional motion along the DNA chain. It has been demonstrated that protein molecules have an extraordinary ability to find the target very quickly on the DNA chain, in some cases, with two orders of magnitude faster than the diffusion limit. This unique property of protein-DNA search mechanism is known as facilitated diffusion. Several theoretical mechanisms have been suggested to describe the origin of facilitated diffusion. However, none of such models currently has the ability to fully describe the protein search strategy. In this paper, we suggest that the ability of proteins to identify consensus sequences on DNA is based on the entanglement of π-π electrons between DNA nucleotides and protein amino acids. The π-π entanglement is based on Quantum Walk (QW), through Coin-position entanglement (CPE). First, the protein identifies a dimer belonging to the consensus sequence, and localize a π on such dimer, hence, the other π electron scans the DNA chain until the sequence is identified. Focusing on the example of recognition of consensus sequences of EcoRV or EcoRI, we will describe the quantum features of QW on protein-DNA complexes during the search strategy, such as walker quadratic spreading on a coherent superposition of different vertices and environment-supported long-time survival probability of the walker. We will employ both discrete- or continuous-time versions of QW. Biased and unbiased classical Random Walk (CRW) have been used for a long time to describe the Protein-DNA search strategy. QW, the quantum version of CRW, has been widely studied for its applications in quantum information applications. In our biological application, the walker (the protein) resides at a vertex in a graph (the DNA structural topology). Differently to CRW, where the walker moves randomly, the quantum walker can hop along the edges in the graph to reach other vertices entering coherently a superposition across different vertices spreading quadratically faster than CRW analogous evidencing the typical speed up features of the QW. When applied to a protein-DNA target search problem, QW gives the possibility to achieve the experimental diffusional motion of proteins over diffusion classical limits experienced along DNA chains exploiting quantum features such as CPE and long-time survival probability supported by the environment. In turn, we come to the conclusion that, under quantum picture, the protein search strategy does not distinguish between one-dimensional (1D) and three-dimensional (3D) cases.
Collapse
Affiliation(s)
- Mario D'Acunto
- CNR-IBF, Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
39
|
Suleiman K, Liu C, Zhang X, Wang E, Ma L, Zheng L. Anomalous diffusion on Archimedean spiral structure with Cattaneo flux model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Yadav I, Basak R, Yan P, van Kan JA, Arluison V, van der Maarel JRC. Role of Internal DNA Motion on the Mobility of a Nucleoid-Associated Protein. J Phys Chem Lett 2020; 11:8424-8429. [PMID: 32930601 DOI: 10.1021/acs.jpclett.0c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein transport on DNA is at the core of the machinery of life. Here we investigated the influence of DNA internal motion on the mobility of Hfq, which is involved in several aspects of nucleic acid metabolism and is one of the nucleoid-associated proteins that shape the bacterial chromosome. Fluorescence microscopy was used to follow Hfq on double-stranded DNA that was stretched by confinement to a channel with a diameter of 125 nm. The protein mobility shows a strong dependence on the internal motion of DNA in that slower motion results in faster protein diffusion. A model of released diffusion is proposed that is based on three-dimensional diffusion through the interior of the DNA coil interspersed by periods in which the protein is immobilized in a bound state. We surmise that the coupling between DNA internal motion and protein mobility has important implications for DNA metabolism and protein-binding-related regulation of gene expression.
Collapse
Affiliation(s)
- Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542
| | - Rajib Basak
- Department of Physics, National University of Singapore, Singapore 117542
| | - Peiyan Yan
- Department of Physics, National University of Singapore, Singapore 117542
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542
| | - Véronique Arluison
- Université de Paris, UFR SDV, 75006 Paris, France
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|
41
|
Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models. Proc Natl Acad Sci U S A 2020; 117:21889-21895. [PMID: 32820079 PMCID: PMC7486748 DOI: 10.1073/pnas.2002971117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA glycosylase repairs DNA damage to maintain the genome integrity, and thus it is essential for the survival of all organisms. However, it remains a long-standing puzzle how glycosylase diffuses along the genomic DNA to locate the sparse and aberrant lesion sites efficiently and accurately in the genome containing numerous base pairs. Previously, only the high-speed–low-accuracy search mode has been characterized experimentally, while the low-speed–high-accuracy mode is undetectable. Here, we observed the low-speed mode of glycosylase AlkD translocating, and further dissected its molecular mechanisms. To achieve this, we developed an integrated platform by combining scanning FRET-FCS with Markov state model. We expect that this platform can be widely applied to investigate other glycosylases and DNA-binding proteins. DNA glycosylase is responsible for repairing DNA damage to maintain the genome stability and integrity. However, how glycosylase can efficiently and accurately recognize DNA lesions across the enormous DNA genome remains elusive. It has been hypothesized that glycosylase translocates along the DNA by alternating between a fast but low-accuracy diffusion mode and a slow but high-accuracy mode when searching for DNA lesions. However, the slow mode has not been successfully characterized due to the limitation in the spatial and temporal resolutions of current experimental techniques. Using a newly developed scanning fluorescence resonance energy transfer (FRET)–fluorescence correlation spectroscopy (FCS) platform, we were able to observe both slow and fast modes of glycosylase AlkD translocating on double-stranded DNA (dsDNA), reaching the temporal resolution of microsecond and spatial resolution of subnanometer. The underlying molecular mechanism of the slow mode was further elucidated by Markov state model built from extensive all-atom molecular dynamics simulations. We found that in the slow mode, AlkD follows an asymmetric diffusion pathway, i.e., rotation followed by translation. Furthermore, the essential role of Y27 in AlkD diffusion dynamics was identified both experimentally and computationally. Our results provided mechanistic insights on how conformational dynamics of AlkD–dsDNA complex coordinate different diffusion modes to accomplish the search for DNA lesions with high efficiency and accuracy. We anticipate that the mechanism adopted by AlkD to search for DNA lesions could be a general one utilized by other glycosylases and DNA binding proteins.
Collapse
|
42
|
Yin S, Tien M, Yang H. Prior-Apprised Unsupervised Learning of Subpixel Curvilinear Features in Low Signal/Noise Images. Biophys J 2020; 118:2458-2469. [PMID: 32359407 PMCID: PMC7231927 DOI: 10.1016/j.bpj.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/07/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Many biophysical problems involve molecular and nanoscale targets moving next to a curvilinear track, e.g., a cytosolic cargo transported by motor proteins moving along a microtubule. For this type of problem, fluorescence imaging is usually the primary tool of choice. There is, however, an ∼20-fold mismatch between target-localization precision and track-imaging resolution such that questions requiring high-fidelity definition of the target's track remain inaccessible. On the other hand, if the contextual image of the tracks can be refined to a level comparable to that of the target, many intuitive yet mechanistically important issues can begin to be addressed. This work demonstrates that it is possible to statistically infer, to subpixel precision, curvilinear features in a low signal/noise image. This is achieved by a framework that consists of three stages: the Hessian-based feature enhancement, the subimage feature sampling and registration, and the statistical learning of the underlying curvilinear structure using a new, to our knowledge, method developed here for inferring the principal curves. In each stage, the descriptive prior information that the features come from curvilinear elements is explicitly taken into account. It is fully automated without user supervision, which is distinctly different from approaches that require user seeding or well-defined training data sets. Computer simulations of realistic images are used to investigate the performance of the framework and its implementation. The characterization results suggest that curvilinear features are refined to the same order of precision as that of the target and that the bootstrap confidence intervals from the analysis allow an estimate for the statistical bounds of the simulated "true" curve. Also shown are analyses of experimental images from three different microscopy modalities: two-photon laser-scanning microscopy, epifluorescence microscopy, and total internal reflection fluorescence microscopy. The practical application of this prior-apprised unsupervised learning framework as well as its potential outlook are discussed.
Collapse
Affiliation(s)
- Shuhui Yin
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey.
| |
Collapse
|
43
|
Inferring quantity and qualities of superimposed reaction rates from single molecule survival time distributions. Sci Rep 2020; 10:1758. [PMID: 32019978 PMCID: PMC7000831 DOI: 10.1038/s41598-020-58634-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/19/2020] [Indexed: 01/18/2023] Open
Abstract
Actions of molecular species, for example binding of transcription factors to chromatin, may comprise several superimposed reaction pathways. The number and the rate constants of such superimposed reactions can in principle be resolved by inverse Laplace transformation of the corresponding distribution of reaction lifetimes. However, current approaches to solve this transformation are challenged by photobleaching-prone fluorescence measurements of lifetime distributions. Here, we present a genuine rate identification method (GRID), which infers the quantity, rates and amplitudes of dissociation processes from fluorescence lifetime distributions using a dense grid of possible decay rates. In contrast to common multi-exponential analysis of lifetime distributions, GRID is able to distinguish between broad and narrow clusters of decay rates. We validate GRID by simulations and apply it to CDX2-chromatin interactions measured by live cell single molecule fluorescence microscopy. GRID reveals well-separated narrow decay rate clusters of CDX2, in part overlooked by multi-exponential analysis. We discuss the amplitudes of the decay rate spectrum in terms of frequency of observed events and occupation probability of reaction states. We further demonstrate that a narrow decay rate cluster is compatible with a common model of TF sliding on DNA.
Collapse
|
44
|
Castellanos M, Mothi N, Muñoz V. Eukaryotic transcription factors can track and control their target genes using DNA antennas. Nat Commun 2020; 11:540. [PMID: 31992709 PMCID: PMC6987225 DOI: 10.1038/s41467-019-14217-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic transcription factors (TF) function by binding to short 6-10 bp DNA recognition sites located near their target genes, which are scattered through vast genomes. Such process surmounts enormous specificity, efficiency and celerity challenges using a molecular mechanism that remains poorly understood. Combining biophysical experiments, theory and bioinformatics, we dissect the interplay between the DNA-binding domain of Engrailed, a Drosophila TF, and the regulatory regions of its target genes. We find that Engrailed binding affinity is strongly amplified by the DNA regions flanking the recognition site, which contain long tracts of degenerate recognition-site repeats. Such DNA organization operates as an antenna that attracts TF molecules in a promiscuous exchange among myriads of intermediate affinity binding sites. The antenna ensures a local TF supply, enables gene tracking and fine control of the target site's basal occupancy. This mechanism illuminates puzzling gene expression data and suggests novel engineering strategies to control gene expression.
Collapse
Affiliation(s)
- Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain.,Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Nivin Mothi
- Department of Bioengineering, School of Engineering, University of California, 95343, Merced, CA, USA
| | - Victor Muñoz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain. .,Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Campus de Cantoblanco, Madrid, 28049, Spain. .,Department of Bioengineering, School of Engineering, University of California, 95343, Merced, CA, USA.
| |
Collapse
|
45
|
Cheon NY, Kim HS, Yeo JE, Schärer OD, Lee JY. Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. Nucleic Acids Res 2019; 47:8337-8347. [PMID: 31372632 PMCID: PMC6895271 DOI: 10.1093/nar/gkz629] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/14/2022] Open
Abstract
DNA repair is critical for maintaining genomic integrity. Finding DNA lesions initiates the entire repair process. In human nucleotide excision repair (NER), XPC-RAD23B recognizes DNA lesions and recruits downstream factors. Although previous studies revealed the molecular features of damage identification by the yeast orthologs Rad4-Rad23, the dynamic mechanisms by which human XPC-RAD23B recognizes DNA defects have remained elusive. Here, we directly visualized the motion of XPC-RAD23B on undamaged and lesion-containing DNA using high-throughput single-molecule imaging. We observed three types of one-dimensional motion of XPC-RAD23B along DNA: diffusive, immobile and constrained. We found that consecutive AT-tracks led to increase in proteins with constrained motion. The diffusion coefficient dramatically increased according to ionic strength, suggesting that XPC-RAD23B diffuses along DNA via hopping, allowing XPC-RAD23B to bypass protein obstacles during the search for DNA damage. We also examined how XPC-RAD23B identifies cyclobutane pyrimidine dimers (CPDs) during diffusion. XPC-RAD23B makes futile attempts to bind to CPDs, consistent with low CPD recognition efficiency. Moreover, XPC-RAD23B binds CPDs in biphasic states, stable for lesion recognition and transient for lesion interrogation. Taken together, our results provide new insight into how XPC-RAD23B searches for DNA lesions in billions of base pairs in human genome.
Collapse
Affiliation(s)
- Na Young Cheon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
46
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
47
|
Da LT, Yu J. Base-flipping dynamics from an intrahelical to an extrahelical state exerted by thymine DNA glycosylase during DNA repair process. Nucleic Acids Res 2019; 46:5410-5425. [PMID: 29762710 PMCID: PMC6009601 DOI: 10.1093/nar/gky386] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a DNA repair enzyme that excises a variety of mismatched or damaged nucleotides (nts), e.g. dU, dT, 5fC and 5caC. TDG is shown to play essential roles in maintaining genome integrity and correctly programming epigenetic modifications through DNA demethylation. After locating the lesions, TDG employs a base-flipping strategy to recognize the damaged nucleobases, whereby the interrogated nt is extruded from the DNA helical stack and binds into the TDG active site. The dynamic mechanism of the base-flipping process at an atomistic resolution, however, remains elusive. Here, we employ the Markov State Model (MSM) constructed from extensive all-atom molecular dynamics (MD) simulations to reveal the complete base-flipping process for a G.T mispair at a tens of microsecond timescale. Our studies identify critical intermediates of the mispaired dT during its extrusion process and reveal the key TDG residues involved in the inter-state transitions. Notably, we find an active role of TDG in promoting the intrahelical nt eversion, sculpturing the DNA backbone, and penetrating into the DNA minor groove. Three additional TDG substrates, namely dU, 5fC, and 5caC, are further tested to evaluate the substituent effects of various chemical modifications of the pyrimidine ring on base-flipping dynamics.
Collapse
Affiliation(s)
- Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
48
|
Rudnizky S, Khamis H, Malik O, Squires AH, Meller A, Melamed P, Kaplan A. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context. Nucleic Acids Res 2019; 46:1513-1524. [PMID: 29253225 PMCID: PMC5815098 DOI: 10.1093/nar/gkx1252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Malik
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Allison H Squires
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amit Meller
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
49
|
Barton JK, Silva RMB, O'Brien E. Redox Chemistry in the Genome: Emergence of the [4Fe4S] Cofactor in Repair and Replication. Annu Rev Biochem 2019; 88:163-190. [PMID: 31220976 PMCID: PMC6590699 DOI: 10.1146/annurev-biochem-013118-110644] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.
Collapse
Affiliation(s)
- Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Rebekah M B Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Elizabeth O'Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
50
|
Chudinova EM, Brodsky IB, Nadezhdina ES. On the interaction of ribosomal protein RPL22e with microtubules. Cell Biol Int 2019; 43:749-759. [PMID: 30958636 DOI: 10.1002/cbin.11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/23/2019] [Indexed: 11/10/2022]
Abstract
Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e-GFP-6His did co-sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT-associated proteins. Distinct in vitro interaction of RPL22e-GFP with MTs was also observed by TIRF microscopy. In real-time assay, RPL22e-GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random-walk along MTs with diffusion coefficient 0.03 µ2 /s. Deletion of basic areas of RPL22e did not have an impact on KD , and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT-dependent transport and could ameliorate its transport to the nucleus.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str., 6, 117198 Moscow, Russia
| | - Ilya B Brodsky
- M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| |
Collapse
|