1
|
Dumas L, Shin S, Rigaud Q, Cargnello M, Hernández-Suárez B, Herviou P, Saint-Laurent N, Leduc M, Le Gall M, Monchaud D, Dassi E, Cammas A, Millevoi S. RNA G-quadruplexes control mitochondria-localized mRNA translation and energy metabolism. Nat Commun 2025; 16:3292. [PMID: 40195294 PMCID: PMC11977240 DOI: 10.1038/s41467-025-58118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer cells rely on mitochondria for their bioenergetic supply and macromolecule synthesis. Central to mitochondrial function is the regulation of mitochondrial protein synthesis, which primarily depends on the cytoplasmic translation of nuclear-encoded mitochondrial mRNAs whose protein products are imported into mitochondria. Despite the growing evidence that mitochondrial protein synthesis contributes to the onset and progression of cancer, and can thus offer new opportunities for cancer therapy, knowledge of the underlying molecular mechanisms remains limited. Here, we show that RNA G-quadruplexes (RG4s) regulate mitochondrial function by modulating cytoplasmic mRNA translation of nuclear-encoded mitochondrial proteins. Our data support a model whereby the RG4 folding dynamics, under the control of oncogenic signaling and modulated by small molecule ligands or RG4-binding proteins, modifies mitochondria-localized cytoplasmic protein synthesis. Ultimately, this impairs mitochondrial functions, affecting energy metabolism and consequently cancer cell proliferation.
Collapse
Affiliation(s)
- Leïla Dumas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Sauyeun Shin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Quentin Rigaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie Cargnello
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Beatriz Hernández-Suárez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Pauline Herviou
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nathalie Saint-Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marjorie Leduc
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon CNRS UMR6302, Dijon, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy.
| | - Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| |
Collapse
|
2
|
Peyda P, Lin CH, Onwuzurike K, Black DL. The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multipart RNA regulatory modules. Genes Dev 2025; 39:364-383. [PMID: 39880658 PMCID: PMC11874969 DOI: 10.1101/gad.352105.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing. We used a nuclease protection assay to map the transcriptome-wide footprints of Rbfox1/LASR on nascent cellular RNA. In addition to GCAUG, Rbfox1/LASR binds RNA motifs for LASR subunits hnRNPs M, H/F, and C and Matrin3. These elements are often arranged in tandem, forming multipart modules of RNA motifs. To distinguish contact sites of Rbfox1 from the LASR subunits, we analyzed a mutant Rbfox1(F125A) that has lost RNA binding but remains associated with LASR. Rbfox1(F125A)/LASR complexes no longer interact with GCAUG but retain binding to RNA elements for LASR. Splicing analyses reveal that in addition to activating exons through adjacent GCAUG elements, Rbfox can also stimulate exons near binding sites for LASR subunits. Minigene experiments demonstrate that these diverse elements produce a combined regulatory effect on a target exon. These findings illuminate how a complex of RNA-binding proteins can decode combinatorial splicing regulatory signals by recognizing groups of tandem RNA elements.
Collapse
Affiliation(s)
- Parham Peyda
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Kelechi Onwuzurike
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Lemmens T, Šponer J, Krepl M. How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study. J Chem Inf Model 2025; 65:896-907. [PMID: 39804219 PMCID: PMC11776045 DOI: 10.1021/acs.jcim.4c01954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
Collapse
Affiliation(s)
- Toon Lemmens
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
4
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Anastasakis DG, Apostolidi M, Garman KA, Polash AH, Umar MI, Meng Q, Scutenaire J, Jarvis JE, Wang X, Haase AD, Brownell I, Rinehart J, Hafner M. Nuclear PKM2 binds pre-mRNA at folded G-quadruplexes and reveals their gene regulatory role. Mol Cell 2024; 84:3775-3789.e6. [PMID: 39153475 PMCID: PMC11455610 DOI: 10.1016/j.molcel.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Nuclear localization of the metabolic enzyme PKM2 is widely observed in various cancer types. We identify nuclear PKM2 as a non-canonical RNA-binding protein (RBP) that specifically interacts with folded RNA G-quadruplex (rG4) structures in precursor mRNAs (pre-mRNAs). PKM2 occupancy at rG4s prevents the binding of repressive RBPs, such as HNRNPF, and promotes the expression of rG4-containing pre-mRNAs (the "rG4ome"). We observe an upregulation of the rG4ome during epithelial-to-mesenchymal transition and a negative correlation of rG4 abundance with patient survival in different cancer types. By preventing the nuclear accumulation of PKM2, we could repress the rG4ome in triple-negative breast cancer cells and reduce migration and invasion of cancer cells in vitro and in xenograft mouse models. Our data suggest that the balance of folded and unfolded rG4s controlled by RBPs impacts gene expression during tumor progression.
Collapse
Affiliation(s)
| | - Maria Apostolidi
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA
| | | | - Ahsan H Polash
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Mubarak I Umar
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Qingcai Meng
- Laboratory of Cellular and Molecular Biology, NIDDK/NIH, Bethesda, MD, USA
| | | | | | - Xiantao Wang
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA
| | - Astrid D Haase
- Laboratory of Cellular and Molecular Biology, NIDDK/NIH, Bethesda, MD, USA
| | | | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Systems Biology Institute, Yale University, West Haven, CT, USA.
| | - Markus Hafner
- RNA Molecular Biology Laboratory, NIAMS/NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Peyda P, Lin CH, Onwuzurike K, Black DL. The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multi-part RNA regulatory modules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603345. [PMID: 39071271 PMCID: PMC11275806 DOI: 10.1101/2024.07.12.603345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to LASR, a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing. We used a nuclease-protection assay to map the transcriptome-wide footprints of Rbfox1/LASR on nascent cellular RNA. In addition to GCAUG, Rbfox1/LASR binds RNA containing motifs for LASR subunits hnRNPs M, H/F, C, and Matrin3. These elements are often arranged in tandem, forming multi-part modules of RNA motifs. To distinguish contact sites of Rbfox1 from the LASR subunits, we analyzed a mutant Rbfox1(F125A) that has lost RNA binding but remains associated with LASR. Rbfox1(F125A)/LASR complexes no longer interact with GCAUG but retain binding to RNA elements for LASR. Splicing analyses reveal that in addition to activating exons through adjacent GCAUG elements, Rbfox can also stimulate exons near binding sites for LASR subunits. Mini-gene experiments demonstrate that these diverse elements produce a combined regulatory effect on a target exon. These findings illuminate how a complex of RNA-binding proteins can decode combinatorial splicing regulatory signals by recognizing groups of tandem RNA elements.
Collapse
|
8
|
Du B, Wang P, Wei L, Qin K, Pei Z, Zheng J, Wang J. Unraveling the independent role of METTL3 in m6A modification and tumor progression in esophageal squamous cell carcinoma. Sci Rep 2024; 14:15398. [PMID: 38965238 PMCID: PMC11224396 DOI: 10.1038/s41598-024-64517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
METTL3 and METTL14 are traditionally posited to assemble the m6A methyltransferase complex in a stoichiometric 1:1 ratio, modulating mRNA fate via m6A modifications. Nevertheless, recent investigations reveal inconsistent expression levels and prognostic significance of METTL3 and METTL14 across various tumor types, challenging their consistent functional engagement in neoplastic contexts. A pan-cancer analysis leveraging The Cancer Genome Atlas (TCGA) data has identified pronounced disparities in the expression patterns, functional roles, and correlations with tumor burden between METTL3 and METTL14, particularly in esophageal squamous cell carcinoma (ESCC). Knockdown experiments of METTL3 in EC109 cells markedly suppress cell proliferation both in vitro and in vivo, whereas METTL14 knockdown shows a comparatively muted effect on proliferation and does not significantly alter METTL3 protein levels. mRNA sequencing indicates that METTL3 singularly governs the expression of 1615 genes, with only 776 genes co-regulated with METTL14. Additionally, immunofluorescence co-localization studies suggest discrepancies in cellular localization between METTL3 and METTL14. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrate that METTL3 uniquely associates with the Nop56p-linked pre-rRNA complex and mRNA splicing machinery, independent of METTL14. Preliminary bioinformatics and multi-omics investigations reveal that METTL3's autonomous role in modulating tumor cell proliferation and its involvement in mRNA splicing are potentially pivotal molecular mechanisms. Our study lays both experimental and theoretical groundwork for a deeper understanding of the m6A methyltransferase complex and the development of targeted tumor therapies focusing on METTL3.
Collapse
Affiliation(s)
- Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Lingyu Wei
- Central Laboratory of Clinical Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 047500, China
| | - Kai Qin
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 047500, China
| | - Jinping Zheng
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China.
| |
Collapse
|
9
|
da Silva CC, Trevino CM, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601574. [PMID: 39005284 PMCID: PMC11245018 DOI: 10.1101/2024.07.02.601574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
| | - Russ P. Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA, USA
- Harvard Medical School, Boston, MA, USA
- Shriners Hospital for Children, Tampa, FL, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Marshall LK, Fahrenbach AC, Thordarson P. RNA-Binding Peptides Inspired by the RNA Recognition Motif. ACS Chem Biol 2024; 19:243-248. [PMID: 38314708 DOI: 10.1021/acschembio.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
β-Hairpin peptides with RNA-binding sequences mimicking the central two β-strands of the RNA recognition motif (RRM) protein domain have been observed to bind in a 2:1 fashion to a series of RNA homooligonucleotides in aqueous solution (PBS buffer, pH 7.40) with binding energies (-27 to -35 kJ mol-1) similar to those of full-size protein RRMs. The peptides display mild selectivities with respect to the binding of the different homooligomers. Binding studies in 500 mM magnesium chloride suggest that the complex formation is not predominantly driven by Coulombic attraction. These peptides represent a starting point for further studies of non-Coulombic binding of RNA by peptides and proteins, which is important in the context of contemporary biology, potential therapeutic applications, and prebiotic peptide-RNA interactions.
Collapse
|
12
|
Liu D, Dredge BK, Bert AG, Pillman KA, Toubia J, Guo W, Dyakov BA, Migault MM, Conn VM, Conn S, Gregory PA, Gingras AC, Patel D, Wu B, Goodall G. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucleic Acids Res 2024; 52:1387-1403. [PMID: 38015468 PMCID: PMC10853802 DOI: 10.1093/nar/gkad1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.
Collapse
Affiliation(s)
- Dawei Liu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melodie M Migault
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Simon J Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Ilık İA, Glažar P, Tse K, Brändl B, Meierhofer D, Müller FJ, Smith ZD, Aktaş T. Autonomous transposons tune their sequences to ensure somatic suppression. Nature 2024; 626:1116-1124. [PMID: 38355802 PMCID: PMC10901741 DOI: 10.1038/s41586-024-07081-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.
Collapse
Affiliation(s)
- İbrahim Avşar Ilık
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Petar Glažar
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kevin Tse
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Björn Brändl
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franz-Josef Müller
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie, Kiel, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
14
|
Harini K, Sekijima M, Gromiha MM. PRA-Pred: Structure-based prediction of protein-RNA binding affinity. Int J Biol Macromol 2024; 259:129490. [PMID: 38224813 DOI: 10.1016/j.ijbiomac.2024.129490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Understanding crucial factors that affect the binding affinity of protein-RNA complexes is vital for comprehending their recognition mechanisms. This study involved compiling experimentally measured binding affinity (ΔG) values of 217 protein-RNA complexes and extracting numerous structure-based features, considering RNA, protein, and interactions between protein and RNA. Our findings indicate the significance of RNA base-step parameters, interaction energies, number of atomic contacts in the complex, hydrogen bonds, and contact potentials in understanding the binding affinity. Further, we observed that these factors are influenced by the type of RNA strand and the function of the protein in a protein-RNA complex. Multiple regression equations were developed for different classes of complexes to perform the prediction of the binding affinity between the protein and RNA. We evaluated the models using the jack-knife test and achieved an overall correlation 0.77 between the experimental and predicted binding affinities with a mean absolute error of 1.02 kcal/mol. Furthermore, we introduced a web server, PRA-Pred, intended for the prediction of protein-RNA binding affinity, and it is freely accessible through https://web.iitm.ac.in/bioinfo2/prapred/. We propose that our approach could function as a potential resource for investigating protein-RNA recognitions and developing therapeutic strategies.
Collapse
Affiliation(s)
- K Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Sekijima
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Department of Computer Science, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
16
|
Liu D, Xu C, Gong Z, Zhao Y, Fang Z, Rao X, Chen Q, Li G, Kong W, Chen J. GRSF1 antagonizes age-associated hypercoagulability via modulation of fibrinogen mRNA stability. Cell Death Dis 2023; 14:717. [PMID: 37923734 PMCID: PMC10624831 DOI: 10.1038/s41419-023-06242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Age-associated hypercoagulability is accompanied by the increase of plasma levels of some coagulation factors including fibrinogen which may contribute to the increased risk of cardiovascular, cerebrovascular, and thrombotic diseases in elderly people. However, the underlying mechanism of increased plasma fibrinogen concentration during aging is still elusive. GRSF1 belongs to the heterogeneous nuclear ribonucleoproteins F/H (hnRNP F/H) subfamily. Here, we report that GRSF1 attenuates hypercoagulability via negative modulation of fibrinogen expression. We demonstrated that GRSF1 negatively regulated fibrinogen expression at both mRNA and protein levels. GRSF1 directly interacted with the coding region (CDS) of FGA, FGB, and FGG mRNAs, and decreased their stability thus mitigating fibrinogen expression. We further identified that only a few G-tracts within the Fib C domain of FGA, FGB, and FGG CDS and the qRRM2 domain of GRSF1 were required for their interaction. Moreover, we confirmed hypercoagulability and the decrease of GRSF1 expression level during mice aging. Functionally, GRSF1 overexpression in old mice liver decreased fibrinogen plasma level, reduced hypercoagulability, and mitigated blood coagulation activity, whereas GRSF1 knockdown in young mice liver increased fibrinogen plasma level and promoted blood coagulation activity. Collectively, our findings unveil a novel posttranscriptional regulation of fibrinogen by GRSF1 and uncover a critical role of GRSF1 in regulating blood coagulation activity.
Collapse
Affiliation(s)
- Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Chenzhong Xu
- School of Basic Medical Sciences, Shenzhen University, 518055, Shenzhen, China
| | - Ze Gong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, 315100, Ningbo, China
| | - Yijie Zhao
- Department of Laboratory Animal Science, Peking University Health Science Center, 100191, Beijing, China
| | - Zhiqiang Fang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Xiaoli Rao
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Qingyu Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China
| | - Wei Kong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, 100191, Beijing, China.
| |
Collapse
|
17
|
Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H, Zhang L. Research Progress on the Structural and Functional Roles of hnRNPs in Muscle Development. Biomolecules 2023; 13:1434. [PMID: 37892116 PMCID: PMC10604023 DOI: 10.3390/biom13101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China; (Z.L.); (H.W.); (D.H.); (X.L.); (Y.G.); (X.D.); (H.G.)
| |
Collapse
|
18
|
Warden M, DeRose E, Tamayo J, Mueller G, Gavis E, Hall T. The translational repressor Glorund uses interchangeable RNA recognition domains to recognize Drosophila nanos. Nucleic Acids Res 2023; 51:8836-8849. [PMID: 37427795 PMCID: PMC10484662 DOI: 10.1093/nar/gkad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). We showed previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. Here we determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs. The RNA structure demonstrated that a single qRRM is physically incapable of recognizing both RNA elements simultaneously. In vivo experiments further indicated that any two qRRMs are sufficient to repress nos translation. We probed interactions of Glo qRRMs with TCEI_III RNA using NMR paramagnetic relaxation experiments. Our in vitro and in vivo data support a model whereby tandem Glo qRRMs are indeed multifunctional and interchangeable for recognition of TCE G-tract or UA-rich motifs. This study illustrates how multiple RNA recognition modules within an RNA-binding protein may combine to diversify the RNAs that are recognized and regulated.
Collapse
Affiliation(s)
- Meghan S Warden
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joel V Tamayo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Zhao R, Fang X, Mai Z, Chen X, Mo J, Lin Y, Xiao R, Bao X, Weng X, Zhou X. Transcriptome-wide identification of single-stranded RNA binding proteins. Chem Sci 2023; 14:4038-4047. [PMID: 37063799 PMCID: PMC10094363 DOI: 10.1039/d3sc00957b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
RNA-protein interactions are precisely regulated by RNA secondary structures in various biological processes. Large-scale identification of proteins that interact with particular RNA structure is important to the RBPome. Herein, a kethoxal assisted single-stranded RNA interactome capture (KASRIC) strategy was developed to globally identify single-stranded RNA binding proteins (ssRBPs). This approach combines RNA secondary structure probing technology with the conventional method of RNA-binding proteins profiling, realizing the transcriptome-wide identification of ssRBPs. Applying KASRIC, we identified 3180 candidate RBPs and 244 candidate ssRBPs in HeLa cells. Importantly, the 244 candidate ssRBPs contained 55 previously reported ssRBPs and 189 novel ssRBPs. Function analysis of the candidate ssRBPs exhibited enrichment in cellular processes related to RNA splicing and RNA degradation. The KASRIC strategy will facilitate the investigation of RNA-protein interactions.
Collapse
Affiliation(s)
- Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zhibiao Mai
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yingying Lin
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University Wuhan Hubei 430071 China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Xichen Bao
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| |
Collapse
|
21
|
Huang H, Li Y, Zhang G, Ruan GX, Zhu Z, Chen W, Zou J, Zhang R, Wang J, Ouyang Y, Xu S, Ou X. The RNA-binding protein hnRNP F is required for the germinal center B cell response. Nat Commun 2023; 14:1731. [PMID: 36997512 PMCID: PMC10063658 DOI: 10.1038/s41467-023-37308-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
The T cell-dependent (TD) antibody response involves the generation of high affinity, immunoglobulin heavy chain class-switched antibodies that are generated through germinal center (GC) response. This process is controlled by coordinated transcriptional and post-transcriptional gene regulatory mechanisms. RNA-binding proteins (RBPs) have emerged as critical players in post-transcriptional gene regulation. Here we demonstrate that B cell-specific deletion of RBP hnRNP F leads to diminished production of class-switched antibodies with high affinities in response to a TD antigen challenge. B cells deficient in hnRNP F are characterized by defective proliferation and c-Myc upregulation upon antigenic stimulation. Mechanistically, hnRNP F directly binds to the G-tracts of Cd40 pre-mRNA to promote the inclusion of Cd40 exon 6 that encodes its transmembrane domain, thus enabling appropriate CD40 cell surface expression. Furthermore, we find that hnRNP A1 and A2B1 can bind to the same region of Cd40 pre-mRNA but suppress exon 6 inclusion, suggesting that these hnRNPs and hnRNP F might antagonize each-other's effects on Cd40 splicing. In summary, our study uncovers an important posttranscriptional mechanism regulating the GC response.
Collapse
Affiliation(s)
- Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gaopu Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Taizhou, 318000, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jia Zou
- Department of Computer Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Liu Z, Rui T, Lin Z, Xie S, Zhou B, Fu M, Mai L, Zhu C, Wu G, Wang Y. Tumor-Associated Macrophages Promote Metastasis of Oral Squamous Cell Carcinoma via CCL13 Regulated by Stress Granule. Cancers (Basel) 2022; 14:5081. [PMID: 36291863 PMCID: PMC9657876 DOI: 10.3390/cancers14205081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/03/2023] Open
Abstract
M2 tumor-associated macrophages (TAMs) have been a well-established promoter of oral squamous cell carcinoma (OSCC) progression. However, the mechanisms of M2 TAMs promoting OSCC metastasis have not been elucidated clearly. This study illustrated the regulatory mechanisms in which M2 TAMs enhance OSCC malignancy in a novel point of view. In this study, mass spectrometry was utilized to analyze the proteins expression profile of M2 type monocyte-derived macrophages (MDMs-M2), whose results revealed the high expression of G3BP1 in M2 macrophages. RNA sequencing analyzed the genome-wide changes upon G3BP1 knockdown in MDMs-M2 and identified that CCL13 was the most significantly downregulated inflammatory cytokines in MDMs-M2. Co-immunoprecipitation and qualitative mass spectrometry were used to identify the proteins that directly interacted with endogenous G3BP1 in MDMs-M2. Elevated stress granule (SG) formation in stressed M2 TAMs enhanced the expression of CCL13, which promoted OSCC metastasis both in vitro and in vivo. For mechanisms, we demonstrated SG formation improved DDX3Y/hnRNPF-mediated CCL13 mRNA stability, thus enhancing CCL13 expression and promoting OSCC metastasis. Collectively, our findings demonstrated for the first time the roles of CCL13 in improving OSCC metastasis and illustrated the molecular mechanisms of CCL13 expression regulated by SG, indicating that the SG-CCL13 axis can be the potential targets for TAM-navigated tumor therapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Tao Rui
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Shule Xie
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Bin Zhou
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Min Fu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Lianxi Mai
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Chuandong Zhu
- Department of Oral and Maxillofacial Surgery, Affiliate Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, 31 Huangsha Avenue, Guangzhou 510000, China
| | - Guotao Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Youyuan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- The Oral and Maxillofacial-Head and Neck Digital Precision Reconstruction Technology Research Center of Guangdong Province, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| |
Collapse
|
23
|
The solution structure of Dead End bound to AU-rich RNA reveals an unusual mode of tandem RRM-RNA recognition required for mRNA regulation. Nat Commun 2022; 13:5892. [PMID: 36202814 PMCID: PMC9537309 DOI: 10.1038/s41467-022-33552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Dead End (DND1) is an RNA-binding protein essential for germline development through its role in post-transcriptional gene regulation. The molecular mechanisms behind selection and regulation of its targets are unknown. Here, we present the solution structure of DND1's tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is specifically recognized, reconciling seemingly contradictory sequence motifs discovered in recent genome-wide studies. RRM1 acts as a main binding platform, including atypical extensions to the canonical RRM fold. RRM2 acts cooperatively with RRM1, capping the RNA using an unusual binding pocket, leading to an unusual mode of tandem RRM-RNA recognition. We show that the consensus motif is sufficient to mediate upregulation of a reporter gene in human cells and that this process depends not only on RNA binding by the RRMs, but also on DND1's double-stranded RNA binding domain (dsRBD), which is dispensable for binding of a subset of targets in cellulo. Our results point to a model where DND1 target selection is mediated by a non-canonical mode of AU-rich RNA recognition by the tandem RRMs and a role for the dsRBD in the recruitment of effector complexes responsible for target regulation.
Collapse
|
24
|
Vo T, Brownmiller T, Hall K, Jones TL, Choudhari S, Grammatikakis I, Ludwig K, Caplen N. HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 2022; 50:6474-6496. [PMID: 35639772 PMCID: PMC9226515 DOI: 10.1093/nar/gkac409] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.
Collapse
Affiliation(s)
- Tam Vo
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Hall
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sulbha Choudhari
- CCR-SF Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katelyn R Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Zhang A, Sun Y, Jing H, Liu J, Duan E, Ke W, Tao R, Li Y, Wang J, Cao S, Zhao P, Wang H, Zhang Y. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication. Virol J 2022; 19:82. [PMID: 35570267 PMCID: PMC9107676 DOI: 10.1186/s12985-022-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (HnRNP) F is a member of HnRNP family proteins that participate in splicing of cellular newly synthesized mRNAs by specifically recognizing tandem guanine-tracts (G-tracts) RNA sequences. Whether HnRNP F could recognize viral-derived tandem G-tracts and affect virus replication remain poorly defined. Methods The effect of HnRNP F on porcine reproductive and respiratory syndrome virus (PRRSV) propagation was evaluated by real-time PCR, western blotting, and plaque-forming unit assay. The association between HnRNP F and PRRSV guanine-rich segments (GRS) were analyzed by RNA pulldown and RNA immunoprecipitation. The expression pattern of HnRNP F was investigated by western blotting and nuclear and cytoplasmic fractionation. Results Knockdown of endogenous HnRNP F effectively blocks the synthesis of viral RNA and nucleocapsid (N) protein. Conversely, overexpression of porcine HnRNP F has the opposite effect. Moreover, RNA pulldown and RNA immunoprecipitation assays reveal that the qRMM1 and qRRM2 domains of HnRNP F recognize the GRS in PRRSV antigenomic RNA. Finally, HnRNP F is redistributed into the cytoplasm and forms a complex with guanine-quadruplex (G4) helicase DHX36 during PRRSV infection. Conclusions These findings elucidate the potential functions of HnRNP F in regulating the proliferation of PRRSV and contribute to a better molecular understanding of host-PRRSV interactions.
Collapse
|
26
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
27
|
Kreienkamp HJ, Wagner M, Weigand H, McConkie-Rossell A, McDonald M, Keren B, Mignot C, Gauthier J, Soucy JF, Michaud JL, Dumas M, Smith R, Löbel U, Hempel M, Kubisch C, Denecke J, Campeau PM, Bain JM, Lessel D. Variant-specific effects define the phenotypic spectrum of HNRNPH2-associated neurodevelopmental disorders in males. Hum Genet 2021; 141:257-272. [PMID: 34907471 PMCID: PMC8807443 DOI: 10.1007/s00439-021-02412-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype–phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.
Collapse
Affiliation(s)
- Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Heike Weigand
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner's Children's Hospital, University of Munich, Munich, Germany
| | | | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, USA
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cyril Mignot
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Gauthier
- Molecular Diagnostic Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Jean-François Soucy
- Molecular Diagnostic Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Jacques L Michaud
- Molecular Diagnostic Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Meghan Dumas
- Division of Genetic, Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, ME, USA
| | - Rosemarie Smith
- Division of Genetic, Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, ME, USA
| | - Ulrike Löbel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | - Jennifer M Bain
- Division of Child Neurology, Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
He X, Yuan J, Wang Y. G3BP1 binds to guanine quadruplexes in mRNAs to modulate their stabilities. Nucleic Acids Res 2021; 49:11323-11336. [PMID: 34614161 PMCID: PMC8565330 DOI: 10.1093/nar/gkab873] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA guanine quadruplexes (rG4) assume important roles in post-transcriptional regulations of gene expression, which are often modulated by rG4-binding proteins. Hence, understanding the biological functions of rG4s requires the identification and functional characterizations of rG4-recognition proteins. By employing a bioinformatic approach based on the analysis of overlap between peaks obtained from rG4-seq analysis and those detected in >230 eCLIP-seq datasets for RNA-binding proteins generated from the ENCODE project, we identified a large number of candidate rG4-binding proteins. We showed that one of these proteins, G3BP1, is able to bind directly to rG4 structures with high affinity and selectivity, where the binding entails its C-terminal RGG domain and is further enhanced by its RRM domain. Additionally, our seCLIP-Seq data revealed that pyridostatin, a small-molecule rG4 ligand, could displace G3BP1 from mRNA in cells, with the most pronounced effects being observed for the 3′-untranslated regions (3′-UTR) of mRNAs. Moreover, luciferase reporter assay results showed that G3BP1 positively regulates mRNA stability through its binding with rG4 structures. Together, we identified a number of candidate rG4-binding proteins and validated that G3BP1 can bind directly with rG4 structures and regulate the stabilities of mRNAs.
Collapse
Affiliation(s)
- Xiaomei He
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Jun Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
29
|
Shkreta L, Delannoy A, Salvetti A, Chabot B. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. RNA (NEW YORK, N.Y.) 2021; 27:1302-1317. [PMID: 34315816 PMCID: PMC8522700 DOI: 10.1261/rna.078879.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Anna Salvetti
- INSERM, U1111, Centre International de Recherche en Infectiologie de Lyon (CIRI), CNRS UMR 5308, Lyon, France
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
30
|
Bae JW, Kim S, Kim VN, Kim JS. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat Commun 2021; 12:6026. [PMID: 34654832 PMCID: PMC8519950 DOI: 10.1038/s41467-021-26317-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
RNA-protein interaction can be captured by crosslinking and enrichment followed by tandem mass spectrometry, but it remains challenging to pinpoint RNA-binding sites (RBSs) or provide direct evidence for RNA-binding. To overcome these limitations, we here developed pRBS-ID, by incorporating the benefits of UVA-based photoactivatable ribonucleoside (PAR; 4-thiouridine and 6-thioguanosine) crosslinking and chemical RNA cleavage. pRBS-ID robustly detects peptides crosslinked to PAR adducts, offering direct RNA-binding evidence and identifying RBSs at single amino acid-resolution with base-specificity (U or G). Using pRBS-ID, we could profile uridine-contacting RBSs globally and discover guanosine-contacting RBSs, which allowed us to characterize the base-specific interactions. We also applied the search pipeline to analyze the datasets from UVC-based RBS-ID experiments, altogether offering a comprehensive list of human RBSs with high coverage (3,077 RBSs in 532 proteins in total). pRBS-ID is a widely applicable platform to investigate the molecular basis of posttranscriptional regulation.
Collapse
Affiliation(s)
- Jong Woo Bae
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | | | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
31
|
Human Mitochondrial RNA Processing and Modifications: Overview. Int J Mol Sci 2021; 22:ijms22157999. [PMID: 34360765 PMCID: PMC8348895 DOI: 10.3390/ijms22157999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondria, often referred to as the powerhouses of cells, are vital organelles that are present in almost all eukaryotic organisms, including humans. They are the key energy suppliers as the site of adenosine triphosphate production, and are involved in apoptosis, calcium homeostasis, and regulation of the innate immune response. Abnormalities occurring in mitochondria, such as mitochondrial DNA (mtDNA) mutations and disturbances at any stage of mitochondrial RNA (mtRNA) processing and translation, usually lead to severe mitochondrial diseases. A fundamental line of investigation is to understand the processes that occur in these organelles and their physiological consequences. Despite substantial progress that has been made in the field of mtRNA processing and its regulation, many unknowns and controversies remain. The present review discusses the current state of knowledge of RNA processing in human mitochondria and sheds some light on the unresolved issues.
Collapse
|
32
|
Dumoulin B, Ufer C, Kuhn H, Sofi S. Expression Regulation, Protein Chemistry and Functional Biology of the Guanine-Rich Sequence Binding Factor 1 (GRSF1). J Mol Biol 2021; 433:166922. [PMID: 33713675 DOI: 10.1016/j.jmb.2021.166922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells RNA-binding proteins have been implicated in virtually all post-transcriptional mechanisms of gene expression regulation. Based on the structural features of their RNA binding domains these proteins have been divided into several subfamilies. The presence of at least two RNA recognition motifs defines the group of heterogenous nuclear ribonucleoproteins H/F and one of its members is the guanine-rich sequence binding factor 1 (GRSF1). GRSF1 was first described 25 years ago and is widely distributed in eukaryotic cells. It is present in the nucleus, the cytoplasm and in mitochondria and has been implicated in a variety of physiological processes (embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of various diseases. This review summarizes our current understanding on GRSF1 biology, critically discusses the literature reports and gives an outlook of future developments in the field.
Collapse
Affiliation(s)
- Bernhard Dumoulin
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sajad Sofi
- University of York, Department of Biology, York YO10 5DD, United Kingdom
| |
Collapse
|
33
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Zheng F, Chen J, Zhang X, Wang Z, Chen J, Lin X, Huang H, Fu W, Liang J, Wu W, Li B, Yao H, Hu H, Song E. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun 2021; 12:1341. [PMID: 33637716 PMCID: PMC7910558 DOI: 10.1038/s41467-021-21535-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a master driver of glucose metabolism in cancer cells. Here, we demonstrate that a HIF-1α anti-sense lncRNA, HIFAL, is essential for maintaining and enhancing HIF-1α-mediated transactivation and glycolysis. Mechanistically, HIFAL recruits prolyl hydroxylase 3 (PHD3) to pyruvate kinase 2 (PKM2) to induce its prolyl hydroxylation and introduces the PKM2/PHD3 complex into the nucleus via binding with heterogeneous nuclear ribonucleoprotein F (hnRNPF) to enhance HIF-1α transactivation. Reciprocally, HIF-1α induces HIFAL transcription, which forms a positive feed-forward loop to maintain the transactivation activity of HIF-1α. Clinically, high HIFAL expression is associated with aggressive breast cancer phenotype and poor patient outcome. Furthermore, HIFAL overexpression promotes tumor growth in vivo, while targeting both HIFAL and HIF-1α significantly reduces their effect on cancer growth. Overall, our results indicate a critical regulatory role of HIFAL in HIF-1α-driven transactivation and glycolysis, identifying HIFAL as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoqian Zhang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jiewen Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaorong Lin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongyan Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Liang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Bioland Laboratory, Guangzhou, 510005, China.
- Fountain-Valley Institute for Life Sciences, 4th Floor, Building D, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Huangpu District, Guangzhou, 510535, China.
| |
Collapse
|
35
|
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res 2021; 49:636-645. [PMID: 33337476 PMCID: PMC7826271 DOI: 10.1093/nar/gkaa1209] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.
Collapse
Affiliation(s)
- Susan E Liao
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
36
|
PKC Regulates YAP Expression through Alternative Splicing of YAP 3'UTR Pre-mRNA by hnRNP F. Int J Mol Sci 2021; 22:ijms22020694. [PMID: 33445676 PMCID: PMC7828143 DOI: 10.3390/ijms22020694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/14/2023] Open
Abstract
The Yes-associated protein (YAP) is a transcriptional co-activator that plays critical roles in organ development and tumorigenesis, and is verified to be inhibited by the Hippo signaling pathway. In the present study, we show that the YAP 3′UTR is alternatively spliced to generate a novel 950 bp 3′UTR mRNA from the full length 3′UTR region (3483 bp) in human cancer cells. The ratio of full length 3′UTR YAP mRNA to alternatively spliced 3′UTR YAP mRNA is up-regulated by exposure of the cells to PKC inhibitor chelerythrine chloride. Further study using luciferase reporter assay showed that the expression of the alternatively spliced 3′UTR mRNA is much lower compared with the full length 3′UTR mRNA, suggesting that alternatively spliced 3′UTR YAP mRNA may have a shorter half-life than full length 3′UTR mRNA. Interestingly, PKC represses YAP 3′UTR–mediated mRNA stability is dependent on a splicing factor, hnRNP F. Activation of PKC induces nuclear translocation of cytosolic hnRNP F. Ectopic expression of hnRNP F enhances YAP 3′UTR splicing. Our results suggest that hnRNP F regulates YAP 3′UTR-mediated mRNA stability in an alternative splicing-dependent manner, and PKC regulated YAP expression is dependent on nuclear translocation of hnRNP F in human cancer cell lines.
Collapse
|
37
|
Abstract
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA-protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein-protein and RNA-protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.
Collapse
Affiliation(s)
- Diana S M Ottoz
- Department of Genetics and Development, Columbia University Irving Medical Center New York, NY 10032, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Irving Medical Center New York, NY 10032, USA
| |
Collapse
|
38
|
Dumas L, Herviou P, Dassi E, Cammas A, Millevoi S. G-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends Biochem Sci 2020; 46:270-283. [PMID: 33303320 DOI: 10.1016/j.tibs.2020.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions.
Collapse
Affiliation(s)
- Leïla Dumas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Pauline Herviou
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, (TN), Italy
| | - Anne Cammas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France.
| |
Collapse
|
39
|
Abstract
Genome-wide analysis of transcriptome data in Chlamydomonas reinhardtii shows periodic patterns in gene expression levels when cultures are grown under alternating light and dark cycles so that G1 of the cell cycle occurs in the light phase and S/M/G0 occurs during the dark phase. However, alternative splicing, a process that enables a greater protein diversity from a limited set of genes, remains largely unexplored by previous transcriptome based studies in C. reinhardtii. In this study, we used existing longitudinal RNA-seq data obtained during the light-dark cycle to investigate the changes in the alternative splicing pattern and found that 3277 genes (19.75% of 17,746 genes) undergo alternative splicing. These splicing events include Alternative 5′ (Alt 5′), Alternative 3′ (Alt 3′) and Exon skipping (ES) events that are referred as alternative site selection (ASS) events and Intron retention (IR) events. By clustering analysis, we identified a subset of events (26 ASS events and 10 IR events) that show periodic changes in the splicing pattern during the cell cycle. About two-thirds of these 36 genes either introduce a pre-termination codon (PTC) or introduce insertions or deletions into functional domains of the proteins, which implicate splicing in altering gene function. These findings suggest that alternative splicing is also regulated during the Chlamydomonas cell cycle, although not as extensively as changes in gene expression. The longitudinal changes in the alternative splicing pattern during the cell cycle captured by this study provides an important resource to investigate alternative splicing in genes of interest during the cell cycle in Chlamydomonas reinhardtii and other eukaryotes.
Collapse
|
40
|
Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X, Ju S, Cheng W, Tian Y, Fu X. RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol 2020; 73:371-382. [PMID: 32165252 DOI: 10.1016/j.jhep.2020.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS RNA G-quadruplexes (RG4s) appear to be important in post-transcriptional gene regulation, but their pathophysiological functions remain unknown. MicroRNA-26a (miR-26a) is emerging as a therapeutic target for various human diseases, however the mechanisms underlying endogenous miR-26a regulation are poorly understood. Herein, we study the role of RG4 in miR-26a expression and function in vitro and in vivo. METHODS Putative RG4s within liver-enriched miRNAs were predicted by bioinformatic analysis, and the presence of an RG4 structure in the miR-26a-1 precursor (pre-miR-26a-1) was further analyzed by biophysical and biochemical methods. RG4 stabilizers, pre-miR-26a-1 overexpression plasmids, and luciferase reporter assays were used to assess the effect of RG4 on pre-miR-26a-1 maturation. Both miR-26a knock-in and knockout mouse models were employed to investigate the influence of this RG4 on miR-26a expression and function. Moreover, the interaction between RG4 in pre-miR-26a-1 and DEAH-box helicase 36 (DHX36) was determined by biophysical and molecular methods. Finally, miR-26a processing and DHX36 expression were quantified in the livers of obese mice. RESULTS We identify a guanine-rich sequence in pre-miR-26a-1 that can fold into an RG4 structure. This RG4 impairs pre-miR-26a-1 maturation, resulting in a decrease in miR-26a expression and subsequently an increase in miR-26a cognate targets. In line with known miR-26a functions, this RG4 can regulate hepatic insulin sensitivity and lipid metabolism in vitro and in vivo. Furthermore, we reveal that DHX36 can bind and unwind this RG4 structure, thereby enhancing miR-26a maturation. Intriguingly, there is a concordant decrease of miR-26a maturation and DHX36 expression in obese mouse livers. CONCLUSIONS Our findings define a dynamic DHX36/RG4/miR-26a regulatory axis during obesity, highlighting an important role of RG4 in physiology and pathology. LAY SUMMARY Specific RNA sequences called G-quadruplexes (or RG4) appear to be important in post-transcriptional gene regulation. Obesity leads to the formation of these RG4 structures in pre-miR-26a-1 molecules, impairing the maturation and function of miR-26a, which has emerged as a therapeutic target in several diseases. This contributes to hepatic insulin resistance and the dysregulation of liver metabolism.
Collapse
Affiliation(s)
- Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Haixia Xu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Qiu Sun
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Meilin Ma
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Guixiang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiao Du
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of General Surgery, Yaan People's Hospital, Yaan 625000, Sichuan, China
| | - Shenggen Ju
- College of Computer Science, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, Sichuan, China.
| |
Collapse
|
41
|
Taylor K, Sobczak K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int J Mol Sci 2020; 21:ijms21145161. [PMID: 32708277 PMCID: PMC7404189 DOI: 10.3390/ijms21145161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.
Collapse
|
42
|
Janowski R, Niessing D. The large family of PC4-like domains - similar folds and functions throughout all kingdoms of life. RNA Biol 2020; 17:1228-1238. [PMID: 32476604 PMCID: PMC7549692 DOI: 10.1080/15476286.2020.1761639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA- and DNA-binding domains are essential building blocks for specific regulation of gene expression. While a number of canonical nucleic acid binding domains share sequence and structural conservation, others are less obviously linked by evolutionary traits. In this review, we describe a protein fold of about 150 aa in length, bearing a conserved β-β-β-β-α-linker-β-β-β-β-α topology and similar nucleic acid binding properties but no apparent sequence conservation. The same overall fold can also be achieved by dimerization of two proteins, each bearing a β-β-β-β-α topology. These proteins include but are not limited to the transcription factors PC4 and P24 from humans and plants, respectively, the human RNA-transport factor Pur-α (also termed PURA), as well as the ssDNA-binding SP_0782 protein from Streptococcus pneumonia and the bacteriophage coat proteins PP7 and MS2. Besides their common overall topology, these proteins share common nucleic acids binding surfaces and thus functional similarity. We conclude that these PC4-like domains include proteins from all kingdoms of life and are much more abundant than previously known.
Collapse
Affiliation(s)
- Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University , Ulm, Germany
| |
Collapse
|
43
|
Herviou P, Le Bras M, Dumas L, Hieblot C, Gilhodes J, Cioci G, Hugnot JP, Ameadan A, Guillonneau F, Dassi E, Cammas A, Millevoi S. hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat Commun 2020; 11:2661. [PMID: 32461552 PMCID: PMC7253433 DOI: 10.1038/s41467-020-16168-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
RNA G-quadruplexes (RG4s) are four-stranded structures known to control mRNA translation of cancer relevant genes. RG4 formation is pervasive in vitro but not in cellulo, indicating the existence of poorly characterized molecular machinery that remodels RG4s and maintains them unfolded. Here, we performed a quantitative proteomic screen to identify cytosolic proteins that interact with a canonical RG4 in its folded and unfolded conformation. Our results identified hnRNP H/F as important components of the cytoplasmic machinery modulating the structural integrity of RG4s, revealed their function in RG4-mediated translation and uncovered the underlying molecular mechanism impacting the cellular stress response linked to the outcome of glioblastoma. RNA G-quadruplexes (RG4s) have been functionally linked to cancer gene expression. Here, Herviou, Le Bras et al. have identified the protein machinery modulating RG4s and reveal the role and mechanism of hnRNP H/F and DHX36 in RG4-mediated translational regulation affecting cancer treatment in glioblastoma.
Collapse
Affiliation(s)
- Pauline Herviou
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France.,Université Toulouse III Paul Sabatier, 31330, Toulouse, France.,Laboratoire d'Excellence "TOUCAN", Toulouse, France
| | - Morgane Le Bras
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France.,Université Toulouse III Paul Sabatier, 31330, Toulouse, France.,Laboratoire d'Excellence "TOUCAN", Toulouse, France
| | - Leïla Dumas
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France.,Université Toulouse III Paul Sabatier, 31330, Toulouse, France.,Laboratoire d'Excellence "TOUCAN", Toulouse, France
| | - Corinne Hieblot
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France.,Université Toulouse III Paul Sabatier, 31330, Toulouse, France.,Laboratoire d'Excellence "TOUCAN", Toulouse, France
| | - Julia Gilhodes
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100, Toulouse, France
| | - Gianluca Cioci
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Philippe Hugnot
- INSERM U1051, Institute for Neurosciences, Hôpital Saint Eloi, Université de Montpellier 2, 34090, Montpellier, France
| | - Alfred Ameadan
- Plateforme Protéomique 3P5, Université de Paris, Inserm U1016-institut Cochin, Labex GReX, 22 rue Méchain, 75014, Paris, France
| | - François Guillonneau
- Plateforme Protéomique 3P5, Université de Paris, Inserm U1016-institut Cochin, Labex GReX, 22 rue Méchain, 75014, Paris, France
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento Via Sommarive 9, 38123, Trento, Italy.
| | - Anne Cammas
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France. .,Université Toulouse III Paul Sabatier, 31330, Toulouse, France. .,Laboratoire d'Excellence "TOUCAN", Toulouse, France.
| | - Stefania Millevoi
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, 31037, Toulouse, France. .,Université Toulouse III Paul Sabatier, 31330, Toulouse, France. .,Laboratoire d'Excellence "TOUCAN", Toulouse, France.
| |
Collapse
|
44
|
Wall ML, Bera A, Wong FK, Lewis SM. Cellular stress orchestrates the localization of hnRNP H to stress granules. Exp Cell Res 2020; 394:112111. [PMID: 32473225 DOI: 10.1016/j.yexcr.2020.112111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/01/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) H is a member of hnRNP H/F protein subfamily of hnRNPs that regulate the maturation and post-transcriptional processing of pre-mRNA. As a component of an mRNA export complex, hnRNP H shuttles mature mRNA from the nucleus to the cytoplasm. Although hnRNP H is primarily a nuclear protein, it can accumulate in the cytoplasm in certain tissues and cell types; however, the physiological relevance of hnRNP H cytoplasmic accumulation is unknown. Here we show that under cellular stress hnRNP H accumulates in the cytoplasm and is required for efficient recovery from cellular stress. Moreover, we find that cytoplasmic hnRNP H localizes to stress granules and that the RRM3 domain of hnRNP H is necessary for this localization. Together, our results demonstrate that hnRNP H accumulates in the cytoplasm under cellular stress and is recruited to stress granules.
Collapse
Affiliation(s)
- Michael L Wall
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Amit Bera
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Florence K Wong
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada; Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada; Senior Scientist, Beatrice Hunter Cancer Research Institute, Canada.
| |
Collapse
|
45
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
46
|
Xu C, Xie N, Su Y, Sun Z, Liang Y, Zhang N, Liu D, Jia S, Xing X, Han L, Li G, Tong T, Chen J. HnRNP F/H associate with hTERC and telomerase holoenzyme to modulate telomerase function and promote cell proliferation. Cell Death Differ 2019; 27:1998-2013. [PMID: 31863069 PMCID: PMC7244589 DOI: 10.1038/s41418-019-0483-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Human telomerase RNA component hTERC comprises multiple motifs that contribute to hTERC biogenesis, holoenzyme activity, and enzyme recruitment to telomeres. hTERC contains several guanine tracts (G-tracts) at its 5′-end, but its associated proteins and potential roles in telomerase function are still poorly understood. The heterogeneous nuclear ribonucleoproteins F, H1, and H2 (hnRNP F/H) are splicing factors that preferentially bind to poly(G)-rich sequences RNA. Here, we demonstrate that hnRNP F/H associate with both hTERC and telomerase holoenzyme to regulate telomerase activity. We reveal hnRNP F/H bind to the 5′-end region of hTERC in vitro and in vivo, and identify the first three G-tracts of hTERC and qRRM1 domain of hnRNP F/H are required for their interaction. Furthermore, hnRNP F/H also directly interact with telomerase holoenzyme. Functionally, we show that hnRNP F/H plays important roles in modulating telomerase activity and telomere length. Moreover, hnRNP F/H deletion greatly impair cancer and stem cell proliferation, and induce stem cell senescence, while hnRNP F/H overexpression delay stem cell senescence. Collectively, our findings unveil a novel role of hnRNP F/H as the binding partners of hTERC and telomerase holoenzyme to regulate telomerase function.
Collapse
Affiliation(s)
- Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Zhaomeng Sun
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaofang Xing
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Limin Han
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| |
Collapse
|
47
|
Mahalingam R, Walling JG. Genomic survey of RNA recognition motif (RRM) containing RNA binding proteins from barley (Hordeum vulgare ssp. vulgare). Genomics 2019; 112:1829-1839. [PMID: 31669702 DOI: 10.1016/j.ygeno.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023]
Abstract
One of the major mechanisms of post-transcriptional gene regulation is achieved by proteins bearing well-defined sequence motifs involved in 'RNA binding'. In eukaryotes, RNA binding proteins (RBPs) are key players of RNA metabolism that includes synthesis, processing, editing, modifying, transport, storage and stability of RNA. In plants, the family of RBPs is vastly expanded compared to other eukaryotes including humans. In this study we identified 363 RBPs in the barley genome. Gene ontology enrichment analysis of barley RBPs indicated these proteins were in all the major cellular compartments and associated with key biological processes including translation, splicing, seed development and stress signaling. Members with the classical RNA binding motifs such as the RNA recognition motif (RRM), KH domain, Helicase, CRM, dsRNA and Pumilio were identified in the repertoire of barley RBPs. Similar to Arabidopsis, the RRM containing RBPs were the most abundant in barley genome. In-depth analysis of the RRM containing proteins - polyA binding proteins, Ser/Arg rich proteins and Glycine-rich RBPs were undertaken. Reanalysis of the proteome dataset of various stages during barley malting identified 38 RBPs suggesting an important role for these proteins during the malting process. This survey provides a systematic analysis of barley RBPs and serves as the basis for the further functional characterization of this important family of proteins.
Collapse
Affiliation(s)
| | - Jason G Walling
- 502 Walnut Street, Cereal Crops Research Unit, USDA-ARS, Madison, WI 53726, USA.
| |
Collapse
|
48
|
Stevens M, Oltean S. Modulation of the Apoptosis Gene Bcl-x Function Through Alternative Splicing. Front Genet 2019; 10:804. [PMID: 31552099 PMCID: PMC6743414 DOI: 10.3389/fgene.2019.00804] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023] Open
Abstract
Apoptosis plays a vital role in cell homeostasis during development and disease. Bcl-x, a member of the Bcl-2 family of proteins, is a mitochondrial transmembrane protein that functions to regulate the intrinsic apoptosis pathway. An alternative splicing (AS) event in exon 2 of Bcl-x results in two isoforms of Bcl-x with antagonistic effects on cell survival: Bcl-xL (long isoform), which is anti-apoptotic, and Bcl-xS (short isoform), which is pro-apoptotic. Bcl-xL is the most abundant Bcl-x protein and functions to inhibit apoptosis by a number of different mechanisms including inhibition of Bax. In contrast, Bcl-xS can directly bind to and inhibit the anti-apoptotic Bcl-xL and Bcl-2 proteins, resulting in the release of the pro-apoptotic Bak. There are multiple splice factors and signaling pathways that influence the Bcl-xL/Bcl-xS splicing ratio, including serine/arginine-rich (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), transcription factors, and cytokines. Dysregulation of the AS of Bcl-x has been implicated in cancer and diabetes. In cancer, the upregulation of Bcl-xL expression in tumor cells can result in resistance to chemotherapeutic agents. On the other hand, dysregulation of Bcl-x AS to promote Bcl-xS expression has been shown to be detrimental to pancreatic β-cells in diabetes, resulting in β-cell apoptosis. Therefore, manipulation of the splice factor, transcription factor, and signaling pathways that modulate this splicing event is fast emerging as a therapeutic avenue in the treatment of cancer and diabetes.
Collapse
Affiliation(s)
- Megan Stevens
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Science, Medical School, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
49
|
Wang X, Goodrich KJ, Conlon EG, Gao J, Erbse AH, Manley JL, Cech TR. C9orf72 and triplet repeat disorder RNAs: G-quadruplex formation, binding to PRC2 and implications for disease mechanisms. RNA (NEW YORK, N.Y.) 2019; 25:935-947. [PMID: 31048495 PMCID: PMC6633194 DOI: 10.1261/rna.071191.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/29/2019] [Indexed: 05/12/2023]
Abstract
Some neurological disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), fragile X syndrome, Huntington's disease, myotonic dystrophy, and various ataxias, can be caused by expansions of short nucleic acid sequence repeats in specific genes. A possible disease mechanism involves the transcribed repeat RNA binding an RNA-binding protein (RBP), resulting in its sequestration and thus dysfunction. Polycomb repressive complex 2 (PRC2), the histone methyltransferase that deposits the H3K27me3 mark of epigenetically silenced chromatin, binds G-rich RNAs and has especially high affinity for G-quadruplex (G-Q) structures. Here, we find that PRC2 target genes are derepressed and the RNA binding subunit EZH2 largely insoluble in postmortem brain samples from ALS/FTD patients with C9ORF72 (C9) repeat expansions, leading to the hypothesis that the (G4C2)n repeat RNA might be sequestering PRC2. Contrary to this expectation, we found that C9 repeat RNAs (n = 6 or 10) bind weakly to purified PRC2, and studies with the G-Q specific BG4 antibody and circular dichroism studies both indicated that these C9 RNAs have little propensity to form G-Qs in vitro. Several GC-rich triplet-repeat expansion RNAs also have low affinity for PRC2 and do not appreciably form G-Qs in vitro. The results are consistent with these sequences forming hairpin structures that outcompete G-Q folding when the repeat length is sufficiently large. We suggest that binding of PRC2 to these GC-rich RNAs is fundamentally weak but may be modulated in vivo by protein factors that affect secondary structure, such as helicases and other RBPs.
Collapse
Affiliation(s)
- Xueyin Wang
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jianchao Gao
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
50
|
Guanine-rich RNA binding protein GRSF1 inhibits myoblast differentiation through repressing mitochondrial ROS production. Exp Cell Res 2019; 381:139-149. [DOI: 10.1016/j.yexcr.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
|