1
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Paknejad N, Sapuru V, Hite RK. Structural titration reveals Ca 2+-dependent conformational landscape of the IP 3 receptor. Nat Commun 2023; 14:6897. [PMID: 37898605 PMCID: PMC10613215 DOI: 10.1038/s41467-023-42707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are endoplasmic reticulum Ca2+ channels whose biphasic dependence on cytosolic Ca2+ gives rise to Ca2+ oscillations that regulate fertilization, cell division and cell death. Despite the critical roles of IP3R-mediated Ca2+ responses, the structural underpinnings of the biphasic Ca2+ dependence that underlies Ca2+ oscillations are incompletely understood. Here, we collect cryo-EM images of an IP3R with Ca2+ concentrations spanning five orders of magnitude. Unbiased image analysis reveals that Ca2+ binding does not explicitly induce conformational changes but rather biases a complex conformational landscape consisting of resting, preactivated, activated, and inhibited states. Using particle counts as a proxy for relative conformational free energy, we demonstrate that Ca2+ binding at a high-affinity site allows IP3Rs to activate by escaping a low-energy resting state through an ensemble of preactivated states. At high Ca2+ concentrations, IP3Rs preferentially enter an inhibited state stabilized by a second, low-affinity Ca2+ binding site. Together, these studies provide a mechanistic basis for the biphasic Ca2+-dependence of IP3R channel activity.
Collapse
Affiliation(s)
- Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Baker MR, Fan G, Arige V, Yule DI, Serysheva II. Understanding IP 3R channels: From structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 2023; 114:102770. [PMID: 37393815 PMCID: PMC10529787 DOI: 10.1016/j.ceca.2023.102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Smith HA, Thillaiappan NB, Rossi AM. IP 3 receptors: An "elementary" journey from structure to signals. Cell Calcium 2023; 113:102761. [PMID: 37271052 DOI: 10.1016/j.ceca.2023.102761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large tetrameric channels which sit mostly in the membrane of the endoplasmic reticulum (ER) and mediate Ca2+ release from intracellular stores in response to extracellular stimuli in almost all cells. Dual regulation of IP3Rs by IP3 and Ca2+ itself, upstream "licensing", and the arrangement of IP3Rs into small clusters in the ER membrane, allow IP3Rs to generate spatially and temporally diverse Ca2+ signals. The characteristic biphasic regulation of IP3Rs by cytosolic Ca2+ concentration underpins regenerative Ca2+ signals by Ca2+-induced Ca2+-release, while also preventing uncontrolled explosive Ca2+ release. In this way, cells can harness a simple ion such as Ca2+ as a near-universal intracellular messenger to regulate diverse cellular functions, including those with conflicting outcomes such as cell survival and cell death. High-resolution structures of the IP3R bound to IP3 and Ca2+ in different combinations have together started to unravel the workings of this giant channel. Here we discuss, in the context of recently published structures, how the tight regulation of IP3Rs and their cellular geography lead to generation of "elementary" local Ca2+ signals known as Ca2+ "puffs", which form the fundamental bottleneck through which all IP3-mediated cytosolic Ca2+ signals must first pass.
Collapse
Affiliation(s)
- Holly A Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
5
|
Fan G, Baker MR, Terry LE, Arige V, Chen M, Seryshev AB, Baker ML, Ludtke SJ, Yule DI, Serysheva II. Conformational motions and ligand-binding underlying gating and regulation in IP 3R channel. Nat Commun 2022; 13:6942. [PMID: 36376291 PMCID: PMC9663519 DOI: 10.1038/s41467-022-34574-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are activated by IP3 and Ca2+ and their gating is regulated by various intracellular messengers that finely tune the channel activity. Here, using single particle cryo-EM analysis we determined 3D structures of the nanodisc-reconstituted IP3R1 channel in two ligand-bound states. These structures provide unprecedented details governing binding of IP3, Ca2+ and ATP, revealing conformational changes that couple ligand-binding to channel opening. Using a deep-learning approach and 3D variability analysis we extracted molecular motions of the key protein domains from cryo-EM density data. We find that IP3 binding relies upon intrinsic flexibility of the ARM2 domain in the tetrameric channel. Our results highlight a key role of dynamic side chains in regulating gating behavior of IP3R channels. This work represents a stepping-stone to developing mechanistic understanding of conformational pathways underlying ligand-binding, activation and regulation of the channel.
Collapse
Affiliation(s)
- Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX, USA
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX, USA
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Alexander B Seryshev
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX, USA
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX, USA.
| |
Collapse
|
6
|
Arige V, Terry LE, Wagner LE, Malik S, Baker MR, Fan G, Joseph SK, Serysheva II, Yule DI. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2022; 119:e2209267119. [PMID: 36122240 PMCID: PMC9522344 DOI: 10.1073/pnas.2209267119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Suresh K. Joseph
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
7
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
8
|
Schmitz EA, Takahashi H, Karakas E. Structural basis for activation and gating of IP 3 receptors. Nat Commun 2022; 13:1408. [PMID: 35301323 PMCID: PMC8930994 DOI: 10.1038/s41467-022-29073-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
A pivotal component of the calcium (Ca2+) signaling toolbox in cells is the inositol 1,4,5-triphosphate (IP3) receptor (IP3R), which mediates Ca2+ release from the endoplasmic reticulum (ER), controlling cytoplasmic and organellar Ca2+ concentrations. IP3Rs are co-activated by IP3 and Ca2+, inhibited by Ca2+ at high concentrations, and potentiated by ATP. However, the underlying molecular mechanisms are unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human type-3 IP3R obtained from a single dataset in multiple gating conformations: IP3-ATP bound pre-active states with closed channels, IP3-ATP-Ca2+ bound active state with an open channel, and IP3-ATP-Ca2+ bound inactive state with a closed channel. The structures demonstrate how IP3-induced conformational changes prime the receptor for activation by Ca2+, how Ca2+ binding leads to channel opening, and how ATP modulates the activity, providing insights into the long-sought questions regarding the molecular mechanism underpinning receptor activation and gating. IP3 receptors are intracellular calcium channels involved in numerous signaling pathways. Here, the authors present the cryo-EM structures of type-3 IP3 receptors in multiple gating conformations, including the active state revealing the molecular mechanism of the receptor activation.
Collapse
Affiliation(s)
- Emily A Schmitz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hirohide Takahashi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Combined Pharmacophore and Grid-Independent Molecular Descriptors (GRIND) Analysis to Probe 3D Features of Inositol 1,4,5-Trisphosphate Receptor (IP 3R) Inhibitors in Cancer. Int J Mol Sci 2021; 22:ijms222312993. [PMID: 34884798 PMCID: PMC8657927 DOI: 10.3390/ijms222312993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca2+ signaling plays a pivotal role in different cellular processes, including cell proliferation and cell death. Remodeling Ca2+ signals by targeting the downstream effectors is considered an important hallmark in cancer progression. Despite recent structural analyses, no binding hypothesis for antagonists within the IP3-binding core (IBC) has been proposed yet. Therefore, to elucidate the 3D structural features of IP3R modulators, we used combined pharmacoinformatic approaches, including ligand-based pharmacophore models and grid-independent molecular descriptor (GRIND)-based models. Our pharmacophore model illuminates the existence of two hydrogen-bond acceptors (2.62 Å and 4.79 Å) and two hydrogen-bond donors (5.56 Å and 7.68 Å), respectively, from a hydrophobic group within the chemical scaffold, which may enhance the liability (IC50) of a compound for IP3R inhibition. Moreover, our GRIND model (PLS: Q2 = 0.70 and R2 = 0.72) further strengthens the identified pharmacophore features of IP3R modulators by probing the presence of complementary hydrogen-bond donor and hydrogen-bond acceptor hotspots at a distance of 7.6-8.0 Å and 6.8-7.2 Å, respectively, from a hydrophobic hotspot at the virtual receptor site (VRS). The identified 3D structural features of IP3R modulators were used to screen (virtual screening) 735,735 compounds from the ChemBridge database, 265,242 compounds from the National Cancer Institute (NCI) database, and 885 natural compounds from the ZINC database. After the application of filters, four compounds from ChemBridge, one compound from ZINC, and three compounds from NCI were shortlisted as potential hits (antagonists) against IP3R. The identified hits could further assist in the design and optimization of lead structures for the targeting and remodeling of Ca2+ signals in cancer.
Collapse
|
10
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
12
|
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov 2021; 16:709-718. [PMID: 33356639 DOI: 10.1080/17460441.2021.1858792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular calcium (Ca2+) release channels located on the endoplasmic/sarcoplasmic reticulum. The availability of the structure of the ligand-binding domain of IP3Rs has enabled the design of compatible ligands, but the limiting step remains their actual effectiveness in a biological context.Areas covered: This article summarizes the compelling literature on both agonists and antagonists targeting IP3Rs, emphasizing their strengths and limitations. The main challenges toward the discovery and development of IP3 receptor modulators are also described.Expert opinion: Despite significant progress in recent years, the pharmacology of IP3R still has major drawbacks, especially concerning the availability of specific antag onists. Moreover, drugs specifically targeting the three different subtypes of IP3R are especially needed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| | - Marco B Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Vanessa Castellanos
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Pasquale Mone
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| |
Collapse
|
13
|
Su X, Dohle W, Mills SJ, Watt JM, Rossi AM, Taylor CW, Potter BVL. Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of d- myo-Inositol 1,4,5-Trisphosphate Receptors. ACS OMEGA 2020; 5:28793-28811. [PMID: 33195933 PMCID: PMC7659177 DOI: 10.1021/acsomega.0c04145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
d-myo-Inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ channels activated by the intracellular messenger inositol 1,4,5-trisphosphate (IP3, 1). The glyconucleotide adenophostin A (AdA, 2) is a potent agonist of IP3Rs. A recent synthesis of d-chiro-inositol adenophostin (InsAdA, 5) employed suitably protected chiral building blocks and replaced the d-glucose core by d-chiro-inositol. An alternative approach to fully chiral material is now reported using intrinsic sugar chirality to avoid early isomer resolution, involving the coupling of a protected and activated racemic myo-inositol derivative to a d-ribose derivative. Diastereoisomer separation was achieved after trans-isopropylidene group removal and the absolute ribose-inositol conjugate stereochemistry assigned with reference to the earlier synthesis. Optimization of stannylene-mediated regiospecific benzylation was explored using the model 1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol and conditions successfully transferred to one conjugate diastereoisomer with 3:1 selectivity. However, only roughly 1:1 regiospecificity was achieved on the required diastereoisomer. The conjugate regioisomers of benzyl derivatives 39 and 40 were successfully separated and 39 was transformed subsequently to InsAdA after amination, pan-phosphorylation, and deprotection. InsAdA from this synthetic route bound with greater affinity than AdA to IP3R1 and was more potent in releasing Ca2+ from intracellular stores through IP3Rs. It is the most potent full agonist of IP3R1 known and .equipotent with material from the fully chiral synthetic route.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Wolfgang Dohle
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Stephen J. Mills
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Joanna M. Watt
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ana M. Rossi
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Colin W. Taylor
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
14
|
Atakpa-Adaji P, Thillaiappan NB, Taylor CW. IP3 receptors and their intimate liaisons. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Gambardella J, Lombardi A, Morelli MB, Ferrara J, Santulli G. Inositol 1,4,5-Trisphosphate Receptors in Human Disease: A Comprehensive Update. J Clin Med 2020; 9:1096. [PMID: 32290556 PMCID: PMC7231134 DOI: 10.3390/jcm9041096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (ITPRs) are intracellular calcium release channels located on the endoplasmic reticulum of virtually every cell. Herein, we are reporting an updated systematic summary of the current knowledge on the functional role of ITPRs in human disorders. Specifically, we are describing the involvement of its loss-of-function and gain-of-function mutations in the pathogenesis of neurological, immunological, cardiovascular, and neoplastic human disease. Recent results from genome-wide association studies are also discussed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY 10461, USA; (J.G.); (A.L.); (M.B.M.); (J.F.)
- International Translational Research and Medical Education Consortium (ITME), 80100 Naples, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY 10461, USA; (J.G.); (A.L.); (M.B.M.); (J.F.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Marco Bruno Morelli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY 10461, USA; (J.G.); (A.L.); (M.B.M.); (J.F.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - John Ferrara
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY 10461, USA; (J.G.); (A.L.); (M.B.M.); (J.F.)
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY 10461, USA; (J.G.); (A.L.); (M.B.M.); (J.F.)
- International Translational Research and Medical Education Consortium (ITME), 80100 Naples, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
16
|
Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP 3 Receptors and Other Organellar Ca 2+ Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Nicolas Rosa
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
17
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
18
|
Moritsugu K, Ito T, Kidera A. Allosteric response to ligand binding: Molecular dynamics study of the N-terminal domains in IP 3 receptor. Biophys Physicobiol 2019; 16:232-239. [PMID: 31984176 PMCID: PMC6975907 DOI: 10.2142/biophysico.16.0_232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/13/2019] [Indexed: 02/07/2023] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a huge tetrameric intracellular Ca2+ channel that mediates cytoplasmic Ca2+ signaling. The structural basis of the gating in IP3R has been studied by X-ray crystallography and cryo-electron microscopy, focusing on the domain rearrangements triggered by IP3 binding. Here, we conducted molecular dynamics (MD) simulations of the three N-terminal domains of IP3R responsible for IP3 binding (IBC/SD; two domains of the IP3 binding core, IBCβ and IBCα, and suppressor domain, SD) as a model system to study the initial gating stage. The response upon removal of IP3 from the IP3-bound form of IBC/SD was traced in MD trajectories. The two IBC domains showed an immediate response of opening after removal of IP3, and SD showed a simultaneous opening motion indicating a tight dynamic coupling with IBC. However, when IBC remained in a more closed form, the dynamic coupling broke and SD exhibited a more amplified closing motion independently of IBC. This amplified SD motion was caused by the break of connection between SD and IBCβ at the hinge region, but was suppressed in the native tetrameric state. The analyses using Motion Tree and the linear response theory clarified that in the open form, SD and IBCα moved collectively relative to IBCβ with a response upon IP3 binding within the linear regime, whereas in the closed form, such collectiveness disappeared. These results suggest that the regulation of dynamics via the domain arrangement and multimerization is requisite for large-scale allosteric communication in IP3R gating machinery.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Tsubasa Ito
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
20
|
Ivanova H, Wagner LE, Tanimura A, Vandermarliere E, Luyten T, Welkenhuyzen K, Alzayady KJ, Wang L, Hamada K, Mikoshiba K, De Smedt H, Martens L, Yule DI, Parys JB, Bultynck G. Bcl-2 and IP 3 compete for the ligand-binding domain of IP 3Rs modulating Ca 2+ signaling output. Cell Mol Life Sci 2019; 76:3843-3859. [PMID: 30989245 PMCID: PMC11105292 DOI: 10.1007/s00018-019-03091-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Bcl-2 proteins have emerged as critical regulators of intracellular Ca2+ dynamics by directly targeting and inhibiting the IP3 receptor (IP3R), a major intracellular Ca2+-release channel. Here, we demonstrate that such inhibition occurs under conditions of basal, but not high IP3R activity, since overexpressed and purified Bcl-2 (or its BH4 domain) can inhibit IP3R function provoked by low concentration of agonist or IP3, while fails to attenuate against high concentration of agonist or IP3. Surprisingly, Bcl-2 remained capable of inhibiting IP3R1 channels lacking the residues encompassing the previously identified Bcl-2-binding site (a.a. 1380-1408) located in the ARM2 domain, part of the modulatory region. Using a plethora of computational, biochemical and biophysical methods, we demonstrate that Bcl-2 and more particularly its BH4 domain bind to the ligand-binding domain (LBD) of IP3R1. In line with this finding, the interaction between the LBD and Bcl-2 (or its BH4 domain) was sensitive to IP3 and adenophostin A, ligands of the IP3R. Vice versa, the BH4 domain of Bcl-2 counteracted the binding of IP3 to the LBD. Collectively, our work reveals a novel mechanism by which Bcl-2 influences IP3R activity at the level of the LBD. This allows for exquisite modulation of Bcl-2's inhibitory properties on IP3Rs that is tunable to the level of IP3 signaling in cells.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Amino Acid Sequence
- Animals
- Binding, Competitive
- COS Cells
- Calcium Signaling
- Cells, Cultured
- Chlorocebus aethiops
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/agonists
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Ligands
- Mice
- Molecular Docking Simulation
- Protein Domains
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Larry E Wagner
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Kita-121757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Elien Vandermarliere
- Center for Medical Biotechnology, VIB-UGent, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Kamil J Alzayady
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Liwei Wang
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Kozo Hamada
- Lab Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa Wako-Shi, 351-0198, Saitama, Japan
- SIAIS (Shanghai Institute for Advanced Immunochemical Studies), ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Katsuhiko Mikoshiba
- Lab Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa Wako-Shi, 351-0198, Saitama, Japan
- SIAIS (Shanghai Institute for Advanced Immunochemical Studies), ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Lennart Martens
- Center for Medical Biotechnology, VIB-UGent, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9000, Ghent, Belgium
| | - David I Yule
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Campus Gasthuisberg O/N-1 Bus 802, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Taylor CW, Machaca K. IP3 receptors and store-operated Ca2+ entry: a license to fill. Curr Opin Cell Biol 2019; 57:1-7. [DOI: 10.1016/j.ceb.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
22
|
Prole DL, Taylor CW. Structure and Function of IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
23
|
Chandran A, Chee X, Prole DL, Rahman T. Exploration of inositol 1,4,5-trisphosphate (IP 3) regulated dynamics of N-terminal domain of IP 3 receptor reveals early phase molecular events during receptor activation. Sci Rep 2019; 9:2454. [PMID: 30792485 PMCID: PMC6385359 DOI: 10.1038/s41598-019-39301-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Inositol 1, 4, 5-trisphosphate (IP3) binding at the N-terminus (NT) of IP3 receptor (IP3R) allosterically triggers the opening of a Ca2+-conducting pore located ~100 Å away from the IP3-binding core (IBC). However, the precise mechanism of IP3 binding and correlated domain dynamics in the NT that are central to the IP3R activation, remains unknown. Our all-atom molecular dynamics (MD) simulations recapitulate the characteristic twist motion of the suppressor domain (SD) and reveal correlated ‘clam closure’ dynamics of IBC with IP3-binding, complementing existing suggestions on IP3R activation mechanism. Our study further reveals the existence of inter-domain dynamic correlation in the NT and establishes the SD to be critical for the conformational dynamics of IBC. Also, a tripartite interaction involving Glu283-Arg54-Asp444 at the SD – IBC interface seemed critical for IP3R activation. Intriguingly, during the sub-microsecond long simulation, we observed Arg269 undergoing an SD-dependent flipping of hydrogen bonding between the first and fifth phosphate groups of IP3. This seems to play a major role in determining the IP3 binding affinity of IBC in the presence/absence of the SD. Our study thus provides atomistic details of early molecular events occurring within the NT during and following IP3 binding that lead to channel gating.
Collapse
Affiliation(s)
- Aneesh Chandran
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK. .,Molecular Biophysics Unit, Indian Institute of Science, 560 012, Bangalore, India.
| | - Xavier Chee
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| |
Collapse
|
24
|
Rossi AM, Taylor CW. IP3 receptors – lessons from analyses ex cellula. J Cell Sci 2018; 132:132/4/jcs222463. [DOI: 10.1242/jcs.222463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ABSTRACT
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are widely expressed intracellular channels that release Ca2+ from the endoplasmic reticulum (ER). We review how studies of IP3Rs removed from their intracellular environment (‘ex cellula’), alongside similar analyses of ryanodine receptors, have contributed to understanding IP3R behaviour. Analyses of permeabilized cells have demonstrated that the ER is the major intracellular Ca2+ store, and that IP3 stimulates Ca2+ release from this store. Radioligand binding confirmed that the 4,5-phosphates of IP3 are essential for activating IP3Rs, and facilitated IP3R purification and cloning, which paved the way for structural analyses. Reconstitution of IP3Rs into lipid bilayers and patch-clamp recording from the nuclear envelope have established that IP3Rs have a large conductance and select weakly between Ca2+ and other cations. Structural analyses are now revealing how IP3 binding to the N-terminus of the tetrameric IP3R opens the pore ∼7 nm away from the IP3-binding core (IBC). Communication between the IBC and pore passes through a nexus of interleaved domains contributed by structures associated with the pore and cytosolic domains, which together contribute to a Ca2+-binding site. These structural analyses provide evidence to support the suggestion that IP3 gates IP3Rs by first stimulating Ca2+ binding, which leads to pore opening and Ca2+ release.
Collapse
Affiliation(s)
- Ana M. Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
25
|
Cryo-EM reveals ligand induced allostery underlying InsP 3R channel gating. Cell Res 2018; 28:1158-1170. [PMID: 30470765 PMCID: PMC6274648 DOI: 10.1038/s41422-018-0108-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.
Collapse
|
26
|
Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW. IP 3 receptors and Ca 2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1092-1100. [PMID: 30448464 DOI: 10.1016/j.bbamcr.2018.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.
Collapse
Affiliation(s)
| | - Pragnya Chakraborty
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Colin W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
27
|
Aberrant IP 3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. Proc Natl Acad Sci U S A 2018; 115:12259-12264. [PMID: 30429331 DOI: 10.1073/pnas.1811129115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 29 (SCA29) is autosomal dominant congenital ataxia characterized by early-onset motor delay, hypotonia, and gait ataxia. Recently, heterozygous missense mutations in an intracellular Ca2+ channel, inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1), were identified as a cause of SCA29. However, the functional impacts of these mutations remain largely unknown. Here, we determined the molecular mechanisms by which pathological mutations affect IP3R1 activity and Ca2+ dynamics. Ca2+ imaging using IP3R-null HeLa cells generated by genome editing revealed that all SCA29 mutations identified within or near the IP3-binding domain of IP3R1 completely abolished channel activity. Among these mutations, R241K, T267M, T267R, R269G, R269W, S277I, K279E, A280D, and E497K impaired IP3 binding to IP3R1, whereas the T579I and N587D mutations disrupted channel activity without affecting IP3 binding, suggesting that T579I and N587D compromise channel gating mechanisms. Carbonic anhydrase-related protein VIII (CA8) is an IP3R1-regulating protein abundantly expressed in cerebellar Purkinje cells and is a causative gene of congenital ataxia. The SCA29 mutation V1538M within the CA8-binding site of IP3R1 completely eliminated its interaction with CA8 and CA8-mediated IP3R1 inhibition. Furthermore, pathological mutations in CA8 decreased CA8-mediated suppression of IP3R1 by reducing protein stability and the interaction with IP3R1. These results demonstrated the mechanisms by which pathological mutations cause IP3R1 dysfunction, i.e., the disruption of IP3 binding, IP3-mediated gating, and regulation via the IP3R-modulatory protein. The resulting aberrant Ca2+ homeostasis may contribute to the pathogenesis of cerebellar ataxia.
Collapse
|
28
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Paknejad N, Hite RK. Structural basis for the regulation of inositol trisphosphate receptors by Ca 2+ and IP 3. Nat Struct Mol Biol 2018; 25:660-668. [PMID: 30013099 PMCID: PMC6082148 DOI: 10.1038/s41594-018-0089-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
Inositol trisphosphate receptors (IP3R) are ubiquitous Ca2+-permeable channels that mediate release of Ca2+ from the endoplasmic reticulum to regulate numerous processes including cell division, cell death, differentiation and fertilization. IP3R is activated by both IP3 and its permeant ion Ca2+. At high concentrations, however, Ca2+ inhibits activity ensuring precise spatiotemporal control over intracellular Ca2+. Despite extensive characterization of IP3R, the mechanisms by which these molecules control channel gating have remained elusive. Here, we present structures of full-length human type 3 IP3R in ligand-bound and ligand-free states. Multiple IP3-bound structures demonstrate that the large cytoplasmic domain provides a platform for propagation of long-range conformational changes to the ion conduction gate. Structures in the presence of Ca2+ reveal two Ca2+ binding sites that induce the disruption of numerous interactions between subunits, thereby inhibiting IP3R. These structures thus begin to provide a mechanistic basis for understanding the regulation of IP3R.
Collapse
Affiliation(s)
- Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Ca 2+ signaling and spinocerebellar ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1733-1744. [PMID: 29777722 DOI: 10.1016/j.bbamcr.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.
Collapse
|
31
|
Structural Insights into IP3R Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:121-147. [DOI: 10.1007/978-3-319-55858-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Baker MR, Fan G, Serysheva II. Structure of IP 3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 2017; 46:38-47. [PMID: 28618351 PMCID: PMC5683905 DOI: 10.1016/j.sbi.2017.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular Ca2+ channels and the major mediators of cellular Ca2+ signals generated by the release of Ca2+ ions from intracellular stores in response to a variety of extracellular stimuli. Despite established physiological significance and proven involvements of IP3R channels in many human diseases, detailed structural basis for signal detection by these ion channels and their gating remain obscure. Recently, single particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provided exciting mechanistic insights into the molecular assembly of IP3R, revealing the pronounced structural conservation of Ca2+ release channels and raising many fundamental and controversial questions on their activation and gating. Here we summarize the major technological advances that propelled our cryo-EM analysis of IP3R to near-atomic resolution and discuss what the future holds for structural biology of Ca2+ release channels.
Collapse
Affiliation(s)
- Mariah R Baker
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Irina I Serysheva
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Lu Q, Tang Q, Chen Z, Zhao S, Qing G, Sun T. Developing an Inositol-Phosphate-Actuated Nanochannel System by Mimicking Biological Calcium Ion Channels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32554-32564. [PMID: 28871777 DOI: 10.1021/acsami.7b09992] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In eukaryotic cells, ion channels, which ubiquitously present as polypeptides or proteins, usually regulate the ion transport across biological membranes by conformational switching of the channel proteins in response to the binding of diverse signaling molecules (e.g., inositol phosphate, abbreviated to InsP). To mimic the gating behaviors of natural Ca2+ channels manipulated by InsPs, a smart poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido) benzoic acid)0.2] (denoted as PNI-co-ATBA0.2) was integrated onto a porous anodic alumina (PAA) membrane, building an InsP-actuated nanochannel system. Driven by the intensive hydrogen bonding complexation of ATBA monomer with InsP, the copolymer chains displayed a remarkable and reversible conformational transition from a contracted state to a swollen one, accompanied with significant changes in surface morphology, wettability, and viscoelasticity. Benefiting from these features, dynamic gating behaviors of the nanochannels located on the copolymer-modified PAA membrane could be precisely manipulated by InsPs, reflected as a satisfactory linear relationship between real-time variation in transmembrane ionic current and the InsP concentration over a wide range from 1 nmol L-1 to 10 μmol L-1, as well as a clear discrimination among InsP2, InsP3, and InsP6. This study indicates the great potential of biomolecule-responsive polymers in the fabrication of biomimetic ion nanochannels and other nanoscale biodevices.
Collapse
Affiliation(s)
- Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Qiuhan Tang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Zhonghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Shilong Zhao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University , 2279 Lishui Road, Shenzhen 518000, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
35
|
Casey JP, Hirouchi T, Hisatsune C, Lynch B, Murphy R, Dunne AM, Miyamoto A, Ennis S, van der Spek N, O’Hici B, Mikoshiba K, Lynch SA. A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns. J Neurol 2017. [DOI: 10.1007/s00415-017-8545-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A, Florens L, Washburn MP, Collazo-Lorduy A, Castillo-Martin M, Cordon-Cardo C, Sebti SM, Pinton P, Pagano M. PTEN counteracts FBXL2 to promote IP3R3- and Ca 2+-mediated apoptosis limiting tumour growth. Nature 2017; 546:554-558. [PMID: 28614300 PMCID: PMC5627969 DOI: 10.1038/nature22965] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the ‘quasisynaptical’ feeding of calcium to the mitochondria to promote oxidative phosphorylation1. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis2. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes3) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer4. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten−/− mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light5,6. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor7, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.
Collapse
Affiliation(s)
- Shafi Kuchay
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA
| | - Carlotta Giorgi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA
| | - Julia Pagan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA
| | - Sonia Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Anita Saraf
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Ana Collazo-Lorduy
- Department of Pathology at Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA.,Spanish Society of Medical Oncology, Madrid, Spain
| | - Mireia Castillo-Martin
- Department of Pathology at Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA.,Department of Pathology at Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Cordon-Cardo
- Department of Pathology at Icahn School of Medicine at Mount Sinai, New York, New York 10029 USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,NYU Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA
| |
Collapse
|
37
|
IP 3-mediated gating mechanism of the IP 3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci U S A 2017; 114:4661-4666. [PMID: 28416699 DOI: 10.1073/pnas.1701420114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an IP3-gated ion channel that releases calcium ions (Ca2+) from the endoplasmic reticulum. The IP3-binding sites in the large cytosolic domain are distant from the Ca2+ conducting pore, and the allosteric mechanism of how IP3 opens the Ca2+ channel remains elusive. Here, we identify a long-range gating mechanism uncovered by channel mutagenesis and X-ray crystallography of the large cytosolic domain of mouse type 1 IP3R in the absence and presence of IP3 Analyses of two distinct space group crystals uncovered an IP3-dependent global translocation of the curvature α-helical domain interfacing with the cytosolic and channel domains. Mutagenesis of the IP3R channel revealed an essential role of a leaflet structure in the α-helical domain. These results suggest that the curvature α-helical domain relays IP3-controlled global conformational dynamics to the channel through the leaflet, conferring long-range allosteric coupling from IP3 binding to the Ca2+ channel.
Collapse
|
38
|
Hisatsune C, Mikoshiba K. IP 3 receptor mutations and brain diseases in human and rodents. J Neurochem 2017; 141:790-807. [PMID: 28211945 DOI: 10.1111/jnc.13991] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is a huge Ca2+ channel that is localized at the endoplasmic reticulum. The IP3 R releases Ca2+ from the endoplasmic reticulum upon binding to IP3 , which is produced by various extracellular stimuli through phospholipase C activation. All vertebrate organisms have three subtypes of IP3 R genes, which have distinct properties of IP3 -binding and Ca2+ sensitivity, and are differently regulated by phosphorylation and by their associated proteins. Each cell type expresses the three subtypes of IP3 R in a distinct proportion, which is important for creating and maintaining spatially and temporally appropriate intracellular Ca2+ level patterns for the regulation of specific physiological phenomena. Of the three types of IP3 Rs, the type 1 receptor (IP3 R1) is dominantly expressed in the brain and is important for brain function. Recent emerging evidence suggests that abnormal Ca2+ signals from the IP3 R1 are closely associated with human brain pathology. In this review, we focus on the recent advances in our knowledge of the regulation of IP3 R1 and its functional implication in human brain diseases, as revealed by IP3 R mutation studies and analysis of human disease-associated genes. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| |
Collapse
|
39
|
From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:215-251. [PMID: 29594864 DOI: 10.1007/978-3-319-55858-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
All eukaryotic cells have adapted the use of the calcium ion (Ca2+) as a universal signaling element through the evolution of a toolkit of Ca2+ sensor, buffer and effector proteins. Among these toolkit components, integral and peripheral proteins decorate biomembranes and coordinate the movement of Ca2+ between compartments, sense these concentration changes and elicit physiological signals. These changes in compartmentalized Ca2+ levels are not mutually exclusive as signals propagate between compartments. For example, agonist induced surface receptor stimulation can lead to transient increases in cytosolic Ca2+ sourced from endoplasmic reticulum (ER) stores; the decrease in ER luminal Ca2+ can subsequently signal the opening surface channels which permit the movement of Ca2+ from the extracellular space to the cytosol. Remarkably, the minuscule compartments of mitochondria can function as significant cytosolic Ca2+ sinks by taking up Ca2+ in a coordinated manner. In non-excitable cells, inositol 1,4,5 trisphosphate receptors (IP3Rs) on the ER respond to surface receptor stimulation; stromal interaction molecules (STIMs) sense the ER luminal Ca2+ depletion and activate surface Orai1 channels; surface Orai1 channels selectively permit the movement of Ca2+ from the extracellular space to the cytosol; uptake of Ca2+ into the matrix through the mitochondrial Ca2+ uniporter (MCU) further shapes the cytosolic Ca2+ levels. Recent structural elucidations of these key Ca2+ toolkit components have improved our understanding of how they function to orchestrate precise cytosolic Ca2+ levels for specific physiological responses. This chapter reviews the atomic-resolution structures of IP3R, STIM1, Orai1 and MCU elucidated by X-ray crystallography, electron microscopy and NMR and discusses the mechanisms underlying their biological functions in their respective compartments within the cell.
Collapse
|
40
|
Mak DOD, Foskett JK. Ryanodine receptor resolution revolution: Implications for InsP 3 receptors? Cell Calcium 2016; 61:53-56. [PMID: 27836217 DOI: 10.1016/j.ceca.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Don-On Daniel Mak
- Departments of Physiology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States.
| | - J Kevin Foskett
- Departments of Physiology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States; Cell and Developmental Biology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States.
| |
Collapse
|
41
|
Structural and dynamic insights into the subtype-specific IP3-binding mechanism of the IP3 receptor. Biochem J 2016; 473:3533-3543. [DOI: 10.1042/bcj20160539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022]
Abstract
There are three subtypes of vertebrate inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a Ca2+-release channel on the ER membrane — IP3R1, IP3R2, and IP3R3 — each of which has a distinctive role in disease development. To determine the subtype-specific IP3-binding mechanism, we compared the thermodynamics, thermal stability, and conformational dynamics between the N-terminal regions of IP3R1 (IP3R1-NT) and IP3R3 (IP3R3-NT) by performing circular dichroism (CD), isothermal titration calorimetry (ITC), and hydrogen–deuterium exchange mass spectrometry (HDX-MS). Previously determined crystal structures of IP3R1-NT and HDX-MS results from this study revealed that both IP3R1 and IP3R3 adopt a similar IP3-binding mechanism. However, several regions, including the α- and β-interfaces, of IP3R1-NT and IP3R3-NT show significantly different conformational dynamics upon IP3 binding, which may explain the different IP3-binding affinities between the subtypes. The importance of the interfaces for subtype-specific IP3 binding is also supported by the different dynamic conformations of the two subtypes in the apo-states. Furthermore, IP3R1-NT and IP3R3-NT show different IP3-binding affinities and thermal stabilities, but share similar thermodynamic properties for IP3 binding. These results collectively provide new insights into the mechanism underlying IP3 binding to IP3Rs and the subtype-specific regulatory mechanism.
Collapse
|
42
|
Vibhute AM, Pushpanandan P, Varghese M, Koniecnzy V, Taylor CW, Sureshan KM. Synthesis of dimeric analogs of adenophostin A that potently evoke Ca 2+ release through IP 3 receptors. RSC Adv 2016; 6:86346-86351. [PMID: 28066549 PMCID: PMC5171214 DOI: 10.1039/c6ra19413c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/05/2016] [Indexed: 11/21/2022] Open
Abstract
Syntheses and Ca2+ release potentials of four dimeric analogs of adenophostin A (AdA) through activation of type 1 IP3R are reported. These analogs are full agonists of IP3R and are equipotent to AdA, the most potent agonist of IP3R.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP3R. Adenophostin A (AdA) is a potent agonist of IP3R and since some dimeric analogs of IP3R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca2+ through type 1 IP3R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Poornenth Pushpanandan
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Maria Varghese
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Vera Koniecnzy
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge , CB2 1PD , UK
| | - Colin W Taylor
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge , CB2 1PD , UK
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| |
Collapse
|
43
|
Yuchi Z, Van Petegem F. Ryanodine receptors under the magnifying lens: Insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 2016; 59:209-27. [DOI: 10.1016/j.ceca.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
44
|
Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 2015; 527:336-41. [PMID: 26458101 DOI: 10.1038/nature15249] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.
Collapse
Affiliation(s)
- Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Pavel A Sinyagovskiy
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Kim HN, Seok SH, Chung KY, Won HS, Son WS, Seo MD. Expression, purification and structural characterization of the type 1-specific ATP binding site of IP3 receptor (IP3R1-ATPA). Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Walpoth BN, Erman B. Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations. F1000Res 2015; 4:29. [PMID: 25901278 PMCID: PMC4392826 DOI: 10.12688/f1000research.5858.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 01/28/2023] Open
Abstract
Protein-protein interactions are the key processes responsible for signaling and function in complex networks. Determining the correct binding partners and predicting the ligand binding sites in the absence of experimental data require predictive models. Hybrid models that combine quantitative atomistic calculations with statistical thermodynamics formulations are valuable tools for bioinformatics predictions. We present a hybrid prediction and analysis model for determining putative binding partners and interpreting the resulting correlations in the yet functionally uncharacterized interactions of the ryanodine RyR2 N-terminal domain. Using extensive docking calculations and libraries of hexameric peptides generated from regulator proteins of the RyR2 channel, we show that the residues 318-323 of protein kinase A, PKA, have a very high affinity for the N-terminal of RyR2. Using a coarse grained Elastic Net Model, we show that the binding site lies at the end of a pathway of evolutionarily conserved residues in RyR2. The two disease causing mutations are also on this path. The program for the prediction of the energetically responsive residues by the Elastic Net Model is freely available on request from the corresponding author.
Collapse
Affiliation(s)
- Belinda Nazan Walpoth
- Swiss Cardiovascular Center, University of Bern, Inselspital, Cardiology, Bern, CH-3012, Switzerland
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Instanbul, 34450 S, Turkey
| |
Collapse
|
47
|
Liu Y, Sun B, Xiao Z, Wang R, Guo W, Zhang JZ, Mi T, Wang Y, Jones PP, Van Petegem F, Chen SRW. Roles of the NH2-terminal domains of cardiac ryanodine receptor in Ca2+ release activation and termination. J Biol Chem 2015; 290:7736-46. [PMID: 25627681 DOI: 10.1074/jbc.m114.618827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.
Collapse
Affiliation(s)
- Yingjie Liu
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Zhichao Xiao
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Joe Z Zhang
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Tao Mi
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yundi Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P Jones
- Department of Physiology and HeartOtago, University of Otago, Dunedin 9054, New Zealand, and
| | - Filip Van Petegem
- Cardiovascular Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| |
Collapse
|
48
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
49
|
Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1980-91. [PMID: 25461839 DOI: 10.1016/j.bbamcr.2014.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
The two major calcium (Ca²⁺) release channels on the sarco/endoplasmic reticulum (SR/ER) are inositol 1,4,5-trisphosphate and ryanodine receptors (IP3Rs and RyRs). They play versatile roles in essential cell signaling processes, and abnormalities of these channels are associated with a variety of diseases. Structural information on IP3Rs and RyRs determined using multiple techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (EM), has significantly advanced our understanding of the mechanisms by which these Ca²⁺ release channels function under normal and pathophysiological circumstances. In this review, structural advances on the understanding of the mechanisms of IP3R and RyR function and dysfunction are summarized. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon, Gyeonggi 443-749, Republic of Korea
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
50
|
Leu JIJ, Zhang P, Murphy ME, Marmorstein R, George DL. Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. ACS Chem Biol 2014; 9:2508-16. [PMID: 25148104 PMCID: PMC4241170 DOI: 10.1021/cb500236y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The stress-inducible mammalian heat shock protein 70 (HSP70) and its bacterial orthologue DnaK are highly conserved nucleotide binding molecular chaperones. They represent critical regulators of cellular proteostasis, especially during conditions of enhanced stress. Cancer cells rely on HSP70 for survival, and this chaperone represents an attractive new therapeutic target. We have used a structure-activity approach and biophysical methods to characterize a class of inhibitors that bind to a unique allosteric site within the C-terminus of HSP70 and DnaK. Data from X-ray crystallography together with isothermal titration calorimetry, mutagenesis, and cell-based assays indicate that these inhibitors bind to a previously unappreciated allosteric pocket formed within the non-ATP-bound protein state. Moreover, binding of inhibitor alters the local protein conformation, resulting in reduced chaperone-client interactions and impairment of proteostasis. Our findings thereby provide a new chemical scaffold and target platform for both HSP70 and DnaK; these will be important tools with which to interrogate chaperone function and to aid ongoing efforts to optimize potency and efficacy in developing modulators of these chaperones for therapeutic use.
Collapse
Affiliation(s)
- Julia I-Ju Leu
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Pingfeng Zhang
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Maureen E. Murphy
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Donna L. George
- Department of Genetics, ‡Department of Biochemistry & Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, and §Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Program in Gene Expression and Regulation, and ⊥Program in Molecular
and Cellular
Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|