1
|
Moussa HYA, Shin KC, Park Y. Ca 2+/calmodulin and protein kinase C (PKC) reverse the vesicle fusion arrest by unmasking PIP 2. SCIENCE ADVANCES 2025; 11:eadr9859. [PMID: 40009675 PMCID: PMC11864169 DOI: 10.1126/sciadv.adr9859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Vesicle fusion is a key process in cellular communication and membrane trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins drive vesicle fusion, and SNARE proteins seem to be partially assembled before fusion occurs. However, the molecular mechanisms of the vesicle fusion arrest and how vesicle fusion is rescued from the arrest remain not fully understood. We have previously shown that as a lipid catalyst, phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion by lowering the hydration energy, and masking PIP2 arrests vesicle fusion in a state of the partial SNARE assembly. In this study, we show that calmodulin and protein kinase C-epsilon unmask PIP2 through the dissociation of myristoylated alanine-rich C-kinase substrate from membranes and, thus, rescue basal fusion and potentiate synaptotagmin-1-mediated Ca2+-dependent vesicle fusion. We provide the model in which the arrest of vesicle fusion can be rescued by the unmasking of PIP2, a lipid catalyst for fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
2
|
Park Y. Fluorescence Anisotropy for Monitoring cis- and trans-Membrane Interactions of Synaptotagmin-1. Methods Mol Biol 2025; 2887:175-182. [PMID: 39806154 DOI: 10.1007/978-1-0716-4314-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Vesicle fusion induces neurotransmitter release, orchestrated by synaptotagmin-1 (Syt-1) as a Ca2+ sensor. However, the precise molecular mechanisms of Syt-1 remain controversial, with various and competing models proposed based on different ionic strengths. Syt-1, residing on the vesicle membrane alongside anionic phospholipids such as phosphatidylserine (PS), undergoes Ca2+-induced binding to its own vesicle membrane, known as the cis-interaction, which prevents the trans-interaction of Syt-1 with the plasma membrane. Fluorescence anisotropy offers a methodological advantage for studying protein-membrane interactions. This protocol outlines a method utilizing fluorescence anisotropy to monitor the cis- and trans-membrane interactions of Syt-1, employing both purified native vesicles and plasma membrane-mimicking liposomes (PM-liposomes).
Collapse
Affiliation(s)
- Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
3
|
Ali Moussa HY, Shin KC, Ponraj J, Park SH, Lee OS, Mansour S, Park Y. PIP 2 Is An Electrostatic Catalyst for Vesicle Fusion by Lowering the Hydration Energy: Arresting Vesicle Fusion by Masking PIP 2. ACS NANO 2024; 18:12737-12748. [PMID: 38717305 DOI: 10.1021/acsnano.3c09614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Janarthanan Ponraj
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Košice SK-04001, Slovakia
| | - Said Mansour
- HBKU Core Laboratories, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Beaven AH, Bikkumalla V, Chon NL, Matthews AE, Lin H, Knight JD, Sodt AJ. Synaptotagmin 7 C2 domains induce membrane curvature stress via electrostatic interactions and the wedge mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575084. [PMID: 38313280 PMCID: PMC10837831 DOI: 10.1101/2024.01.10.575084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Synaptotagmin 7 (Syt-7) is part of the synaptotagmin protein family that regulates exocytotic lipid membrane fusion. Among the family, Syt-7 stands out by its membrane binding strength and stabilization of long-lived membrane fusion pores. Given that Syt-7 vesicles form long-lived fusion pores, we hypothesize that its interactions with the membrane stabilize the specific curvatures, thicknesses, and lipid compositions that support a metastable fusion pore. Using all-atom molecular dynamics simulations and FRET-based assays of Syt-7's membrane-binding C2 domains (C2A and C2B), we found that Syt-7 C2 domains sequester anionic lipids, are sensitive to cholesterol, thin membranes, and generate lipid membrane curvature by two competing, but related mechanisms. First, Syt-7 forms strong electrostatic contacts with the membrane, generating negative curvature stress. Second, Syt-7's calcium binding loops embed in the membrane surface, acting as a wedge to thin the membrane and induce positive curvature stress. These curvature mechanisms are linked by the protein insertion depth as well as the resulting protein tilt. Simplified quantitative models of the curvature-generating mechanisms link simulation observables to their membrane-reshaping effectiveness.
Collapse
Affiliation(s)
- Andrew H. Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD
| | | | - Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO
| | | | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Ali Moussa HY, Shin KC, Ponraj J, Kim SJ, Ryu J, Mansour S, Park Y. Requirement of Cholesterol for Calcium-Dependent Vesicle Fusion by Strengthening Synaptotagmin-1-Induced Membrane Bending. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206823. [PMID: 37058136 PMCID: PMC10214243 DOI: 10.1002/advs.202206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Indexed: 05/27/2023]
Abstract
Cholesterol is essential for neuronal activity and function. Cholesterol depletion in the plasma membrane impairs synaptic transmission. However, the molecular mechanisms by which cholesterol deficiency leads to defects in vesicle fusion remain poorly understood. Here, it is shown that cholesterol is required for Ca2+ -dependent native vesicle fusion using the in vitro reconstitution of fusion and amperometry to monitor exocytosis in chromaffin cells. Purified native vesicles are crucial for the reconstitution of physiological Ca2+ -dependent fusion, because vesicle-mimicking liposomes fail to reproduce the cholesterol effect. Intriguingly, cholesterol has no effect on the membrane binding of synaptotagmin-1, a Ca2+ sensor for ultrafast fusion. Cholesterol strengthens local membrane deformation and bending induced by synaptotagmin-1, thereby lowering the energy barrier for Ca2+ -dependent fusion to occur. The data provide evidence that cholesterol depletion abolishes Ca2+ -dependent vesicle fusion by disrupting synaptotagmin-1-induced membrane bending, and suggests that cholesterol is an essential lipid regulator for Ca2+ -dependent fusion.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | - Kyung Chul Shin
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| | | | - Soo Jin Kim
- Division of Molecular and Life SciencesPohang University of Science and TechnologyPohang790‐784Republic of Korea
| | - Je‐Kyung Ryu
- Department of Physics & AstronomySeoul National University. 1 Gwanak‐roGwanak‐guSeoul08826South Korea
| | - Said Mansour
- HBKU Core LabsHamad Bin Khalifa University (HBKU)DohaQatar
| | - Yongsoo Park
- Neurological Disorders Research CenterQatar Biomedical Research Institute (QBRI)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
- College of Health & Life Sciences (CHLS)Hamad Bin Khalifa University (HBKU)Qatar FoundationDohaQatar
| |
Collapse
|
7
|
Ali Moussa HY, Park Y. Electrostatic regulation of the cis- and trans-membrane interactions of synaptotagmin-1. Sci Rep 2022; 12:22407. [PMID: 36575295 PMCID: PMC9794720 DOI: 10.1038/s41598-022-26723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Synaptotagmin-1 is a vesicular protein and Ca2+ sensor for Ca2+-dependent exocytosis. Ca2+ induces synaptotagmin-1 binding to its own vesicle membrane, called the cis-interaction, thus preventing the trans-interaction of synaptotagmin-1 to the plasma membrane. However, the electrostatic regulation of the cis- and trans-membrane interaction of synaptotagmin-1 was poorly understood in different Ca2+-buffering conditions. Here we provide an assay to monitor the cis- and trans-membrane interactions of synaptotagmin-1 by using native purified vesicles and the plasma membrane-mimicking liposomes (PM-liposomes). Both ATP and EGTA similarly reverse the cis-membrane interaction of synaptotagmin-1 in free [Ca2+] of 10-100 μM. High PIP2 concentrations in the PM-liposomes reduce the Hill coefficient of vesicle fusion and synaptotagmin-1 membrane binding; this observation suggests that local PIP2 concentrations control the Ca2+-cooperativity of synaptotagmin-1. Our data provide evidence that Ca2+ chelators, including EGTA and polyphosphate anions such as ATP, ADP, and AMP, electrostatically reverse the cis-interaction of synaptotagmin-1.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- grid.418818.c0000 0001 0516 2170Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- grid.418818.c0000 0001 0516 2170Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar ,grid.418818.c0000 0001 0516 2170College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
8
|
Zhu J, McDargh ZA, Li F, Krishnakumar SS, Rothman JE, O’Shaughnessy B. Synaptotagmin rings as high-sensitivity regulators of synaptic vesicle docking and fusion. Proc Natl Acad Sci U S A 2022; 119:e2208337119. [PMID: 36103579 PMCID: PMC9499556 DOI: 10.1073/pnas.2208337119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A. McDargh
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Feng Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | | | - James E. Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
9
|
Munc13 structural transitions and oligomers that may choreograph successive stages in vesicle priming for neurotransmitter release. Proc Natl Acad Sci U S A 2022; 119:2121259119. [PMID: 35135883 PMCID: PMC8851502 DOI: 10.1073/pnas.2121259119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The speed of neural information processing in the human central nervous system is ultimately determined by the speed of chemical transmission at synapses, because action potentials have relatively short distances to traverse. The release of synaptic vesicles containing neurotransmitters must therefore be remarkably fast as compared to other forms of membrane fusion. Six separate SNARE complexes cooperate to achieve this. But how can exactly six copies be assembled under every vesicle? Here we report that six copies of the key molecular chaperone that assembles the SNAREs can arrange themselves into a closed hexagon, providing the likely answer. How can exactly six SNARE complexes be assembled under each synaptic vesicle? Here we report cryo-EM crystal structures of the core domain of Munc13, the key chaperone that initiates SNAREpin assembly. The functional core of Munc13, consisting of C1–C2B–MUN–C2C (Munc13C) spontaneously crystallizes between phosphatidylserine-rich bilayers in two distinct conformations, each in a radically different oligomeric state. In the open conformation (state 1), Munc13C forms upright trimers that link the two bilayers, separating them by ∼21 nm. In the closed conformation, six copies of Munc13C interact to form a lateral hexamer elevated ∼14 nm above the bilayer. Open and closed conformations differ only by a rigid body rotation around a flexible hinge, which when performed cooperatively assembles Munc13 into a lateral hexamer (state 2) in which the key SNARE assembly-activating site of Munc13 is autoinhibited by its neighbor. We propose that each Munc13 in the lateral hexamer ultimately assembles a single SNAREpin, explaining how only and exactly six SNARE complexes are templated. We suggest that state 1 and state 2 may represent two successive states in the synaptic vesicle supply chain leading to “primed” ready-release vesicles in which SNAREpins are clamped and ready to release (state 3).
Collapse
|
10
|
Dietz J, Oelkers M, Hubrich R, Pérez-Lara A, Jahn R, Steinem C, Janshoff A. Forces, Kinetics, and Fusion Efficiency Altered by the Full-Length Synaptotagmin-1 -PI(4,5)P 2 Interaction in Constrained Geometries. NANO LETTERS 2022; 22:1449-1455. [PMID: 34855407 DOI: 10.1021/acs.nanolett.1c02491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A mechanism for full-length synaptotagmin-1 (syt-1) to interact with anionic bilayers and to promote fusion in the presence of SNAREs is proposed. Colloidal probe force spectroscopy in conjunction with tethered particle motion monitoring showed that in the absence of Ca2+ the binding of syt-1 to membranes depends on the presence and content of PI(4,5)P2. Addition of Ca2+ switches the interaction forces from weak to strong, eventually exceeding the cohesion of the C2A domain of syt-1 leading to partial unfolding of the protein. Fusion of single unilamellar vesicles equipped with syt-1 and synaptobrevin 2 with planar pore-spanning target membranes containing PS and PI(4,5)P2 shows an almost complete suppression of stalled intermediate fusion states and an accelerated fusion kinetics in the presence of Ca2+, which is further enhanced upon addition of ATP.
Collapse
Affiliation(s)
- Joern Dietz
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| | - Marieelen Oelkers
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| | - Raphael Hubrich
- Institute for Organic and Biomolecular Chemistry, Georg-August Universität, Tammannstr. 2, 37077 Göttingen, Germany
| | - Angel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faβberg 11, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, Georg-August Universität, Tammannstr. 2, 37077 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Georg-August Universität, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Abstract
Synaptic vesicles (SVs) store neurotransmitters and undergo a fine-tuned regulatory and dynamic cycle of exo- and endocytosis, which is essential for neurotransmission at chemical synapses. The development of protocols for isolating SVs from biological extracts was a fundamental accomplishment since it allowed for characterizing the molecular properties of SVs using biochemical methods. In this chapter, we describe a modified procedure for isolating SVs from a few g of rodent brain and that can be completed within ~12 h. The protocol involves the preparation of isolated nerve terminals from which SVs are released by osmotic shock and then enriched via various centrifugation steps, followed by size exclusion chromatography as final purification step. The final vesicle fraction is 22-fold enriched in SVs over the starting material, and the final yield of SVs obtained using this protocol is approximately 20 μg of protein per gram of mouse brain. The degree of contamination by other organelles and particles monitored by morphology and immunolabeling compares well with that of the classical protocols.
Collapse
Affiliation(s)
- Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Momchil Ninov
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Georg-August University, Göttingen, Germany
| |
Collapse
|
12
|
Mühlenbrock P, Sari M, Steinem C. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:239-252. [PMID: 33320298 PMCID: PMC8071798 DOI: 10.1007/s00249-020-01479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Collapse
Affiliation(s)
- Peter Mühlenbrock
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Merve Sari
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
13
|
Synaptotagmin-1 membrane binding is driven by the C2B domain and assisted cooperatively by the C2A domain. Sci Rep 2020; 10:18011. [PMID: 33093513 PMCID: PMC7581758 DOI: 10.1038/s41598-020-74923-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
Synaptotagmin interaction with anionic lipid (phosphatidylserine/phosphatidylinositol) containing membranes, both in the absence and presence of calcium ions (Ca2+), is critical to its central role in orchestrating neurotransmitter release. The molecular surfaces involved, namely the conserved polylysine motif in the C2B domain and Ca2+-binding aliphatic loops on both C2A and C2B domains, are known. Here we use surface force apparatus combined with systematic mutational analysis of the functional surfaces to directly measure Syt1-membrane interaction and fully map the site-binding energetics of Syt1 both in the absence and presence of Ca2+. By correlating energetics data with the molecular rearrangements measured during confinement, we find that both C2 domains cooperate in membrane binding, with the C2B domain functioning as the main energetic driver, and the C2A domain acting as a facilitator.
Collapse
|
14
|
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. eLife 2020; 9:54506. [PMID: 32401194 PMCID: PMC7220375 DOI: 10.7554/elife.54506] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca2+)-evoked release of neurotransmitters from synaptic vesicles requires mechanisms both to prevent un-initiated fusion of vesicles (clamping) and to trigger fusion following Ca2+-influx. The principal components involved in these processes are the vesicular fusion machinery (SNARE proteins) and the regulatory proteins, Synaptotagmin-1 and Complexin. Here, we use a reconstituted single-vesicle fusion assay under physiologically-relevant conditions to delineate a novel mechanism by which Synaptotagmin-1 and Complexin act synergistically to establish Ca2+-regulated fusion. We find that under each vesicle, Synaptotagmin-1 oligomers bind and clamp a limited number of 'central' SNARE complexes via the primary interface and introduce a kinetic delay in vesicle fusion mediated by the excess of free SNAREpins. This in turn enables Complexin to arrest the remaining free 'peripheral' SNAREpins to produce a stably clamped vesicle. Activation of the central SNAREpins associated with Synaptotagmin-1 by Ca2+ is sufficient to trigger rapid (<100 msec) and synchronous fusion of the docked vesicles.
Collapse
Affiliation(s)
- Sathish Ramakrishnan
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Manindra Bera
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Birinci Y, Preobraschenski J, Ganzella M, Jahn R, Park Y. Isolation of large dense-core vesicles from bovine adrenal medulla for functional studies. Sci Rep 2020; 10:7540. [PMID: 32371955 PMCID: PMC7200684 DOI: 10.1038/s41598-020-64486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Large dense-core vesicles (LDCVs) contain a variety of neurotransmitters, proteins, and hormones such as biogenic amines and peptides, together with microRNAs (miRNAs). Isolation of LDCVs is essential for functional studies including vesicle fusion, vesicle acidification, monoamine transport, and the miRNAs stored in LDCVs. Although several methods were reported for purifying LDCVs, the final fractions are significantly contaminated by other organelles, compromising biochemical characterization. Here we isolated LDCVs (chromaffin granules) with high yield and purity from bovine adrenal medulla. The fractionation protocol combines differential and continuous sucrose gradient centrifugation, allowing for reducing major contaminants such as mitochondria. Purified LDCVs show robust acidification by the endogenous V-ATPase and undergo SNARE-mediated fusion with artificial membranes. Interestingly, LDCVs contain specific miRNAs such as miR-375 and miR-375 is stabilized by protein complex against RNase A. This protocol can be useful in research on the biological functions of LDCVs.
Collapse
Affiliation(s)
- Yelda Birinci
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey
| | - Julia Preobraschenski
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, 34450, Turkey. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar.
| |
Collapse
|
16
|
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat Commun 2019; 10:3904. [PMID: 31467284 PMCID: PMC6715626 DOI: 10.1038/s41467-019-11873-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.
Collapse
|
17
|
Nyenhuis SB, Thapa A, Cafiso DS. Phosphatidylinositol 4,5 Bisphosphate Controls the cis and trans Interactions of Synaptotagmin 1. Biophys J 2019; 117:247-257. [PMID: 31301806 DOI: 10.1016/j.bpj.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin 1 acts as the Ca2+ sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here, we describe measurements on full-length membrane-reconstituted synaptotagmin 1 using site-directed spin labeling in which we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate, even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+ binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS-containing bilayers and will bind in a cis configuration to membranes containing PS even if a phosphatidylinositol 4,5 bisphosphate membrane is presented in trans. The data are consistent with a bridging activity for synaptotagmin 1 in which the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
18
|
Grushin K, Wang J, Coleman J, Rothman JE, Sindelar CV, Krishnakumar SS. Structural basis for the clamping and Ca 2+ activation of SNARE-mediated fusion by synaptotagmin. Nat Commun 2019; 10:2413. [PMID: 31160571 PMCID: PMC6546687 DOI: 10.1038/s41467-019-10391-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the 'primary' interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1-SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.
Collapse
Affiliation(s)
- Kirill Grushin
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jing Wang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queens Square House, London, WC1 3BG, UK.
| |
Collapse
|
19
|
Abstract
Ca2+-dependent secretion is a process by which important signaling molecules that are produced within a cell-including proteins and neurotransmitters-are expelled to the extracellular environment. The cellular mechanism that underlies secretion is referred to as exocytosis. Many years of work have revealed that exocytosis in neurons and neuroendocrine cells is tightly coupled to Ca2+ and orchestrated by a series of protein-protein/protein-lipid interactions. Here, we highlight landmark discoveries that have informed our current understanding of the process. We focus principally on reductionist studies performed using powerful model secretory systems and cell-free reconstitution assays. In recent years, molecular cloning and genetics have implicated the involvement of a sizeable number of proteins in exocytosis. We expect reductionist approaches will be central to attempts to resolve their roles. The Journal of General Physiology will continue to be an outlet for much of this work, befitting its tradition of publishing strongly mechanistic, basic research.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
20
|
Hubrich R, Park Y, Mey I, Jahn R, Steinem C. SNARE-Mediated Fusion of Single Chromaffin Granules with Pore-Spanning Membranes. Biophys J 2018; 116:308-318. [PMID: 30598283 DOI: 10.1016/j.bpj.2018.11.3138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pore-spanning membranes (PSMs) composed of supported membrane parts as well as freestanding membrane parts are shown to be very versatile to investigate SNARE-mediated fusion on the single-particle level. They provide a planar geometry readily accessible by confocal fluorescence microscopy, which enabled us for the first time, to our knowledge, to investigate the fusion of individual natural secretory granules (i.e., chromaffin granules (CGs)) on the single-particle level by two-color fluorescence microscopy in a time-resolved manner. The t-SNARE acceptor complex ΔN49 was reconstituted into PSMs containing 2 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-bisphosphate and Atto488-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and CGs were fluorescently labeled with 2-((1E,3E)-5-((Z)-3,3-dimethyl-1-octadecylindolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-octadecyl-3H-indol-1-ium perchlorate. We compared the dynamics of docked and hemifused CGs as well as their fusion efficacy and kinetics with the results obtained for synthetic synaptobrevin 2-doped vesicles fusing with PSMs of the same composition. Whereas the synthetic vesicles were fully immobile on supported PSMs, docked as well as hemifused CGs were mobile on both PSM parts, which suggests that this system resembles more closely the natural situation. The fusion process of CGs proceeded through three-dimensional post-lipid-mixing structures, which were readily resolved on the gold-covered pore rims of the PSMs and which are discussed in the context of intermediate states observed in live cells.
Collapse
Affiliation(s)
- Raphael Hubrich
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Yongsoo Park
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany; Department of Molecular Biology and Genetics, Koc University, Sarıyer, Istanbul, Turkey
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Reinhard Jahn
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
21
|
Synergistic control of neurotransmitter release by different members of the synaptotagmin family. Curr Opin Neurobiol 2018; 51:154-162. [DOI: 10.1016/j.conb.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
|
22
|
Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca 2+ -dependent vesicle fusion. FEBS Lett 2018; 592:3480-3492. [PMID: 30004579 DOI: 10.1002/1873-3468.13193] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+ -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, The Netherlands
| |
Collapse
|
23
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
24
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
Gruget C, Coleman J, Bello O, Krishnakumar SS, Perez E, Rothman JE, Pincet F, Donaldson SH. Rearrangements under confinement lead to increased binding energy of Synaptotagmin‐1 with anionic membranes in Mg
2+
and Ca
2+. FEBS Lett 2018; 592:1497-1506. [DOI: 10.1002/1873-3468.13040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Clémence Gruget
- Laboratoire de Physique Statistique Ecole Normale Supérieure PSL Research University Paris France
| | - Jeff Coleman
- Department of Cell Biology Yale University School of Medicine New Haven CT USA
| | - Oscar Bello
- Department of Clinical and Experimental Epilepsy Institute of Neurology University College London UK
| | - Shyam S. Krishnakumar
- Department of Cell Biology Yale University School of Medicine New Haven CT USA
- Department of Clinical and Experimental Epilepsy Institute of Neurology University College London UK
| | - Eric Perez
- Laboratoire de Physique Statistique Ecole Normale Supérieure PSL Research University Paris France
| | - James E. Rothman
- Department of Cell Biology Yale University School of Medicine New Haven CT USA
- Department of Clinical and Experimental Epilepsy Institute of Neurology University College London UK
| | - Frederic Pincet
- Laboratoire de Physique Statistique Ecole Normale Supérieure PSL Research University Paris France
- Department of Cell Biology Yale University School of Medicine New Haven CT USA
| | - Stephen H. Donaldson
- Département de Physique Ecole Normale Supérieure PSL Research University, CNRS Paris France
| |
Collapse
|
26
|
Satnav for cells: Destination membrane fusion. Cell Calcium 2017; 68:14-23. [PMID: 29129204 DOI: 10.1016/j.ceca.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 11/23/2022]
|
27
|
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P 2 and PI(4,5)P 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12463-12477. [PMID: 28961003 DOI: 10.1021/acs.langmuir.7b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P2 and PI(3,5)P2. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca2+-induced PI(4,5)P2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P2. Clustering of PI(4,5)P2 is also detected at physiological concentrations of Mg2+, suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P2 and PI(3,5)P2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.
Collapse
Affiliation(s)
- Maria J Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- J. Heyrovský Inst. Physical Chemistry of the A.S.C.R. v.v.i. , 182 23 Prague, Czech Republic
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- Departamento de Química e Bioquímica, FCUL, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
28
|
Wang J, Li F, Bello OD, Sindelar CV, Pincet F, Krishnakumar SS, Rothman JE. Circular oligomerization is an intrinsic property of synaptotagmin. eLife 2017; 6. [PMID: 28850328 PMCID: PMC5576491 DOI: 10.7554/elife.27441] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that synaptotagmin1 (Syt1) forms Ca2+-sensitive ring-like oligomers on membranes containing acidic lipids and proposed a potential role in regulating neurotransmitter release (Zanetti et al., 2016). Here, we report that Syt1 assembles into similar ring-like oligomers in solution when triggered by naturally occurring polyphosphates (PIP2 and ATP) and magnesium ions (Mg2+). These soluble Syt1 rings were observed by electron microscopy and independently demonstrated and quantified using fluorescence correlation spectroscopy. Oligomerization is triggered when polyphosphates bind to the polylysine patch in C2B domain and is stabilized by Mg2+, which neutralizes the Ca2+-binding aspartic acids that likely contribute to the C2B interface in the oligomer. Overall, our data show that ring-like polymerization is an intrinsic property of Syt1 with reasonable affinity that can be triggered by the vesicle docking C2B-PIP2 interaction and raise the possibility that Syt1 rings could pre-form on the synaptic vesicle to facilitate docking.
Collapse
Affiliation(s)
- Jing Wang
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Feng Li
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Oscar D Bello
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Charles Vaughn Sindelar
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, United States
| | - Frédéric Pincet
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States.,Laboratoire de Physique Statistique, UMR CNRS 8550 Associée aux Universités Paris 6 et Paris 7, Paris, France
| | - Shyam S Krishnakumar
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - James E Rothman
- Departments of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
Regulated exocytosis can be split into a sequence of steps ending with the formation and the dilation of a fusion pore, a neck-like connection between the vesicle and the plasma membrane. Each of these steps is precisely controlled to achieve the optimal spatial and temporal profile of the release of signalling molecules. At the level of the fusion pore, tuning of the exocytosis can be achieved by preventing its formation, by stabilizing the unproductive narrow fusion pore, by altering the speed of fusion pore expansion and by completely closing the fusion pore. The molecular structure and dynamics of fusion pores have become a major focus of cell research, especially as a promising target for therapeutic strategies. Electrophysiological, optical and electrochemical methods have been used extensively to illuminate how cells regulate secretion at the level of a single fusion pore. Here, we describe recent advances in the structure and mechanisms of the initial fusion pore formation and the progress in therapeutic strategies with the focus on exocytosis.
Collapse
|
30
|
Kreutzberger AJB, Kiessling V, Liang B, Seelheim P, Jakhanwal S, Jahn R, Castle JD, Tamm LK. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. SCIENCE ADVANCES 2017; 3:e1603208. [PMID: 28776026 PMCID: PMC5517108 DOI: 10.1126/sciadv.1603208] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.
Collapse
Affiliation(s)
- Alex J. B. Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Patrick Seelheim
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - J. David Castle
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Corresponding author.
| |
Collapse
|
31
|
Xia Z, Wang F, Zhou S, Zhang R, Wang F, Huang JH, Wu E, Zhang Y, Hu Y. Catalpol protects synaptic proteins from beta-amyloid induced neuron injury and improves cognitive functions in aged rats. Oncotarget 2017; 8:69303-69315. [PMID: 29050205 PMCID: PMC5642480 DOI: 10.18632/oncotarget.17951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Synapse loss is one of the common factors contributing to cognitive disorders, such as Alzheimer’s disease (AD), which is manifested by the impairment of basic cognitive functions including memory processing, perception, problem solving, and language. The current therapies for patients with cognitive disorders are mainly palliative; thus, regimens preventing and/or delaying dementia progression are urgently needed. In this study, we evaluated the effects of catalpol, isolated from traditional Chinese medicine Rehmannia glutinosa, on synaptic plasticity in aged rat models. We found that catalpol markedly improved the cognitive function of aged male Sprague-Dawley rats and simultaneously increased the expression of synaptic proteins (dynamin 1, PSD-95, and synaptophysin) in the cerebral cortex and hippocampus, respectively. In beta-amyloid (Aβ) injured primary rat’s cortical neuron, catalpol did not increase the viability of neuron but extended the length of microtubule-associated protein 2 (MAP-2) positive neurites and reversed the suppressive effects on expression of synaptic proteins induced by Aβ. Additionally, the effects of catalpol on stimulating the growth of MAP-2 positive neurites and the expression of synaptic proteins were diminished by a PKC inhibitor, bisindolylmaleimide I, suggesting that PKC may be implicated in catalpol’s function of preventing the neurodegeneration induced by Aβ. Altogether, our study indicates that catalpol could be a potential disease-modifying drug for cognitive disorders such as AD.
Collapse
Affiliation(s)
- Zhiming Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.,Current address: Department of Nuclear Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Neurology, Baylor Scott & White Health, Temple, Texas 78508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA
| | - Rui Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA.,Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, Texas 77843, USA
| | - Yongfang Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yaer Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
32
|
Witkowska A, Jahn R. Rapid SNARE-Mediated Fusion of Liposomes and Chromaffin Granules with Giant Unilamellar Vesicles. Biophys J 2017; 113:1251-1259. [PMID: 28400045 PMCID: PMC5607038 DOI: 10.1016/j.bpj.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/03/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins are the main catalysts for membrane fusion in the secretory pathway of eukaryotic cells. In vitro, SNAREs are sufficient to mediate effective fusion of both native and artificial membranes. Here we have established, to our knowledge, a new platform for monitoring SNARE-mediated docking and fusion between giant unilamellar vesicles (GUVs) and smaller liposomes or purified secretory granules with high temporal and spatial resolution. Analysis of fusion is restricted to the free-standing part of the GUV-membrane exhibiting low curvature and a lack of surface contact, thus avoiding adhesion-mediated interference with the fusion reaction as in fusion with supported bilayers or surface-immobilized small vesicles. Our results show that liposomes and chromaffin granules fuse with GUVs containing activated SNAREs with only few milliseconds delay between docking and fusion. We conclude that after initial contact in trans, SNAREs alone can complete fusion at a rate close to fast neuronal exocytosis.
Collapse
Affiliation(s)
- Agata Witkowska
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; International Max Planck Research School for Molecular Biology at the University of Göttingen, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
33
|
MicroRNA exocytosis by large dense-core vesicle fusion. Sci Rep 2017; 7:45661. [PMID: 28358390 PMCID: PMC5372467 DOI: 10.1038/srep45661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Neurotransmitters and peptide hormones are secreted into outside the cell by a vesicle fusion process. Although non-coding RNA (ncRNA) that include microRNA (miRNA) regulates gene expression inside the cell where they are transcribed, extracellular miRNA has been recently discovered outside the cells, proposing that miRNA might be released to participate in cell-to-cell communication. Despite its importance of extracellular miRNA, the molecular mechanisms by which miRNA can be stored in vesicles and released by vesicle fusion remain enigmatic. Using next-generation sequencing, vesicle purification techniques, and synthetic neurotransmission, we observe that large dense-core vesicles (LDCVs) contain a variety of miRNAs including miR-375. Furthermore, miRNA exocytosis is mediated by the SNARE complex and accelerated by Ca2+. Our results suggest that miRNA can be a novel neuromodulator that can be stored in vesicles and released by vesicle fusion together with classical neurotransmitters.
Collapse
|
34
|
Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. J Neurosci 2017; 37:1888-1899. [PMID: 28093477 DOI: 10.1523/jneurosci.2712-16.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
The relative contributions of glycolysis and oxidative phosphorylation to neuronal presynaptic energy demands are unclear. In rat hippocampal neurons, ATP production by either glycolysis or oxidative phosphorylation alone sustained basal evoked synaptic transmission for up to 20 min. However, combined inhibition of both ATP sources abolished evoked transmission. Neither action potential propagation failure nor depressed Ca2+ influx explained loss of evoked synaptic transmission. Rather, inhibition of ATP synthesis caused massive spontaneous vesicle exocytosis, followed by arrested endocytosis, accounting for the disappearance of evoked postsynaptic currents. In contrast to its weak effects on basal transmission, inhibition of oxidative phosphorylation alone depressed recovery from vesicle depletion. Local astrocytic lactate shuttling was not required. Instead, either ambient monocarboxylates or neuronal glycolysis was sufficient to supply requisite substrate. In summary, basal transmission can be sustained by glycolysis, but strong presynaptic demands are met preferentially by oxidative phosphorylation, which can be maintained by bulk but not local monocarboxylates or by neuronal glycolysis.SIGNIFICANCE STATEMENT Neuronal energy levels are critical for proper CNS function, but the relative roles for the two main sources of ATP production, glycolysis and oxidative phosphorylation, in fueling presynaptic function in unclear. Either glycolysis or oxidative phosphorylation can fuel low-frequency synaptic function and inhibiting both underlies loss of synaptic transmission via massive vesicle release and subsequent failure to endocytose lost vesicles. Oxidative phosphorylation, fueled by either glycolysis or endogenously released monocarboxylates, can fuel more metabolically demanding tasks such as vesicle recovery after depletion. Our work demonstrates the flexible nature of fueling presynaptic function to maintain synaptic function.
Collapse
|
35
|
Park Y. MicroRNA Exocytosis by Vesicle Fusion in Neuroendocrine Cells. Front Endocrinol (Lausanne) 2017; 8:355. [PMID: 29312145 PMCID: PMC5743741 DOI: 10.3389/fendo.2017.00355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that posttranscriptionally regulate gene expression inside the cell. Extracellular circulating miRNAs are also observed outside the cell, but their origin is poorly understood. Recently, miRNA has been shown to be exocytosed by vesicle fusion; this observation demonstrates that vesicle-free miRNAs are secreted from neuroendocrine cells, in a manner similar to hormone secretion. miRNAs are stored in large dense-core vesicles together with catecholamines, then released by vesicle fusion in response to stimulation; in this way, vesicle-free miRNA may regulate cell-to-cell communication including the regulation of gene expression and cellular signaling. Therefore, miRNA has been suggested to function as a hormone; i.e., a ribomone (ribonucleotide + hormone). This review focuses on the mechanisms by which vesicle-free miRNAs are secreted from neuroendocrine cells and will discuss potential functions of vesicle-free miRNAs and how vesicle-free miRNAs regulate cell-to-cell communication.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- *Correspondence: Yongsoo Park,
| |
Collapse
|
36
|
Papadopoulos T, Rhee HJ, Subramanian D, Paraskevopoulou F, Mueller R, Schultz C, Brose N, Rhee JS, Betz H. Endosomal Phosphatidylinositol 3-Phosphate Promotes Gephyrin Clustering and GABAergic Neurotransmission at Inhibitory Postsynapses. J Biol Chem 2016; 292:1160-1177. [PMID: 27941024 DOI: 10.1074/jbc.m116.771592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany,
| | - Hong Jun Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Devaraj Subramanian
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Foteini Paraskevopoulou
- From the Department of Molecular Biology, Center of Biochemistry and Molecular Cell Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Rainer Mueller
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- the European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,the Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Nils Brose
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Jeong-Seop Rhee
- the Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Heinrich Betz
- the Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany, and.,the Max Planck Institute of Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Zanetti MN, Bello OD, Wang J, Coleman J, Cai Y, Sindelar CV, Rothman JE, Krishnakumar SS. Ring-like oligomers of Synaptotagmins and related C2 domain proteins. eLife 2016; 5. [PMID: 27434670 PMCID: PMC4977156 DOI: 10.7554/elife.17262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca(2+)-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca(2+) involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca(2+) influx.
Collapse
Affiliation(s)
- Maria N Zanetti
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Oscar D Bello
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jing Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jeff Coleman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yiying Cai
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, United States
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | | |
Collapse
|
38
|
Abstract
Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.
Collapse
|
39
|
Wang S, Li Y, Ma C. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 2016; 5. [PMID: 27083046 PMCID: PMC4878868 DOI: 10.7554/elife.14211] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Synaptotagmin-1 (Syt1) acts as a Ca2+ sensor for neurotransmitter release through its C2 domains. It has been proposed that Syt1 promotes SNARE-dependent fusion mainly through its C2B domain, but the underlying mechanism is poorly understood. In this study, we show that the C2B domain interacts simultaneously with acidic membranes and SNARE complexes via the top Ca2+-binding loops, the side polybasic patch, and the bottom face in response to Ca2+. Disruption of the simultaneous interactions completely abrogates the triggering activity of the C2B domain in liposome fusion. We hypothesize that the simultaneous interactions endow the C2B domain with an ability to deform local membranes, and this membrane-deformation activity might underlie the functional significance of the Syt1 C2B domain in vivo. DOI:http://dx.doi.org/10.7554/eLife.14211.001 Information travels around the nervous system along cells called neurons, which communicate with each other via connections called synapses. When a signal travelling along one neuron reaches a synapse, it triggers the release of molecules known as neurotransmitters. These molecules are then taken up by the next neuron to pass the signal on. Neurotransmitters are stored in compartments called synaptic vesicles and their release from the first neuron depends on the synaptic vesicles fusing with the membrane that surrounds the cell. This “membrane fusion” process is driven by a group of proteins called the SNARE complex. Membrane fusion is triggered by a sudden increase in the amount of calcium ions in the cell, which leads to an increase in the activity of a protein called synaptotagmin-1. A region of this protein known as the C2B domain is able to detect calcium ions, and it can also bind to the cell membrane and SNARE complex proteins. However, it is not clear what roles these interactions play in driving the release of neurotransmitters. Wang, Li et al. have used a variety of biophysical techniques to study these interactions in more detail using purified proteins and other cell components. The experiments show that all three interactions occur at the same time and are all required for synaptotagmin-1 to trigger membrane fusion. Wang, Li et al. propose that these interactions allow synaptotagmin-1 to bend a section of the cell membrane in response to calcium ions. The experiments also show that the C2B domain interacts more strongly with the SNARE complex than previously thought. A future challenge is to observe whether synaptotagmin-1 works in the same way in living cells. DOI:http://dx.doi.org/10.7554/eLife.14211.002
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Milovanovic D, Platen M, Junius M, Diederichsen U, Schaap IAT, Honigmann A, Jahn R, van den Bogaart G. Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2016; 291:7868-76. [PMID: 26884341 PMCID: PMC4824995 DOI: 10.1074/jbc.m116.716225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca(2+)acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca(2+)concentrations is likely to be important for Ca(2+)-regulated secretion.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- From the Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, the Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Mitja Platen
- the Third Institute of Physics, Faculty of Physics
| | - Meike Junius
- Institute for Organic and Biomolecular Chemistry, Georg August University, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg August University, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- the Third Institute of Physics, Faculty of Physics, the School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alf Honigmann
- the Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Reinhard Jahn
- From the Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany,
| | - Geert van den Bogaart
- From the Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, the Department of Tumor Immunology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
41
|
A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells. J Neurosci 2016; 35:14172-82. [PMID: 26490858 DOI: 10.1523/jneurosci.1911-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Synaptotagmin-1 (Syt1) is the principal Ca(2+) sensor for vesicle fusion and is also essential for vesicle docking in chromaffin cells. Docking depends on interactions of the Syt1-C2B domain with the t-SNARE SNAP25/Syntaxin1 complex and/or plasma membrane phospholipids. Here, we investigated the role of the positively charged "bottom" region of the C2B domain, proposed to help crosslink membranes, in vesicle docking and secretion in mouse chromaffin cells and in cell-free assays. We expressed a double mutation shown previously to interfere with lipid mixing between proteoliposomes and with synaptic transmission, Syt1-R398/399Q (RQ), in syt1 null mutant cells. Ultrastructural morphometry revealed that Syt1-RQ fully restored the docking defect observed previously in syt1 null mutant cells, similar to wild type Syt1 (Syt1-wt). Small unilamellar lipid vesicles (SUVs) that contained the v-SNARE Synaptobrevin2 and Syt1-R398/399Q also docked to t-SNARE-containing giant vesicles (GUVs), similar to Syt1-wt. However, unlike Syt1-wt, Syt1-RQ-induced docking was strictly PI(4,5)P2-dependent. Unlike docking, neither synchronized secretion in chromaffin cells nor Ca(2+)-triggered SUV-GUV fusion was restored by the Syt1 mutants. Finally, overexpressing the RQ-mutant in wild type cells produced no effect on either docking or secretion. We conclude that the positively charged bottom region in the C2B domain--and, by inference, Syt1-mediated membrane crosslinking--is required for triggering fusion, but not for docking. Secretory vesicles dock by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. The R398/399 mutations selectively disrupt the latter and hereby help to discriminate protein regions involved in different aspects of Syt1 function in docking and fusion. SIGNIFICANCE STATEMENT This study provides new insights in how the two opposite sides of the C2B domain of Synaptotagmin-1 participate in secretory vesicle fusion, and in more upstream steps, especially vesicle docking. We show that the "bottom" surface of the C2B domain is required for triggering fusion, but not for docking. Synaptotagmin-1 promotes docking by multiple, PI(4,5)P2-dependent and PI(4,5)P2-independent mechanisms. Mutations in the C2B bottom surface (R398/399) selectively disrupt the latter. These mutations help to discriminate protein regions involved in different aspects of Synaptotagmin-1 function in docking and fusion.
Collapse
|
42
|
Abstract
Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF-SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF-SNAP-resistant manner together with Munc18-1. In the resulting primed state, with partially assembled SNARE complexes, fusion is inhibited by Synaptotagmin-1 and Complexins, which also perform active functions in release. Upon influx of Ca(2+), Synaptotagmin-1 activates fast release, likely by relieving the inhibition caused by Complexins and cooperating with the SNAREs in bringing the membranes together. Although alternative models exist and fundamental questions remain unanswered, a definitive description of the basic release mechanism may be available soon.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | | |
Collapse
|
43
|
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C. PLoS One 2015; 10:e0144432. [PMID: 26658739 PMCID: PMC4676720 DOI: 10.1371/journal.pone.0144432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
Collapse
|
44
|
Synaptotagmin-1 binds to PIP(2)-containing membrane but not to SNAREs at physiological ionic strength. Nat Struct Mol Biol 2015; 22:815-23. [PMID: 26389740 PMCID: PMC4596797 DOI: 10.1038/nsmb.3097] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
The Ca(2+) sensor synaptotagmin-1 is thought to trigger membrane fusion by binding to acidic membrane lipids and SNARE proteins. Previous work has shown that binding is mediated by electrostatic interactions that are sensitive to the ionic environment. However, the influence of divalent or polyvalent ions, at physiological concentrations, on synaptotagmin's binding to membranes or SNAREs has not been explored. Here we show that binding of rat synaptotagmin-1 to membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) is regulated by charge shielding caused by the presence of divalent cations. Surprisingly, polyvalent ions such as ATP and Mg(2+) completely abrogate synaptotagmin-1 binding to SNAREs regardless of the presence of Ca(2+). Altogether, our data indicate that at physiological ion concentrations Ca(2+)-dependent synaptotagmin-1 binding is confined to PIP2-containing membrane patches in the plasma membrane, suggesting that membrane interaction of synaptotagmin-1 rather than SNARE binding triggers exocytosis of vesicles.
Collapse
|
45
|
Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen AE, Soltis SM, Alonso-Mori R, Chollet M, Lemke HT, Pfuetzner RA, Choi UB, Weis WI, Diao J, Südhof TC, Brunger AT. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 2015; 525:62-7. [PMID: 26280336 PMCID: PMC4607316 DOI: 10.1038/nature14975] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.
Collapse
Affiliation(s)
- Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Taulant Bacaj
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Artem Y Lyubimov
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Monarin Uervirojnangkoorn
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Oliver B Zeldin
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Aaron S Brewster
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aina E Cohen
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - S Michael Soltis
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | | | - Matthieu Chollet
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - Henrik T Lemke
- SLAC National Accelerator Laboratory, Stanford, California 94305, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - William I Weis
- Departments of Structural Biology, Molecular and Cellular Physiology, and Photon Science, Stanford University, Stanford, California 94305, USA
| | - Jiajie Diao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Departments of Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
46
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
47
|
Lu B, Kiessling V, Tamm LK, Cafiso DS. The juxtamembrane linker of full-length synaptotagmin 1 controls oligomerization and calcium-dependent membrane binding. J Biol Chem 2014; 289:22161-71. [PMID: 24973220 DOI: 10.1074/jbc.m114.569327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is the calcium sensor for synchronous neurotransmitter release. The two C2 domains of Syt1, which may mediate fusion by bridging the vesicle and plasma membranes, are connected to the vesicle membrane by a 60-residue linker. Here, we use site-directed spin labeling and a novel total internal reflection fluorescence vesicle binding assay to characterize the juxtamembrane linker and to test the ability of reconstituted full-length Syt1 to interact with opposing membrane surfaces. EPR spectroscopy demonstrates that the majority of the linker interacts with the membrane interface, thereby limiting the extension of the C2A and C2B domains into the cytoplasm. Pulse dipolar EPR spectroscopy provides evidence that purified full-length Syt1 is oligomerized in the membrane, and mutagenesis indicates that a glycine zipper/GXXXG motif within the linker helps mediate oligomerization. The total internal reflection fluorescence-based vesicle binding assay demonstrates that full-length Syt1 that is reconstituted into supported lipid bilayers will capture vesicles containing negatively charged lipid in a Ca(2+)-dependent manner. Moreover, the rate of vesicle capture increases with Syt1 density, and mutations in the GXXXG motif that inhibit oligomerization of Syt1 reduce the rate of vesicle capture. This work demonstrates that modifications within the 60-residue linker modulate both the oligomerization of Syt1 and its ability to interact with opposing bilayers. In addition to controlling its activity, the oligomerization of Syt1 may play a role in organizing proteins within the active zone of membrane fusion.
Collapse
Affiliation(s)
- Bin Lu
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Volker Kiessling
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - Lukas K Tamm
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - David S Cafiso
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
48
|
Park Y, Vennekate W, Yavuz H, Preobraschenski J, Hernandez JM, Riedel D, Walla PJ, Jahn R. α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J Biol Chem 2014; 289:16326-35. [PMID: 24778182 DOI: 10.1074/jbc.m114.556803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane.
Collapse
Affiliation(s)
| | - Wensi Vennekate
- From the Department of Neurobiology, the AG Biomolecular Spectroscopy and Single-Molecule Detection, and
| | | | | | | | - Dietmar Riedel
- the Facility for Electron Microscopy, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen and
| | - Peter Jomo Walla
- the AG Biomolecular Spectroscopy and Single-Molecule Detection, and the Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
49
|
Signaling through C2 domains: more than one lipid target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1536-47. [PMID: 24440424 DOI: 10.1016/j.bbamem.2014.01.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023]
Abstract
C2 domains are membrane-binding modules that share a common overall fold: a single compact Greek-key motif organized as an eight-stranded anti-parallel β-sandwich consisting of a pair of four-stranded β-sheets. A myriad of studies have demonstrated that in spite of sharing the common structural β-sandwich core, slight variations in the residues located in the interconnecting loops confer C2 domains with functional abilities to respond to different Ca(2+) concentrations and lipids, and to signal through protein-protein interactions as well. This review summarizes the main structural and functional findings on Ca(2+) and lipid interactions by C2 domains, including the discovery of the phosphoinositide-binding site located in the β3-β4 strands. The wide variety of functions, together with the different Ca(2+) and lipid affinities of these domains, converts this superfamily into a crucial player in many functions in the cell and more to be discovered. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
50
|
The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening. Biochem J 2013; 456:25-33. [PMID: 24001110 DOI: 10.1042/bj20130949] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Syt1 (synaptotagmin 1), a major Ca2+ sensor for fast neurotransmitter release, contains tandem Ca2+-binding C2 domains (C2AB), a single transmembrane α-helix and a highly charged 60-residue-long linker in between. Using single-vesicle-docking and content-mixing assays we found that the linker region of Syt1 is essential for its two signature functions: Ca2+-independent vesicle docking and Ca2+-dependent fusion pore opening. The linker contains the basic-amino-acid-rich N-terminal region and the acidic-amino-acid-rich C-terminal region. When the charge segregation was disrupted, fusion pore opening was slowed, whereas docking was unchanged. Intramolecular disulfide cross-linking between N- and C-terminal regions of the linker or deletion of 40 residues from the linker reduced docking while enhancing pore opening, although the changes were subtle. EPR analysis showed Ca2+-induced line broadening reflecting a conformational change in the linker region. Thus the results of the present study suggest that the electrostatically bipartite linker region may extend for docking and fold to facilitate pore opening.
Collapse
|