1
|
Wu W, Ahmad K, Henikoff S. Chromatin-bound U2AF2 splicing factor ensures exon inclusion. Mol Cell 2025; 85:1982-1998.e4. [PMID: 40315850 DOI: 10.1016/j.molcel.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
Most mRNA splicing occurs co-transcriptionally, but it is unclear how splicing factors accurately select exons for inclusion. Using CUT&RUN profiling in K562 cells, we demonstrate that three splicing factors-SF3B1, U2AF1, and U2AF2-bind near active promoters of intron-containing and intronless genes, implying their association with the general transcriptional machinery. RNase A treatment reduces factor binding at promoters, indicating that these proteins interact with nascent transcripts. Strikingly, the U2AF2 protein also accumulates throughout intron-containing gene bodies and requires histone H3-lysine36 trimethylation but not nascent transcripts or persistent RNA polymerase II. Chromatin-bound U2AF2 preferentially binds to exons of highly expressed, exon-dense genes, with greater occupancy at exons skipped after U2AF2 knockdown, suggesting that U2AF2 enhances exon selection accuracy. U2AF2-targeted genes include those encoding splicing factors, where it improves splicing accuracy and efficiency. Our findings provide a mechanistic basis for the homeostatic regulation of efficient co-transcriptional splicing by chromatin-bound U2AF2.
Collapse
Affiliation(s)
- Weifang Wu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Kashyap P, Aswale KR, Deshmukh AS. Deletion of splicing factor Cdc5 in Toxoplasma disrupts transcriptome integrity, induces abortive bradyzoite formation, and prevents acute infection in mice. Nat Commun 2025; 16:3769. [PMID: 40263328 PMCID: PMC12015288 DOI: 10.1038/s41467-025-58805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Toxoplasma gondii, an apicomplexan parasite, has over 75% of its genes containing introns; however, the role of RNA splicing in regulating gene expression remains unclear. Here, we demonstrate that the pre-mRNA splicing factor Cdc5 is part of a large spliceosomal complex essential for maintaining the transcriptome integrity in Toxoplasma. TgCdc5 depletion results in splicing inhibition with widespread changes in gene expression affecting several parasite processes, including the lytic cycle, DNA replication and repair, and protein folding and degradation. Consequently, non-cystogenic RH TgCdc5-depleted parasites begin spontaneously differentiating from tachyzoites to slow-growing bradyzoites, evidenced by the differential expression of key developmental regulators; however, these early-stage bradyzoites are unable to survive, likely due to a deficiency in functional proteins necessary for their growth and maintenance. Furthermore, consistent with our in vitro findings, we demonstrate that TgCdc5 is essential for parasite survival in mice, as its depletion provides complete protection against acute infection. Interestingly, this attenuated growth mutant resulting from TgCdc5 depletion elicits a robust immune response that fully protects mice from future infections and offers partial protection during pregnancy. Overall, this study highlights the indispensable role of the splicing factor Cdc5 in preserving transcriptional homeostasis in the intron-rich genome of Toxoplasma.
Collapse
Affiliation(s)
- Poonam Kashyap
- Molecular Parasitology Laboratory, BRIC-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- Department of Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kalyani R Aswale
- Molecular Parasitology Laboratory, BRIC-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- Department of Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Abhijit S Deshmukh
- Molecular Parasitology Laboratory, BRIC-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India.
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Mancini M, De Santis S, Monaldi C, Castagnetti F, Iezza M, Iurlo A, Cattaneo D, Galimberti S, Cerrano M, Capodanno I, Bonifacio M, Rossi M, Agostinelli C, Meggendorfer M, Haferlach T, Cavo M, Gugliotta G, Soverini S. SETD2 loss of function is a recurrent event in advanced-phase chronic myeloid leukemia and contributes to genomic instability: SETD2 loss in Chronic Myeloid Leukemia. Clin Transl Med 2025; 15:e70163. [PMID: 40275711 PMCID: PMC12022228 DOI: 10.1002/ctm2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 04/26/2025] Open
Abstract
The SETD2 tumour suppressor encodes a histone methyltransferase that specifically trimethylates histone H3 on lysine 36 (H3K36me3), a key histone mark implicated in the maintenance of genomic integrity among other functions. We found that SETD2 protein deficiency, mirrored by H3K36me3 deficiency, is a nearly universal event in advanced-phase chronic myeloid leukemia (CML) patients. Similarly, K562 and KCL22 cell lines exhibited markedly reduced or undetectable SETD2/H3K36me3 levels, respectively. This resulted from altered SETD2 protein turnover rather than mutations or transcriptional downregulation, and proteasome inhibition led to the accumulation of hyper-ubiquitinated SETD2 and to H3K36me3 rescue suggesting that a functional SETD2 protein is produced but abnormally degraded. We demonstrated that phosphorylation by Aurora-A kinase and ubiquitination by MDM2 plays a key role in the proteasome-mediated degradation of SETD2. Moreover, we found that SETD2 and H3K36me3 loss impinges on the activation and proficiency of homologous recombination and mismatch repair. Finally, we showed that proteasome and Aurora-A kinase inhibitors, acting via SETD2/H3K36me3 rescue, are effective in inducing apoptosis and reducing clonogenic growth in cell lines and primary cells from advanced-phase patients. Taken together, our results point to SETD2/H3K36me3 deficiency as a mechanism, already identified by our group in systemic mastocytosis, that is reversible, druggable, and BCR::ABL1-independent, able to cooperate with BCR::ABL1 in driving genetic instability in CML. KEY POINTS: Virtually all CML patients in blast crisis display SETD2 loss of function. SETD2 loss seems to be accomplished at the posttranslational level rather than being the result of genetic/genomic hits or transcriptional repression. Phosphorylation by Aurora kinase A and ubiquitination by MDM2 contribute to SETD2 proteasome-mediated degradation in blast crisis CML patients. Loss of SETD2 results in increased DNA damage.
Collapse
Affiliation(s)
- Manuela Mancini
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Sara De Santis
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Cecilia Monaldi
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Fausto Castagnetti
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Miriam Iezza
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Alessandra Iurlo
- Hematology DivisionFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Daniele Cattaneo
- Hematology DivisionFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanoItaly
| | - Sara Galimberti
- Clinical and Experimental MedicineHematologyUniversity of PisaPisaItaly
| | - Marco Cerrano
- Azienda Ospedaliera Citta' Della Salute E Della Scienza Di TorinoTorinoItaly
| | | | - Massimiliano Bonifacio
- Section of HematologyDepartment of MedicineAzienda Ospedaliera Universitaria Integrata di VeronaVeronaItaly
| | - Maura Rossi
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Claudio Agostinelli
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
- Haematopathology UnitIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | | | - Michele Cavo
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaIstituto di Ematologia “Seràgnoli”BolognaItaly
| | - Simona Soverini
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
4
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker PB. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2025; 53:gkaf202. [PMID: 40164442 DOI: 10.1093/nar/gkaf202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard chromatin fiber integrity. In Drosophila, the chromodomain protein MSL3 binds H3K36me3 at X-chromosomal genes to implement dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Because depletion of K36me3 had variable, locus-specific effects on the interactions of those readers, we systematically studied K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2, and K36me3 each contribute to distinct chromatin states. Monitoring the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD, and Ash1 revealed local, context-specific methylation signatures. Each methyltransferase governs K36 methylation in dedicated genomic regions, with minor overlaps. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at putative enhancers. The mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Catherine Regnard
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-Universität, 82152 Munich, Germany
| |
Collapse
|
5
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
6
|
Yustis JC, Devoucoux M, Côté J. The Functional Relationship Between RNA Splicing and the Chromatin Landscape. J Mol Biol 2024; 436:168614. [PMID: 38762032 DOI: 10.1016/j.jmb.2024.168614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Chromatin is a highly regulated and dynamic structure that has been shown to play an essential role in transcriptional and co-transcriptional regulation. In the context of RNA splicing, early evidence suggested a loose connection between the chromatin landscape and splicing. More recently, it has been shown that splicing occurs in a co-transcriptional manner, meaning that the splicing process occurs in the context of chromatin. Experimental and computational evidence have also shown that chromatin dynamics can influence the splicing process and vice versa. However, much of this evidence provides mainly correlative relationships between chromatin and splicing with just a few concrete examples providing defined molecular mechanisms by which these two processes are functionally related. Nevertheless, it is clear that chromatin and RNA splicing are tightly interconnected to one another. In this review, we highlight the current state of knowledge of the relationship between chromatin and splicing.
Collapse
Affiliation(s)
- Juan-Carlos Yustis
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Maëva Devoucoux
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of the CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1R 3S3, Canada.
| |
Collapse
|
7
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Jayakrishnan M, Havlová M, Veverka V, Regnard C, Becker P. Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers. Nucleic Acids Res 2024; 52:7627-7649. [PMID: 38813825 PMCID: PMC11260483 DOI: 10.1093/nar/gkae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
Collapse
Affiliation(s)
- Muhunden Jayakrishnan
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Havlová
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Catherine Regnard
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
9
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
10
|
Martin RM, de Almeida MR, Gameiro E, de Almeida SF. Live-cell imaging unveils distinct R-loop populations with heterogeneous dynamics. Nucleic Acids Res 2023; 51:11010-11023. [PMID: 37819055 PMCID: PMC10639055 DOI: 10.1093/nar/gkad812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
We have developed RHINO, a genetically encoded sensor that selectively binds RNA:DNA hybrids enabling live-cell imaging of cellular R-loops. RHINO comprises a tandem array of three copies of the RNA:DNA hybrid binding domain of human RNase H1 connected by optimized linker segments and fused to a fluorescent protein. This tool allows the measurement of R-loop abundance and dynamics in live cells with high specificity and sensitivity. Using RHINO, we provide a kinetic framework for R-loops at nucleoli, telomeres and protein-coding genes. Our findings demonstrate that R-loop dynamics vary significantly across these regions, potentially reflecting the distinct roles R-loops play in different chromosomal contexts. RHINO is a powerful tool for investigating the role of R-loops in cellular processes and their contribution to disease development and progression.
Collapse
Affiliation(s)
- Robert M Martin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Madalena R de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Gameiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
12
|
Mitchell B, Thor S, Piper M. Cellular and molecular functions of SETD2 in the central nervous system. J Cell Sci 2023; 136:jcs261406. [PMID: 37921122 DOI: 10.1242/jcs.261406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The covalent modification of histones is critical for many biological functions in mammals, including gene regulation and chromatin structure. Posttranslational histone modifications are added and removed by specialised 'writer' and 'eraser' enzymes, respectively. One such writer protein implicated in a wide range of cellular processes is SET domain-containing 2 (SETD2), a histone methyltransferase that catalyses the trimethylation of lysine 36 on histone H3 (H3K36me3). Recently, SETD2 has also been found to modify proteins other than histones, including actin and tubulin. The emerging roles of SETD2 in the development and function of the mammalian central nervous system (CNS) are of particular interest as several SETD2 variants have been implicated in neurodevelopmental disorders, such as autism spectrum disorder and the overgrowth disorder Luscan-Lumish syndrome. Here, we summarise the numerous roles of SETD2 in mammalian cellular functions and development, with a focus on the CNS. We also provide an overview of the consequences of SETD2 variants in human disease and discuss future directions for understanding essential cellular functions of SETD2.
Collapse
Affiliation(s)
- Benjamin Mitchell
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Yadav P, Pandey A, Kakani P, Mutnuru SA, Samaiya A, Mishra J, Shukla S. Hypoxia-induced loss of SRSF2-dependent DNA methylation promotes CTCF-mediated alternative splicing of VEGFA in breast cancer. iScience 2023; 26:106804. [PMID: 37235058 PMCID: PMC10206493 DOI: 10.1016/j.isci.2023.106804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative splicing of vascular endothelial growth factor A (VEGFA) generates numerous isoforms with unique roles in tumor angiogenesis, and investigating the underlying mechanism during hypoxia necessitates diligent pursuance. Our research systematically demonstrated that the splicing factor SRSF2 causes the inclusion of exon-8b, leading to the formation of the anti-angiogenic VEGFA-165b isoform under normoxic conditions. Additionally, SRSF2 interacts with DNMT3A and maintains methylation on exon-8a, inhibiting CCCTC-binding factor (CTCF) recruitment and RNA polymerase II (pol II) occupancy, causing exon-8a exclusion and decreased expression of pro-angiogenic VEGFA-165a. Conversely, SRSF2 is downregulated by HIF1α-induced miR-222-3p under hypoxic conditions, which prevents exon-8b inclusion and reduces VEGFA-165b expression. Furthermore, reduced SRSF2 under hypoxia promotes hydroxymethylation on exon-8a, increasing CTCF recruitment, pol II occupancy, exon-8a inclusion, and VEGFA-165a expression. Overall, our findings unveil a specialized dual mechanism of VEGFA-165 alternative splicing, instrumented by the cross-talk between SRSF2 and CTCF, which promotes angiogenesis under hypoxic conditions.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Anchala Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Parik Kakani
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Atul Samaiya
- Department of Surgical Oncology, BH, Bhopal, Madhya Pradesh 462016, India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital (BH), Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
15
|
Arfelli VC, Chang YC, Bagnoli JW, Kerbs P, Ciamponi FE, Paz LMDS, Pankivskyi S, de Matha Salone J, Maucuer A, Massirer KB, Enard W, Kuster B, Greif PA, Archangelo LF. UHMK1 is a novel splicing regulatory kinase. J Biol Chem 2023; 299:103041. [PMID: 36803961 PMCID: PMC10033318 DOI: 10.1016/j.jbc.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
The U2AF Homology Motif Kinase 1 (UHMK1) is the only kinase that contains the U2AF homology motif, a common protein interaction domain among splicing factors. Through this motif, UHMK1 interacts with the splicing factors SF1 and SF3B1, known to participate in the 3' splice site recognition during the early steps of spliceosome assembly. Although UHMK1 phosphorylates these splicing factors in vitro, the involvement of UHMK1 in RNA processing has not previously been demonstrated. Here, we identify novel putative substrates of this kinase and evaluate UHMK1 contribution to overall gene expression and splicing, by integrating global phosphoproteomics, RNA-seq, and bioinformatics approaches. Upon UHMK1 modulation, 163 unique phosphosites were differentially phosphorylated in 117 proteins, of which 106 are novel potential substrates of this kinase. Gene Ontology analysis showed enrichment of terms previously associated with UHMK1 function, such as mRNA splicing, cell cycle, cell division, and microtubule organization. The majority of the annotated RNA-related proteins are components of the spliceosome but are also involved in several steps of gene expression. Comprehensive analysis of splicing showed that UHMK1 affected over 270 alternative splicing events. Moreover, splicing reporter assay further supported UHMK1 function on splicing. Overall, RNA-seq data demonstrated that UHMK1 knockdown had a minor impact on transcript expression and pointed to UHMK1 function in epithelial-mesenchymal transition. Functional assays demonstrated that UHMK1 modulation affects proliferation, colony formation, and migration. Taken together, our data implicate UHMK1 as a splicing regulatory kinase, connecting protein regulation through phosphorylation and gene expression in key cellular processes.
Collapse
Affiliation(s)
- Vanessa C Arfelli
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Yun-Chien Chang
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Paul Kerbs
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe E Ciamponi
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Laissa M da S Paz
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Serhii Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | | | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Katlin B Massirer
- Center for Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University (LMU), Martinsried, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp A Greif
- Laboratory for Experimental Leukemia and Lymphoma Research, Munich University Hospital, Ludwig-Maximilians University (LMU), Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leticia Fröhlich Archangelo
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Walton J, Lawson K, Prinos P, Finelli A, Arrowsmith C, Ailles L. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 2023; 20:96-115. [PMID: 36253570 DOI: 10.1038/s41585-022-00659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Biallelic inactivation of the tumour suppressor gene Von Hippel-Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Keith Lawson
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Li HT, Jang HJ, Rohena-Rivera K, Liu M, Gujar H, Kulchycki J, Zhao S, Billet S, Zhou X, Weisenberger DJ, Gill I, Jones PA, Bhowmick NA, Liang G. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016. [PMID: 36662621 PMCID: PMC10034851 DOI: 10.1016/j.celrep.2023.112016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Krizia Rohena-Rivera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Kulchycki
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shuqing Zhao
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandrin Billet
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinyi Zhou
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Inderbir Gill
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Kerschbamer E, Arnoldi M, Tripathi T, Pellegrini M, Maturi S, Erdin S, Salviato E, Di Leva F, Sebestyén E, Dassi E, Zarantonello G, Benelli M, Campos E, Basson M, Gusella J, Gustincich S, Piazza S, Demichelis F, Talkowski M, Ferrari F, Biagioli M. CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing. Nucleic Acids Res 2022; 50:12809-12828. [PMID: 36537238 PMCID: PMC9825192 DOI: 10.1093/nar/gkac1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.
Collapse
Affiliation(s)
- Emanuela Kerschbamer
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Michele Arnoldi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Samuele Maturi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisa Salviato
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca Di Leva
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Endre Sebestyén
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, (CIBIO), University of Trento, Trento, Italy
| | - Giulia Zarantonello
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - Eric Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Silvano Piazza
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology (CIBIO) University of Trento, Italy
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- CNR Institute of Molecular Genetics ‘Luigi Luca Cavalli-Sforza’, Pavia, Italy
| | - Marta Biagioli
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, (CIBIO) University of Trento, Trento, Italy
| |
Collapse
|
19
|
Setd2 supports GATA3 +ST2 + thymic-derived Treg cells and suppresses intestinal inflammation. Nat Commun 2022; 13:7468. [PMID: 36463230 PMCID: PMC9719510 DOI: 10.1038/s41467-022-35250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Treg cells acquire distinct transcriptional properties to suppress specific inflammatory responses. Transcription characteristics of Treg cells are regulated by epigenetic modifications, the mechanism of which remains obscure. Here, we report that Setd2, a histone H3K36 methyltransferase, is important for the survival and suppressive function of Treg cells, especially those from the intestine. Setd2 supports GATA3+ST2+ intestinal thymic-derived Treg (tTreg) cells by facilitating the expression and reciprocal relationship of GATA3 and ST2 in tTreg cells. IL-33 preferentially boosts Th2 cells rather than GATA3+ Treg cells in Foxp3Cre-YFPSetd2 flox/flox mice, corroborating the constraint of Th2 responses by Setd2 expression in Treg cells. SETD2 sustains GATA3 expression in human Treg cells, and SETD2 expression is increased in Treg cells from human colorectal cancer tissues. Epigenetically, Setd2 regulates the transcription of target genes (including Il1rl1) by modulating the activity of promoters and intragenic enhancers where H3K36me3 is typically deposited. Our findings provide mechanistic insights into the regulation of Treg cells and intestinal immunity by Setd2.
Collapse
|
20
|
Abstract
Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.
Collapse
Affiliation(s)
- Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Christopher D. Faulk
- Institute on the Biology of Aging and Metabolism
- Department of Animal Science, and
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
22
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
23
|
Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-Beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert JP, Hussein SMI, Côté J. MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Mol Cell Proteomics 2022; 21:100253. [PMID: 35636729 PMCID: PMC9253478 DOI: 10.1016/j.mcpro.2022.100253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
MRG15/MORF4L1 is a highly conserved protein in eukaryotes that contains a chromodomain (CHD) recognizing methylation of lysine 36 on histone H3 (H3K36me3) in chromatin. Intriguingly, it has been reported in the literature to interact with several different factors involved in chromatin modifications, gene regulation, alternative mRNA splicing, and DNA repair by homologous recombination. To get a complete and reliable picture of associations in physiological conditions, we used genome editing and tandem affinity purification to analyze the stable native interactome of human MRG15, its paralog MRGX/MORF4L2 that lacks the CHD, and MRGBP (MRG-binding protein) in isogenic K562 cells. We found stable interchangeable association of MRG15 and MRGX with the NuA4/TIP60 histone acetyltransferase/chromatin remodeler, Sin3B histone deacetylase/demethylase, ASH1L histone methyltransferase, and PALB2-BRCA2 DNA repair protein complexes. These associations were further confirmed and analyzed by CRISPR tagging of endogenous proteins and comparison of expressed isoforms. Importantly, based on structural information, point mutations could be introduced that specifically disrupt MRG15 association with some complexes but not others. Most interestingly, we also identified a new abundant native complex formed by MRG15/X-MRGBP-BRD8-EP400NL (EP400 N-terminal like) that is functionally similar to the yeast TINTIN (Trimer Independent of NuA4 for Transcription Interactions with Nucleosomes) complex. Our results show that EP400NL, being homologous to the N-terminal region of NuA4/TIP60 subunit EP400, creates TINTIN by competing for BRD8 association. Functional genomics indicate that human TINTIN plays a role in transcription of specific genes. This is most likely linked to the H4ac-binding bromodomain of BRD8 along the H3K36me3-binding CHD of MRG15 on the coding region of transcribed genes. Taken together, our data provide a complete detailed picture of human MRG proteins-associated protein complexes, which are essential to understand and correlate their diverse biological functions in chromatin-based nuclear processes.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Céline Roques
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Catherine Lachance
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Anahita Lashgari
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada; Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Karine Jacquet
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Prudente
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud Droit
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada.
| |
Collapse
|
24
|
González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun 2022; 13:2735. [PMID: 35585060 PMCID: PMC9117662 DOI: 10.1038/s41467-022-30433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Autophagy and RNA alternative splicing are two evolutionarily conserved processes involved in overlapping physiological and pathological processes. However, the extent of functional connection is not well defined. Here, we consider the role for alternative splicing and generation of autophagy-related gene isoforms in the regulation of autophagy in recent work. The impact of changes to the RNA alternative splicing machinery and production of alternative spliced isoforms on autophagy are reviewed with particular focus on disease relevance. The use of drugs targeting both alternative splicing and autophagy as well as the selective regulation of single autophagy-related protein isoforms, are considered as therapeutic strategies.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Chang J, Ji X, Deng T, Qiu J, Ding Z, Li Z, Ma Y, Hu X, Li L, Qiu J. Setd2 determines distinct properties of intestinal ILC3 subsets to regulate intestinal immunity. Cell Rep 2022; 38:110530. [PMID: 35294891 DOI: 10.1016/j.celrep.2022.110530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Subsets of group 3 innate lymphoid cells (ILC3s) are heterogeneous in development and function and play differential roles in intestinal immunity. Histone modifications are involved in the fate commitment of immune cells, including ILC3s. Here, we report that deletion of Setd2, histone H3K36 methyltransferase, in ILC3s results in increased generation of NKp46+ILC3s with enhanced cytotoxic signatures and tumor-suppressive capacity. Meanwhile, Rag1-/-RorcCreSetd2flox/flox mice have fewer CCR6+ILC3s and less defective solitary intestinal lymphoid tissue formation, accompanied by reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) production by NKp46-ILC3s and decreased CD11b+CD103+ dendritic cell accumulation. The deficiency of Setd2-/-NKp46-ILC3s may contribute to disturbed RORγt+Treg homeostasis and intestinal inflammation in Rag1-/-RorcCreSetd2flox/flox mice upon T cell reconstitution. Setd2 regulates genome accessibility imprinting gene mRNA expression, with a more profound effect on NKp46+ILC3s than NKp46-ILC3s. Therefore, Setd2 determines distinct chromatin status and transcriptomic programs of ILC3 subsets to affect their function and intestinal immunity.
Collapse
Affiliation(s)
- Jiali Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojuan Ji
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Deng
- Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyun Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
26
|
Ruan GX, Li Y, Chen W, Huang H, Zhang R, Chen C, Lam KP, Xu S, Ou X. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement. Cell Rep 2022; 38:110338. [PMID: 35139388 DOI: 10.1016/j.celrep.2022.110338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The spliceosome is a large ribonucleoprotein complex responsible for pre-mRNA splicing and genome stability maintenance. Disruption of the spliceosome activity may lead to developmental disorders and tumorigenesis. However, the physiological role that the spliceosome plays in B cell development and function is still poorly defined. Here, we demonstrate that ubiquitin-specific peptidase 39 (Usp39), a spliceosome component of the U4/U6.U5 tri-snRNP complex, is essential for B cell development. Ablation of Usp39 in B cell lineage blocks pre-pro-B to pro-B cell transition in the bone marrow, leading to a profound reduction of mature B cells in the periphery. We show that Usp39 specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus. Moreover, our results indicate that Usp39 deletion reduces the pre-malignant B cells in Eμ-Myc transgenic mice and significantly improves their survival.
Collapse
Affiliation(s)
- Gui-Xin Ruan
- Harbin Institute of Technology, Harbin 150001, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changxu Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
27
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
28
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Athmane N, Williamson I, Boyle S, Biddie SC, Bickmore WA. MUC4 is not expressed in cell lines used for live cell imaging. Wellcome Open Res 2021; 6:265. [PMID: 34796278 PMCID: PMC8567686 DOI: 10.12688/wellcomeopenres.17229.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The ability to visualise specific mammalian gene loci in living cells is important for understanding the dynamic processes linked to transcription. However, some of the tools used to target mammalian genes for live cell imaging, such as dCas9, have been reported to themselves impede processes linked to transcription. The MUC4 gene is a popular target for live cell imaging studies due to the repetitive nature of sequences within some exons of this gene. Methods: We set out to compare the impact of dCas9 and TALE-based imaging tools on MUC4 expression, including in human cell lines previously reported as expressing MUC4. Results: We were unable to detect MUC4 mRNA in these cell lines. Moreover, analysis of publicly available data for histone modifications associated with transcription, and data for transcription itself, indicate that neither MUC4, nor any of the mucin gene family are significantly expressed in the cell lines where dCas9 targeting has been reported to repress MUC4 and MUC1 expression, or in the cell lines where dCas13 has been used to report MUC4 RNA detection in live cells. Conclusions: Methods for visualising specific gene loci and gene transcripts in live human cells are very challenging. Our data suggest that care should be given to the choice of the most appropriate cell lines for these analyses and that orthogonal methods of assaying gene expression be carefully compared.
Collapse
Affiliation(s)
- Naouel Athmane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Simon C. Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| |
Collapse
|
30
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
31
|
Lampe JW, Alford JS, Boriak-Sjodin PA, Brach D, Cosmopoulos K, Duncan KW, Eckley ST, Foley MA, Harvey DM, Motwani V, Munchhof MJ, Raimondi A, Riera TV, Tang C, Thomenius MJ, Totman J, Farrow NA. Discovery of a First-in-Class Inhibitor of the Histone Methyltransferase SETD2 Suitable for Preclinical Studies. ACS Med Chem Lett 2021; 12:1539-1545. [PMID: 34671445 PMCID: PMC8521618 DOI: 10.1021/acsmedchemlett.1c00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
![]()
SET domain-containing
protein 2 (SETD2), a histone methyltransferase,
has been identified as a target of interest in certain hematological
malignancies, including multiple myeloma. This account details the
discovery of EPZ-719, a novel and potent SETD2 inhibitor
with a high selectivity over other histone methyltransferases. A screening
campaign of the Epizyme proprietary histone methyltransferase-biased
library identified potential leads based on a 2-amidoindole core.
Structure-based drug design (SBDD) and drug metabolism/pharmacokinetics
(DMPK) optimization resulted in EPZ-719, an attractive
tool compound for the interrogation of SETD2 biology that enables in vivo target validation studies.
Collapse
Affiliation(s)
- John W. Lampe
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Joshua S. Alford
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - P. Ann Boriak-Sjodin
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Dorothy Brach
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Kat Cosmopoulos
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Kenneth W. Duncan
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Sean T. Eckley
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Megan A. Foley
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Darren M. Harvey
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Vinny Motwani
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Michael J. Munchhof
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Alejandra Raimondi
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Thomas V. Riera
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Cuyue Tang
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Michael J. Thomenius
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Jennifer Totman
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Neil A. Farrow
- Epizyme Inc., 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Athmane N, Williamson I, Boyle S, Biddie SC, Bickmore WA. MUC4 is not expressed in cell lines used for live cell imaging. Wellcome Open Res 2021; 6:265. [PMID: 34796278 PMCID: PMC8567686 DOI: 10.12688/wellcomeopenres.17229.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The ability to visualise specific mammalian gene loci in living cells is important for understanding the dynamic processes linked to transcription. However, some of the tools used to target mammalian genes for live cell imaging, such as dCas9, have been reported to themselves impede processes linked to transcription. The MUC4 gene is a popular target for live cell imaging studies due to the repetitive nature of sequences within some exons of this gene. Methods: We set out to compare the impact of dCas9 and TALE-based imaging tools on MUC4 expression, including in human cell lines previously reported as expressing MUC4. Results: We were unable to detect MUC4 mRNA in these cell lines. Moreover, analysis of publicly available data for histone modifications associated with transcription, and data for transcription itself, indicate that neither MUC4, nor any of the mucin gene family are significantly expressed in the cell lines where dCas9 targeting has been reported to repress MUC4 and MUC1 expression, or in the cell lines where dCas13 has been used to report MUC4 RNA detection in live cells. Conclusions: Methods for visualising specific gene loci and gene transcripts in live human cells are very challenging. Our data suggest that care should be given to the choice of the most appropriate cell lines for these analyses and that orthogonal methods of assaying gene expression be carefully compared.
Collapse
Affiliation(s)
- Naouel Athmane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Simon C. Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| |
Collapse
|
33
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
34
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Bali P, Kenny PJ. Gene splicing SETs the scene for cocaine addiction. Neuron 2021; 109:2802-2804. [PMID: 34534452 DOI: 10.1016/j.neuron.2021.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine triggers gene splicing in brain reward circuits, but the mechanisms and importance of this response are unclear. In this issue of Neuron, Xu et al. (2021) show that the histone modification H3K36me3 marks genes spliced in response to cocaine and, using epigenome editing, establish a causal relationship between gene splicing and addiction-related behavioral responses.
Collapse
Affiliation(s)
- Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| |
Collapse
|
36
|
Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, Muchardt C. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res 2021; 49:6213-6237. [PMID: 34086943 PMCID: PMC8216461 DOI: 10.1093/nar/gkab437] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.
Collapse
Affiliation(s)
- Eric Batsché
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Jia Yi
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Oriane Mauger
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Etienne Kornobis
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Benjamin Hopkins
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Charlotte Hanmer-Lloyd
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christian Muchardt
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| |
Collapse
|
37
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
38
|
Long non-coding RNAs and splicing. Essays Biochem 2021; 65:723-729. [PMID: 33835135 DOI: 10.1042/ebc20200087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
In this review I focus on the role of splicing in long non-coding RNA (lncRNA) life. First, I summarize differences between the splicing efficiency of protein-coding genes and lncRNAs and discuss why non-coding RNAs are spliced less efficiently. In the second half of the review, I speculate why splice sites are the most conserved sequences in lncRNAs and what additional roles could splicing play in lncRNA metabolism. I discuss the hypothesis that the splicing machinery can, besides its dominant role in intron removal and exon joining, protect cells from undesired transcripts.
Collapse
|
39
|
Wang CC, Hsieh HY, Hsieh HL, Tu SL. The Physcomitrella patens chromatin adaptor PpMRG1 interacts with H3K36me3 and regulates light-responsive alternative splicing. PLANT PHYSIOLOGY 2021; 185:1229-1241. [PMID: 33793927 PMCID: PMC8133547 DOI: 10.1093/plphys/kiaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Plants perceive dynamic light conditions and optimize their growth and development accordingly by regulating gene expression at multiple levels. Alternative splicing (AS), a widespread mechanism in eukaryotes that post-transcriptionally generates two or more messenger RNAs (mRNAs) from the same pre-mRNA, is rapidly controlled by light. However, a detailed mechanism of light-regulated AS is still not clear. In this study, we demonstrate that histone 3 lysine 36 trimethylation (H3K36me3) rapidly and differentially responds to light at specific gene loci with light-regulated intron retention (IR) of their transcripts in the moss Physcomitrella patens. However, the level of H3K36me3 following exposure to light is inversely related to that of IR events. Physcomitrella patens MORF-related gene 1 (PpMRG1), a chromatin adaptor, bound with higher affinity to H3K36me3 in light conditions than in darkness and was differentially targeted to gene loci showing light-responsive IR. Transcriptome analysis indicated that PpMRG1 functions in the regulation of light-mediated AS. Furthermore, PpMRG1 was also involved in red light-mediated phototropic responses. Our results suggest that light regulates histone methylation, which leads to alterations of AS patterns. The chromatin adaptor PpMRG1 potentially participates in light-mediated AS, revealing that chromatin-coupled regulation of pre-mRNA splicing is an important aspect of the plant's response to environmental changes.
Collapse
Affiliation(s)
- Chien-Chang Wang
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Nat Commun 2021; 12:1443. [PMID: 33664260 PMCID: PMC7933334 DOI: 10.1038/s41467-021-21663-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery. The methylation of Histone 3 at Lysine 36 (H3K36) has been implicated in the regulation of transcription and coupled processes such as mRNA splicing. Here the authors show that the histone methyltransferase SETD2 interacts with hnRNP L to mediate the crosstalk between the transcription and splicing machineries.
Collapse
|
41
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
42
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
43
|
Liu W, Wang C, Wang S, Zeng K, Wei S, Sun N, Sun G, Wang M, Zou R, Liu W, Lin L, Song H, Jin Z, Zhao Y. PRPF6 promotes androgen receptor/androgen receptor-variant 7 actions in castration-resistant prostate cancer cells. Int J Biol Sci 2021; 17:188-203. [PMID: 33390843 PMCID: PMC7757026 DOI: 10.7150/ijbs.50810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Chunyu Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Shengli Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Kai Zeng
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Shan Wei
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Ning Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Ge Sun
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Manlin Wang
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Renlong Zou
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Wensu Liu
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Lin Lin
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Huijuan Song
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
| | - Zining Jin
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang City 110001, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key laboratory of Cell Biology, Ministry of Public Health, and Key laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province110122, China
- Department of Molecular Oncology, Liao Ning Tumor Hospital, Shenyang, Liaoning 110042, China
| |
Collapse
|
44
|
Reim NI, Chuang J, Jain D, Alver BH, Park PJ, Winston F. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae. Nucleic Acids Res 2020; 48:10241-10258. [PMID: 32941642 PMCID: PMC7544207 DOI: 10.1093/nar/gkaa745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Spn1/Iws1 is a conserved protein involved in transcription and chromatin dynamics, yet its general in vivo requirement for these functions is unknown. Using a Spn1 depletion system in Saccharomyces cerevisiae, we demonstrate that Spn1 broadly influences several aspects of gene expression on a genome-wide scale. We show that Spn1 is globally required for normal mRNA levels and for normal splicing of ribosomal protein transcripts. Furthermore, Spn1 maintains the localization of H3K36 and H3K4 methylation across the genome and is required for normal histone levels at highly expressed genes. Finally, we show that the association of Spn1 with the transcription machinery is strongly dependent on its binding partner, Spt6, while the association of Spt6 and Set2 with transcribed regions is partially dependent on Spn1. Taken together, our results show that Spn1 affects multiple aspects of gene expression and provide additional evidence that it functions as a histone chaperone in vivo.
Collapse
Affiliation(s)
- Natalia I Reim
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Chuang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak H Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Song H, Sun N, Lin L, Wei S, Zeng K, Liu W, Wang C, Zhong X, Wang M, Wang S, Zhou B, Lv C, Liu W, Zhao Y. Splicing factor PRPF6 upregulates oncogenic androgen receptor signaling pathway in hepatocellular carcinoma. Cancer Sci 2020; 111:3665-3678. [PMID: 32745318 PMCID: PMC7540998 DOI: 10.1111/cas.14595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Androgen receptor (AR) signaling is considered to be crucial for the pathogenesis of hepatocellular carcinoma (HCC) with obvious sexual dimorphism. Pre‐mRNA processing factor 6 (PRPF6) was identified as a coactivator of AR. However, the molecular mechanism underlying the modulation function of PRPF6 on AR‐mediated transcriptional activity in HCC needs to be further clarified. In this study, we analyzed data from The Cancer Genome Atlas to show that PRPF6 is highly expressed in HCC. . Our data indicated that PRPF6 interacts with AR/AR splice variants (AR‐Vs) and upregulates AR/AR splice variant 7‐mediated transcriptional activity even without dihydrotestosterone treatment. We observed that AR is obviously induced by androgen treatment and is mainly expressed in the nucleus in HCC‐derived cell lines. Moreover, overexpression of PRPF6 enhances AR expression accompanied with the increase of AR‐Vs expression. We provided evidence that PRPF6 participates in upregulating AR self‐transcription. PRPF6 facilitates the recruitment of AR to the androgen responsive element region of the AR gene. Finally, PRPF6 depletion inhibits cell proliferation in HCC cells and mouse xenografts. Taken together, our results suggest that PRPF6 as a splicing factor enhances AR self‐transcription, thereby coactivating oncogenic AR/AR‐Vs actions in HCC.
Collapse
Affiliation(s)
- Huijuan Song
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Ning Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Shan Wei
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Wei Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Xinping Zhong
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Chi Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Wensu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang City, China
| |
Collapse
|
47
|
Martelli M, Monaldi C, De Santis S, Bruno S, Mancini M, Cavo M, Soverini S. Recent Advances in the Molecular Biology of Systemic Mastocytosis: Implications for Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2020; 21:E3987. [PMID: 32498255 PMCID: PMC7312790 DOI: 10.3390/ijms21113987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, molecular characterization and management of patients with systemic mastocytosis (SM) have greatly benefited from the application of advanced technologies. Highly sensitive and accurate assays for KIT D816V mutation detection and quantification have allowed the switch to non-invasive peripheral blood testing for patient screening; allele burden has prognostic implications and may be used to monitor therapeutic efficacy. Progress in genetic profiling of KIT, together with the use of next-generation sequencing panels for the characterization of associated gene mutations, have allowed the stratification of patients into three subgroups differing in terms of pathogenesis and prognosis: i) patients with mast cell-restricted KIT D816V; ii) patients with multilineage KIT D816V-involvement; iii) patients with "multi-mutated disease". Thanks to these findings, new prognostic scoring systems combining clinical and molecular data have been developed. Finally, non-genetic SETD2 histone methyltransferase loss of function has recently been identified in advanced SM. Assessment of SETD2 protein levels and activity might provide prognostic information and has opened new research avenues exploring alternative targeted therapeutic strategies. This review discusses how progress in recent years has rapidly complemented previous knowledge improving the molecular characterization of SM, and how this has the potential to impact on patient diagnosis and management.
Collapse
Affiliation(s)
- Margherita Martelli
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology/Oncology “L. e A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (C.M.); (S.D.S.); (S.B.); (M.M.); (M.C.); (S.S.)
| | | | | | | | | | | | | |
Collapse
|
48
|
Bressin RK, Osman S, Pohorilets I, Basu U, Koide K. Total Synthesis of Meayamycin B. J Org Chem 2020; 85:4637-4647. [DOI: 10.1021/acs.joc.9b03370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert K. Bressin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sami Osman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Upamanyu Basu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
49
|
SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis 2020; 11:69. [PMID: 31988284 PMCID: PMC6985262 DOI: 10.1038/s41419-020-2266-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5–ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.
Collapse
|
50
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|