1
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025; 83:1537-1553. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Banushi B, Collova J, Milroy H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int J Mol Sci 2025; 26:3075. [PMID: 40243774 PMCID: PMC11989090 DOI: 10.3390/ijms26073075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, and non-coding RNAs. These mechanisms can regulate the expression of stress-related genes (such as the glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) gene), linking trauma to biological pathways that may affect long-term stress regulation and health outcomes. Although research using model organisms has elucidated potential epigenetic mechanisms underlying the intergenerational effects of trauma, applying these findings to human populations remains challenging due to confounding variables, methodological limitations, and ethical considerations. This complexity is compounded by difficulties in establishing causality and in disentangling epigenetic influences from shared environmental factors. Emerging therapies, such as psychedelic-assisted treatments and mind-body interventions, offer promising avenues to address both the psychological and potential epigenetic aspects of trauma. However, translating these findings into effective interventions will require interdisciplinary methods and culturally sensitive approaches. Enriched environments, cultural reconnection, and psychosocial interventions have shown the potential to mitigate trauma's impacts within and across generations. By integrating biological, social, and cultural perspectives, this review highlights the critical importance of interdisciplinary frameworks in breaking cycles of trauma, fostering resilience, and advancing comprehensive healing across generations.
Collapse
Affiliation(s)
- Blerida Banushi
- School of Indigenous Studies, The University of Western Australia, Crawley, WA 6009, Australia; (J.C.); (H.M.)
| | | | | |
Collapse
|
3
|
Barbosa O, Freitas AT, Silvestre MP, Moreira-Rosário A, Aguiar P, Régua AI, Madaleno T, Almeida M, Cruz D. Effects of Maternal Vitamin D Levels on Prematurity: Feasibility Study in a Multicenter Observational Pilot. Nutrients 2025; 17:1160. [PMID: 40218918 PMCID: PMC11990355 DOI: 10.3390/nu17071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Numerous studies have shown that hypovitaminosis D is linked to adverse maternal and infant health outcomes, such as intrauterine growth restriction, preeclampsia, cholestasis, hypertension, and gestational diabetes, all of which are potential causes of prematurity. Recognizing the significance of this issue and its impact on maternal-infant health, the VitDTracking research project was designed and registered on 4 March 2024, in the ClinicalTrials.gov database (Identifier: NCT06292195). The project includes a large-scale multicenter observational study, targeting a minimum initial sample size of 1800 participants. This paper describes the pilot study aimed at assessing the feasibility of the full-scale study. Methods: A multicenter observational pilot study was conducted in public health organizations in the Alentejo region, adhering to the research protocol. Data collection included 67 parameters: 37 obtained from a questionnaire and 30 from clinical records, with particular focus on maternal 25(OH)D levels and maternal-infant health outcomes. Feasibility was assessed through predefined outcome indicators and success criteria. Results: The pilot study enrolled 30 pregnant women and successfully met all feasibility criteria. The global recruitment rate was 73.17%, with an eligible recruitment rate of 88.2%. The refusal rate was low (11%), and adherence, retention, and completion rates were all 100%, indicating strong participant engagement. The questionnaire comprehension rate was 86.6%. Participating centers demonstrated the capacity to implement the study, adhering to the protocol with a compliance rate exceeding 90%. The study also highlighted a concerning prevalence of hypovitaminosis D and identified cases of premature birth and miscarriage. Conclusions: The pilot study confirmed the feasibility of recruitment methodologies and procedures, supporting the implementation of the large-scale observational study. The planned study will recruit approximately 1800 pregnant women to achieve an eligible cohort of 1000 samples, and a statistically significant final sample of 100 cases meeting the prematurity criterion.
Collapse
Affiliation(s)
- Olivia Barbosa
- Comprehensive Health Research Centre (CHRC), 1150-082 Lisboa, Portugal;
- Escola Superior de Enfermagem São João de Deus, Universidade de Évora, 7000-811 Évora, Portugal
- Neonatal Intensive Care Unit, Unidade Local de Saúde do Alentejo Central (ULSAC), 7000-811 Évora, Portugal
| | - Ana Teresa Freitas
- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa (INESC-ID), 1000-029 Lisboa, Portugal;
- Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta P. Silvestre
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (M.P.S.); (A.M.-R.)
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - André Moreira-Rosário
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (M.P.S.); (A.M.-R.)
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Pedro Aguiar
- NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisboa, Portugal;
| | - Ana Isabel Régua
- Unidade Local de Saúde do Baixo Alentejo (ULSBA), 7801-849 Beja, Portugal;
| | - Tatiana Madaleno
- Unidade Local de Saúde do Norte Alentejo (ULSNA), 7301-853 Portalegre, Portugal;
| | - Manuela Almeida
- Outpatient Consultation Service, Unidade Local de Saúde do Alentejo Central (ULSAC), 7005-169 Évora, Portugal;
| | - Dulce Cruz
- Comprehensive Health Research Centre (CHRC), 1150-082 Lisboa, Portugal;
- Escola Superior de Enfermagem São João de Deus, Universidade de Évora, 7000-811 Évora, Portugal
| |
Collapse
|
4
|
Wang J, Zhang Y, Wang J, Wang L, Li B, Liu S, Sun X, Ma Z. Fungal chromatin remodeler Isw1 modulates translation via regulating tRNA transcription. Nucleic Acids Res 2025; 53:gkaf225. [PMID: 40167328 PMCID: PMC11959538 DOI: 10.1093/nar/gkaf225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Chromatin dynamics are essential for regulating DNA processes in response to environmental stimuli. Although ISWI-family enzymes are known to remodel chromatin by sliding nucleosomes in budding yeast, their functional roles and outputs in eukaryotes remain largely unknown. In this study, we investigated chromatin accessibility in the phytopathogenic fungus Fusarium graminearum treated with and without putrescine, a compound that rapidly induces the biosynthesis of the mycotoxin deoxynivalenol (DON). Putrescine globally alters chromatin accessibility, with the ATP-dependent chromatin remodeler FgIsw1 emerging as a key regulator. Unexpectedly, deletion of FgIsw1 did not affect the transcription of DON biosynthesis genes (Tri) but significantly disrupted transfer RNA (tRNA) transcription, leading to a dramatic decline in translation of DON biosynthesis enzymes. Mechanistically, FgIsw1 maintains nucleosome phasing in tRNA chromatin regions, ensuring efficient tRNA transcription. As a result, ΔFgIsw1 was unable to produce DON and lost its virulence on the host plant. These results highlight a novel role of chromatin remodelers in regulating protein translation through the control of tRNA transcription.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plant Pathology, College of Plant Protection, Southwest University, Chongqing 400715, China
- National Key Laboratory of Rice Biological Breeding, Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yueqi Zhang
- National Key Laboratory of Rice Biological Breeding, Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingrui Wang
- National Key Laboratory of Rice Biological Breeding, Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liuqin Wang
- National Key Laboratory of Rice Biological Breeding, Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Binshan Li
- Department of Plant Pathology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shuang Liu
- Department of Plant Pathology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhonghua Ma
- National Key Laboratory of Rice Biological Breeding, Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
5
|
Li XH, Lee SH, Kim JD, Lee GH, Sim JM, Cui XS. TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae123. [PMID: 39804731 DOI: 10.1093/mam/ozae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3. TBX3 expression gradually increases during early embryonic development. TBX3 knockdown resulted in decreased in the rate of four-cell and blastocyst. Depletion of TBX3 decreased the level of H3K9Ac/H3K27Ac and decreased ZGA gene expression at the four-cell stage. Furthermore, TBX3 knockdown led to a decrease in ZSACN4 protein level, DNMT1 and intracellular 5mc levels were increased, and then induced telomeres shorten and DNA damaged. Additionally, TBX3 knockdown significantly decreased histone acetylation and pluripotency genes NANOG/OCT4 expression in blastocysts. TBX3 knockdown induced apoptosis in blastocysts. Taken together, TBX3 regulate histone acetylation and play important roles in zygotic genome activation and early embryonic development in pigs.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
6
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Araujo AC, Johnson JS, Graham JR, Howard J, Huang Y, Oliveira HR, Brito LF. Transgenerational epigenetic heritability for growth, body composition, and reproductive traits in Landrace pigs. Front Genet 2025; 15:1526473. [PMID: 39917178 PMCID: PMC11799271 DOI: 10.3389/fgene.2024.1526473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Epigenetics is an important source of variation in complex traits that is not due to changes in DNA sequences, and is dependent on the environment the individuals are exposed to. Therefore, we aimed to estimate transgenerational epigenetic heritability, percentage of resetting epigenetic marks, genetic parameters, and predicting breeding values using genetic and epigenetic models for growth, body composition, and reproductive traits in Landrace pigs using routinely recorded datasets. Birth and weaning weight, backfat thickness, total number of piglets born, and number of piglets born alive (BW, WW, BF, TNB, and NBA, respectively) were investigated. Models including epigenetic effects had a similar or better fit than solely genetic models. Including genomic information in epigenetic models resulted in large changes in the variance component estimates. Transgenerational epigenetic heritability estimates ranged between 0.042 (NBA) to 0.336 (BF). The reset coefficient estimates for epigenetic marks were between 80% and 90%. Heritability estimates for the direct additive and maternal genetic effects ranged between 0.040 (BW) to 0.502 (BF) and 0.034 (BF) to 0.134 (BW), respectively. Repeatability of the reproductive traits ranged between 0.098 (NBA) to 0.148 (TNB). Prediction accuracies, bias, and dispersion of breeding values ranged between 0.199 (BW) to 0.443 (BF), -0.080 (WW) to 0.034 (NBA), and -0.134 (WW) to 0.131 (TNB), respectively, with no substantial differences between genetic and epigenetic models. Transgenerational epigenetic heritability estimates are moderate for growth and body composition and low for reproductive traits in North American Landrace pigs. Fitting epigenetic effects in genetic models did not impact the prediction of breeding values.
Collapse
Affiliation(s)
- Andre C. Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- Livestock Behavior Research Unity, USDA-ARS, West Lafayette, IN, United States
| | - Jason R. Graham
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jeremy Howard
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Yijian Huang
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Li F, Dai P, Shi H, Zhang Y, He J, Gopalan A, Li D, Chen Y, Du Y, Xu G, Yang W, Liang C, Gao D. LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer. Cell Res 2025; 35:59-71. [PMID: 39743630 PMCID: PMC11701123 DOI: 10.1038/s41422-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 01/04/2025] Open
Abstract
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
Collapse
MESH Headings
- Male
- Animals
- Humans
- Epigenesis, Genetic/drug effects
- Mice
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- AMP-Activated Protein Kinase Kinases
- DNA Methylation/drug effects
- Cell Line, Tumor
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Cell Lineage
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Plasticity/drug effects
- AMP-Activated Protein Kinases
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Dai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huili Shi
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan He
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yarui Du
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Lehle JD, Lin YH, Gomez A, Chavez L, McCarrey JR. An in vitro approach reveals molecular mechanisms underlying endocrine disruptor-induced epimutagenesis. eLife 2024; 13:RP93975. [PMID: 39361026 PMCID: PMC11449486 DOI: 10.7554/elife.93975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Yu-Huey Lin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Amanda Gomez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - Laura Chavez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, United States
| |
Collapse
|
12
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
13
|
Lehle JD, Lin YH, Gomez A, Chavez L, McCarrey JR. Endocrine disruptor-induced epimutagenesis in vitro : Insight into molecular mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574355. [PMID: 38746310 PMCID: PMC11092511 DOI: 10.1101/2024.01.05.574355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling following exposure due to steric similarities to endogenous hormones within the body. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) that accompany dysregulation of normal gene expression patterns that appear to predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many different EDCs often persists over multiple subsequent generations, even with no further exposure to the causative EDC. Many previous studies have described both the direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDCs initially induce epimutations or contribute to the propagation of EDC-induced epimutations either within the exposed generation or to subsequent generations. Additional questions remain regarding the extent to which there may be differences in cell-type specific susceptibilities to various EDCs, and whether this susceptibility is correlative with expression of relevant hormone receptors and/or the location of relevant hormone response elements (HREs) in the genome. To address these questions, we exposed cultured mouse pluripotent (induced pluripotent stem [iPS]), somatic (Sertoli and granulosa), and germ (primordial germ cell like [PGCLC]) cells to BPS and measured changes in DNA methylation levels at the epigenomic level and gene expression at the transcriptomic level. We found that there was indeed a difference in cell-type specific susceptibility to EDC-induced epimutagenesis and that this susceptibility correlated with differential expression of relevant hormone receptors and, in many cases, tended to generate epimutations near relevant HREs within the genome. Additionally, however, we also found that BPS can induce epimutations in a cell type that does not express relevant receptors and in genomic regions that do not contain relevant HREs, suggesting that both canonical and non-canonical signaling mechanisms can be disrupted by BPS exposure. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and differentially expressed genes (DEGs) initially induced in the iPSCs was largely retained in the resulting PGCLCs, however, >90% of the specific epimutations and DEGs were not conserved but were rather replaced by novel epimutations and DEGs following the iPSC to PGCLC transition. These results are consistent with a unique concept that many EDC-induced epimutations may normally be corrected by germline and/or embryonic epigenetic reprogramming but that due to disruption of the underlying chromatin architecture induced by the EDC exposure, many novel epimutations may emerge during the reprogramming process as well. Thus, it appears that following exposure to a disruptive agent such as an EDC, a prevalence of epimutations may transcend epigenetic reprogramming even though most individual epimutations are not conserved during this process.
Collapse
|
14
|
Xu S, Xie B, Liu H, Liu J, Wang M, Zhong L, Zhou J, Wen Z, Zhang L, Chen X, Zhang S. 5 mC modification of steroid hormone biosynthesis-related genes orchestrates feminization of channel catfish induced by high-temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124310. [PMID: 38838810 DOI: 10.1016/j.envpol.2024.124310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
To elucidate the mechanism behind channel catfish feminization induced by high temperature, gonad samples were collected from XY pseudo-females and wild-type females and subjected to high-throughput sequencing for Whole-Genome-Bisulfite-Seq (WGBS) and transcriptome sequencing (RNA-Seq). The analysis revealed 50 differentially methylated genes between wild-type females and XY pseudo-females, identified through the analysis of KEGG pathways and GO enrichment in the promoter of the genome and differentially methylated regions (DMRs). Among these genes, multiple differential methylation sites observed within the srd5a2 gene. Repeatability tests confirmed 7 differential methylation sites in the srd5a2 gene in XY pseudo-females compared to normal males, with 1 specific differential methylation site (16608174) distinguishing XY pseudo-females from normal females. Interestingly, the expression of these genes in the transcriptome showed no difference between wild-type females and XY pseudo-females. Our study concluded that methylation of the srd5a2 gene sequence leads to decreased expression, which inhibits testosterone synthesis while promoting the synthesis of 17β-estradiol from testosterone. This underscores the significance of the srd5a2 gene in the sexual differentiation of channel catfish, as indicated by the ipu00140 KEGG pathway analysis.
Collapse
Affiliation(s)
- Siqi Xu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Bingjie Xie
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyan Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Lu Zhang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210027, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
15
|
Wu X, Wang S, Guo Y, Zeng S. Overexpression of KAT8 induces a failure in early embryonic development in mice. Theriogenology 2024; 221:31-37. [PMID: 38537319 DOI: 10.1016/j.theriogenology.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Yao F, Chu M, Xi G, Dai J, Wang Z, Hao J, Yang Q, Wang W, Tang Y, Zhang J, Yue Y, Wang Y, Xu Y, Zhao W, Ma L, Liu J, Zhang Z, Tian J, An L. Single-embryo transcriptomic atlas of oxygen response reveals the critical role of HIF-1α in prompting embryonic zygotic genome activation. Redox Biol 2024; 72:103147. [PMID: 38593632 PMCID: PMC11016760 DOI: 10.1016/j.redox.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.
Collapse
Affiliation(s)
- Fusheng Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Meiqiang Chu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jiage Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Zhaochen Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jia Hao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Qianying Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Wenjing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yawen Tang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jingyu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yue Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yefen Xu
- Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, PR China
| | - Wei Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Lizhu Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Juan Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
18
|
Nathans JF, Ayers JL, Shendure J, Simpson CL. Genetic Tools for Cell Lineage Tracing and Profiling Developmental Trajectories in the Skin. J Invest Dermatol 2024; 144:936-949. [PMID: 38643988 PMCID: PMC11034889 DOI: 10.1016/j.jid.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
The epidermis is the body's first line of protection against dehydration and pathogens, continually regenerating the outermost protective skin layers throughout life. During both embryonic development and wound healing, epidermal stem and progenitor cells must respond to external stimuli and insults to build, maintain, and repair the cutaneous barrier. Recent advances in CRISPR-based methods for cell lineage tracing have remarkably expanded the potential for experiments that track stem and progenitor cell proliferation and differentiation over the course of tissue and even organismal development. Additional tools for DNA-based recording of cellular signaling cues promise to deepen our understanding of the mechanisms driving normal skin morphogenesis and response to stressors as well as the dysregulation of cell proliferation and differentiation in skin diseases and cancer. In this review, we highlight cutting-edge methods for cell lineage tracing, including in organoids and model organisms, and explore how cutaneous biology researchers might leverage these techniques to elucidate the developmental programs that support the regenerative capacity and plasticity of the skin.
Collapse
Affiliation(s)
- Jenny F Nathans
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA; Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jessica L Ayers
- Molecular Medicine and Mechanisms of Disease PhD Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Cory L Simpson
- Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
19
|
Jiang L, Zhang P, Huang LT, Yu XL, Liu CY, Yuan XC, Liu S, Huang H. Life-stage specificity and temporal variations in transcriptomes and DNA methylomes of the reef coral Pocillopora damicornis in response to thermal acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171098. [PMID: 38387572 DOI: 10.1016/j.scitotenv.2024.171098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Understanding the acclimation capacity of reef corals across generations to thermal stress and its underlying molecular underpinnings could provide insights into their resilience and adaptive responses to future climate change. Here, we acclimated adult brooding coral Pocillopora damicornis to high temperature (32 °C vs. 29 °C) for three weeks and analyzed the changes in phenotypes, transcriptomes and DNA methylomes of adult corals and their brooded larvae. Results showed that although adult corals did not show noticeable bleaching after thermal exposure, they released fewer but larger larvae. Interestingly, larval cohorts from two consecutive lunar days exhibited contrasting physiological resistance to thermal stress, as evidenced by the divergent responses of area-normalized symbiont densities and photochemical efficiency to thermal stress. RNA-seq and whole-genome bisulfite sequencing revealed that adult and larval corals mounted distinct transcriptional and DNA methylation changes in response to thermal stress. Remarkably, larval transcriptomes and DNA methylomes also varied greatly among lunar days and thermal treatments, aligning well with their physiological metrics. Overall, our study shows that changes in transcriptomes and DNA methylomes in response to thermal acclimation can be highly life stage-specific. More importantly, thermally-acclimated adult corals could produce larval offspring with temporally contrasting photochemical performance and thermal resilience, and such variations in larval phenotypes are associated with differential transcriptomes and DNA methylomes, and are likely to increase the likelihood of reproductive success and plasticity of larval propagules under thermal stress.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Pan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Sheng Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou 510301, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya 572000, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
20
|
Salinas-Pena M, Serna-Pujol N, Jordan A. Genomic profiling of six human somatic histone H1 variants denotes that H1X accumulates at recently incorporated transposable elements. Nucleic Acids Res 2024; 52:1793-1813. [PMID: 38261975 PMCID: PMC10899769 DOI: 10.1093/nar/gkae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Histone H1, a vital component in chromatin structure, binds to linker DNA and regulates nuclear processes. We have investigated the distribution of histone H1 variants in a breast cancer cell line using ChIP-Seq. Two major groups of variants are identified: H1.2, H1.3, H1.5 and H1.0 are abundant in low GC regions (B compartment), while H1.4 and H1X preferentially localize in high GC regions (A compartment). Examining their abundance within transposable elements (TEs) reveals that H1X and H1.4 are enriched in recently-incorporated TEs (SVA and SINE-Alu), while H1.0/H1.2/H1.3/H1.5 are more abundant in older elements. Notably, H1X is particularly enriched in SVA families, while H1.4 shows the highest abundance in young AluY elements. Although low GC variants are generally enriched in LINE, LTR and DNA repeats, H1X and H1.4 are also abundant in a subset of recent LINE-L1 and LTR repeats. H1X enrichment at SVA and Alu is consistent across multiple cell lines. Further, H1X depletion leads to TE derepression, suggesting its role in maintaining TE repression. Overall, this study provides novel insights into the differential distribution of histone H1 variants among repetitive elements, highlighting the potential involvement of H1X in repressing TEs recently incorporated within the human genome.
Collapse
Affiliation(s)
- Mónica Salinas-Pena
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Núria Serna-Pujol
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| |
Collapse
|
21
|
Walters BW, Rainsford SR, Heuer RA, Dias N, Huang X, de Rooij D, Lesch BJ. KDM6A/UTX promotes spermatogenic gene expression across generations and is not required for male fertility†. Biol Reprod 2024; 110:391-407. [PMID: 37861693 PMCID: PMC11484508 DOI: 10.1093/biolre/ioad141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.
Collapse
Affiliation(s)
| | | | - Rachel A Heuer
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
23
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
24
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
25
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Hoffmann LB, McVicar EA, Harris RV, Collar-Fernández C, Clark MB, Hannan AJ, Pang TY. Increased paternal corticosterone exposure influences offspring behaviour and expression of urinary pheromones. BMC Biol 2023; 21:186. [PMID: 37667240 PMCID: PMC10478242 DOI: 10.1186/s12915-023-01678-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Studies have shown that paternal stress prior to conception can influence the innate behaviours of their offspring. The evolutionary impacts of such intergenerational effects are therefore of considerable interest. Our group previously showed in a model of daily stress that glucocorticoid treatment of adult male mouse breeders prior to conception leads to increased anxiety-related behaviours in male offspring. Here, we aimed to understand the transgenerational effects of paternal stress exposure on the social behaviour of progeny and its potential influence on reproductive success. RESULTS We assessed social parameters including social reward, male attractiveness and social dominance, in the offspring (F1) and grand-offspring (F2). We report that paternal corticosterone treatment was associated with increased display of subordination towards other male mice. Those mice were unexpectedly more attractive to female mice while expressing reduced levels of the key rodent pheromone Darcin, contrary to its conventional role in driving female attraction. We investigated the epigenetic regulation of major urinary protein (Mup) expression by performing the first Oxford Nanopore direct methylation of sperm DNA in a mouse model of stress, but found no differences in Mup genes that could be attributed to corticosterone-treatment. Furthermore, no overt differences of the prefrontal cortex transcriptome were found in F1 offspring, implying that peripheral mechanisms are likely contributing to the phenotypic differences. Interestingly, no phenotypic differences were observed in the F2 grand-offspring. CONCLUSIONS Overall, our findings highlight the potential of moderate paternal stress to affect intergenerational (mal)adaptive responses, informing future studies of adaptiveness in rodents, humans and other species.
Collapse
Affiliation(s)
- Lucas B Hoffmann
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Evangeline A McVicar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rebekah V Harris
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Coralina Collar-Fernández
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
28
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
29
|
Wenger A, Biran A, Alcaraz N, Redó-Riveiro A, Sell AC, Krautz R, Flury V, Reverón-Gómez N, Solis-Mezarino V, Völker-Albert M, Imhof A, Andersson R, Brickman JM, Groth A. Symmetric inheritance of parental histones governs epigenome maintenance and embryonic stem cell identity. Nat Genet 2023; 55:1567-1578. [PMID: 37666988 PMCID: PMC10484787 DOI: 10.1038/s41588-023-01476-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
Modified parental histones are segregated symmetrically to daughter DNA strands during replication and can be inherited through mitosis. How this may sustain the epigenome and cell identity remains unknown. Here we show that transmission of histone-based information during DNA replication maintains epigenome fidelity and embryonic stem cell plasticity. Asymmetric segregation of parental histones H3-H4 in MCM2-2A mutants compromised mitotic inheritance of histone modifications and globally altered the epigenome. This included widespread spurious deposition of repressive modifications, suggesting elevated epigenetic noise. Moreover, H3K9me3 loss at repeats caused derepression and H3K27me3 redistribution across bivalent promoters correlated with misexpression of developmental genes. MCM2-2A mutation challenged dynamic transitions in cellular states across the cell cycle, enhancing naïve pluripotency and reducing lineage priming in G1. Furthermore, developmental competence was diminished, correlating with impaired exit from pluripotency. Collectively, this argues that epigenetic inheritance of histone modifications maintains a correctly balanced and dynamic chromatin landscape able to support mammalian cell differentiation.
Collapse
Affiliation(s)
- Alice Wenger
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Lexogen GmbH, Vienna, Austria
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alba Redó-Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Annika Charlotte Sell
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Robert Krautz
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Moritz Völker-Albert
- EpiQMAx GmbH, Planegg, Germany
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Axel Imhof
- Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Robin Andersson
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
31
|
Wiltshire A, Schaal R, Wang F, Tsou T, McKerrow W, Keefe D. Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes (Basel) 2023; 14:1232. [PMID: 37372413 DOI: 10.3390/genes14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Renata Schaal
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Tiffany Tsou
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
32
|
Cediel-Ulloa A, Lindner S, Rüegg J, Broberg K. Epigenetics of methylmercury. Neurotoxicology 2023; 97:34-46. [PMID: 37164037 DOI: 10.1016/j.neuro.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE OF REVIEW Methylmercury (MeHg) is neurotoxic at high levels and particularly affects the developing brain. One proposed mechanism of MeHg neurotoxicity is alteration of the epigenetic programming. In this review, we summarise the experimental and epidemiological literature on MeHg-associated epigenetic changes. RECENT FINDINGS Experimental and epidemiological studies have identified changes in DNA methylation following in utero exposure to MeHg, and some of the changes appear to be persistent. A few studies have evaluated associations between MeHg-related changes in DNA methylation and neurodevelopmental outcomes. Experimental studies reveal changes in histone modifications after MeHg exposure, but we lack epidemiological studies supporting such changes in humans. Experimental and epidemiological studies have identified microRNA-related changes associated with MeHg; however, more research is needed to conclude if these changes lead to persistent and toxic effects. SUMMARY MeHg appears to interfere with epigenetic processes, potentially leading to persistent changes. However, observed associations of mercury with epigenetic changes are as of yet of unknown relevance to neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Andrea Cediel-Ulloa
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Sabrina Lindner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joëlle Rüegg
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Resetting histone modifications during human prenatal germline development. Cell Discov 2023; 9:14. [PMID: 36737434 PMCID: PMC9898496 DOI: 10.1038/s41421-023-00519-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Histone modifications play critical roles in regulating gene expression and present dynamic changes during early embryo development. However, how they are reprogrammed during human prenatal germline development has not yet been elucidated. Here, we map the genome-wide profiles of three key histone modifications in human primordial germ cells (hPGCs) from weeks 8 to 23 of gestation for the first time by performing ULI-NChIP-seq. Notably, H3K4me3 exhibits a canonical promoter-enriched pattern, though with relatively lower enrichment, and is positively correlated with gene expression in globally hypomethylated hPGCs. In addition, H3K27me3 presents very low enrichment but plays an important role in not only dynamically governing specific bivalent promoters but also impeding complete X chromosome reactivation in female hPGCs. Given the activation effects of both global DNA demethylation and H3K4me3 signals, repressive H3K9me3 and H3K27me3 marks are jointly responsible for the paradoxical regulation of demethylation-resistant regions in hPGCs. Collectively, our results provide a unique roadmap of three core histone modifications during hPGC development, which helps to elucidate the architecture of germ cell reprogramming in an extremely hypomethylated DNA environment.
Collapse
|
34
|
Fallet M, Blanc M, Di Criscio M, Antczak P, Engwall M, Guerrero Bosagna C, Rüegg J, Keiter SH. Present and future challenges for the investigation of transgenerational epigenetic inheritance. ENVIRONMENT INTERNATIONAL 2023; 172:107776. [PMID: 36731188 DOI: 10.1016/j.envint.2023.107776] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.
Collapse
Affiliation(s)
- Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden; Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, United Kingdom.
| | - Mélanie Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Michela Di Criscio
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Philipp Antczak
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| |
Collapse
|
35
|
Mogilicherla K, Roy A. Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Front Genet 2023; 13:1044980. [PMID: 36685945 PMCID: PMC9853188 DOI: 10.3389/fgene.2022.1044980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Arthropod pests are remarkably capable of rapidly adapting to novel forms of environmental stress, including insecticides and climate change. The dynamic interplay between epigenetics and genetics explains the largely unexplored reality underlying rapid climatic adaptation and the development of insecticide resistance in insects. Epigenetic regulation modulates gene expression by methylating DNA and acetylating histones that play an essential role in governing insecticide resistance and adaptation to climate change. This review summarises and discusses the significance of recent advances in epigenetic regulation that facilitate phenotypic plasticity in insects and their symbiotic microbes to cope with selection pressure implied by extensive insecticide applications and climate change. We also discuss how epigenetic changes are passed on to multiple generations through sexual recombination, which remains enigmatic. Finally, we explain how these epigenetic signatures can be utilized to manage insecticide resistance and pest resilience to climate change in Anthropocene.
Collapse
|
36
|
Zhao M, Wu J, Xu J, Li A, Mei Y, Ge X, Yin G, Liu X, Wei L, Xu Q. Association of environmental exposure to chromium with differential DNA methylation: An epigenome-wide study. Front Genet 2023; 13:1043486. [PMID: 36685967 PMCID: PMC9845398 DOI: 10.3389/fgene.2022.1043486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Previous studies have reported that chromium (Cr)-induced epigenetic alterations and DNA methylation play a vital role in the pathogenesis of diseases induced by chromium exposure. Epigenomic analyses have been limited and mainly focused on occupational chromium exposure; their findings are not generalizable to populations with environmental Cr exposure. Methods: We identified the differential methylation of genes and regions to elucidate the mechanisms of toxicity related to environmental chromium exposure. DNA methylation was measured in blood samples collected from individuals in Cr-contaminated (n = 10) and unexposed areas (n = 10) by using the Illumina Infinium HumanMethylation850K array. To evaluate the relationship between chromium levels in urine and CpG methylation at 850 thousand sites, we investigated differentially methylated positions (DMPs) and differentially methylated regions (DMRs) by using linear models and DMRcate method, respectively. The model was adjusted for biologically relevant variables and estimated cell-type compositions. Results: At the epigenome-wide level, we identified five CpGs [cg20690919 (p FDR =0.006), cg00704664 (p FDR =0.024), cg10809143 (p FDR =0.043), cg27057652 (p FDR =0.047), cg05390480 (p FDR =0.024)] and one DMR (chr17: 19,648,718-19,648,972), annotated to ALDH3A1 genes (p < 0.05) as being significantly associated with log2 transformed urinary chromium levels. Discussion: Environmental chromium exposure is associated with DNA methylation, and the significant DMPs and DMR being annotated to cause DNA damage and genomic instability were found in this work. Research involving larger samples is required to further explore the epigenetic effect of environmental chromium exposure on health outcomes through DNA methylation.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Qun Xu,
| |
Collapse
|
37
|
Li TD, Murano K, Kitano T, Guo Y, Negishi L, Siomi H. TDP-43 safeguards the embryo genome from L1 retrotransposition. SCIENCE ADVANCES 2022; 8:eabq3806. [PMID: 36417507 PMCID: PMC9683724 DOI: 10.1126/sciadv.abq3806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Transposable elements (TEs) are genomic parasites that propagate within the host genome and introduce mutations. Long interspersed nuclear element-1 (LINE-1 or L1) is the major TE class, which occupies nearly 20% of the mouse genome. L1 is highly active in mammalian preimplantation embryos, posing a major threat to genome integrity, but the mechanism of stage-specific protection against L1 retrotransposition is unknown. Here, we show that TAR DNA-binding protein 43 (TDP-43), mutations in which constitute a major risk factor for amyotrophic lateral sclerosis, inhibits L1 retrotransposition in mouse embryonic stem cells (mESCs) and preimplantation embryos. Knockdown of TDP-43 resulted in massive genomic L1 expansion and impaired cell growth in preimplantation embryos and ESCs. Functional analysis demonstrated that TDP-43 interacts with L1 open reading frame 1 protein (L1 ORF1p) to mediate genomic protection, and loss of this interaction led to derepression of L1 retrotransposition. Our results identify TDP-43 as a guardian of the embryonic genome.
Collapse
Affiliation(s)
- Ten D. Li
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
38
|
Tomikawa J, Miyamoto K. Structural alteration of the nucleus for the reprogramming of gene expression. FEBS J 2022; 289:7221-7233. [PMID: 33891358 DOI: 10.1111/febs.15894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
The regulation of gene expression is a critical process for establishing and maintaining cellular identity. Gene expression is controlled through a chromatin-based mechanism in the nucleus of eukaryotic cells. Recent studies suggest that chromatin accessibility and the higher-order structure of chromatin affect transcriptional outcome. This is especially evident when cells change their fate during development and nuclear reprogramming. Furthermore, non-chromosomal contents of the cell nucleus, namely nucleoskeleton proteins, can also affect chromatin and nuclear structures, resulting in transcriptional alterations. Here, we review our current mechanistic understanding about how chromatin and nuclear structures impact transcription in the course of embryonic development, cellular differentiation and nuclear reprogramming, and also discuss unresolved questions that remain to be addressed in the field.
Collapse
Affiliation(s)
- Junko Tomikawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
39
|
Maleszka R, Kucharski R. Without mechanisms, theories and models in insect epigenetics remain a black box. Trends Genet 2022; 38:1108-1111. [PMID: 35623905 DOI: 10.1016/j.tig.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023]
Abstract
Insect epigenetics must confront the remarkable diversity of epigenomic systems in various lineages and use mechanistic approaches to move beyond vague functional explanations based on predictions and inferences. To accelerate progress, what is required now is a convergence of genomic data with biochemical and single-cell-type analyses in selected species representing contrasting evolutionary solutions in epigenetics.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Robert Kucharski
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
40
|
Charoenvicha C, Sirimaharaj W, Khwanngern K, Chattipakorn N, Chattipakorn SC. Alterations in DNA Methylation in Orofacial Clefts. Int J Mol Sci 2022; 23:ijms232112727. [PMID: 36361518 PMCID: PMC9654384 DOI: 10.3390/ijms232112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Orofacial clefts are among the most common craniofacial anomalies with multifactorial etiologies, including genetics and environments. DNA methylation, one of the most acknowledged mechanisms of epigenetics, is involved in the development of orofacial clefts. DNA methylation has been examined in patients with non-syndromic cleft lip with cleft palate (nsCL/P) from multiple specimens, including blood, saliva, lip, and palate, as well as experimental studies in mice. The results can be reported in two different trends: hypomethylation and hypermethylation. Both hypomethylation and hypermethylation can potentially increase the risk of nsCL/P depending on the types of specimens and the specific regions on each gene and chromosome. This is the most up-to-date review, intending to summarize evidence of the alterations of DNA methylation in association with the occurrence of orofacial clefts. To make things straightforward to understand, we have systematically categorized the data into four main groups: human blood, human tissues, animal models, and the factors associated with DNA methylation. With this review, we are moving closer to the core of DNA methylation associated with nsCL/P development; we hope this is the initial step to find a genetic tool for early detection and prevention of the occurrence of nsCL/P.
Collapse
Affiliation(s)
- Chirakan Charoenvicha
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Surgical Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wimon Sirimaharaj
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Khwanngern
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +011-66-53-944-451; Fax: +011-66-53-222-844
| |
Collapse
|
41
|
Gong W, Pan X, Xu D, Ji G, Wang Y, Tian Y, Cai J, Li J, Zhang Z, Yuan X. Benchmarking DNA Methylation Analysis of 14 Alignment Algorithms for Whole Genome Bisulfite Sequencing in Mammals. Comput Struct Biotechnol J 2022; 20:4704-4716. [PMID: 36147684 PMCID: PMC9465269 DOI: 10.1016/j.csbj.2022.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Whole genome bisulfite sequencing (WGBS) is an essential technique for methylome studies. Although a series of tools have been developed to overcome the mapping challenges caused by bisulfite treatment, the latest available tools have not been evaluated on the performance of reads mapping as well as on biological insights in multiple mammals. Herein, based on the real and simulated WGBS data of 14.77 billion reads, we undertook 936 mappings to benchmark and evaluate 14 wildly utilized alignment algorithms from reads mapping to biological interpretation in humans, cattle and pigs: Bwa-meth, BSBolt, BSMAP, Walt, Abismal, Batmeth2, Hisat_3n, Hisat_3n_repeat, Bismark-bwt2-e2e, Bismark-his2, BSSeeker2-bwt, BSSeeker2-soap2, BSSeeker2-bwt2-e2e and BSSeeker2-bwt2-local. Specifically, Bwa-meth, BSBolt, BSMAP, Bismark-bwt2-e2e and Walt exhibited higher uniquely mapped reads, mapped precision, recall and F1 score than other nine alignment algorithms, and the influences of distinct alignment algorithms on the methylomes varied considerably at the numbers and methylation levels of CpG sites, the calling of differentially methylated CpGs (DMCs) and regions (DMRs). Moreover, we reported that BSMAP showed the highest accuracy at the detection of CpG coordinates and methylation levels, the calling of DMCs, DMRs, DMR-related genes and signaling pathways. These results suggested that careful selection of algorithms to profile the genome-wide DNA methylation is required, and our works provided investigators with useful information on the choice of alignment algorithms to effectively improve the DNA methylation detection accuracy in mammals.
Collapse
Affiliation(s)
- Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dantong Xu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guanyu Ji
- Shenzhen Gendo Health Technology CO,. Ltd, Shenzhen 518122, China
| | - Yifei Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhan Tian
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding authors.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Corresponding authors.
| |
Collapse
|
42
|
Penova-Veselinovic B, Wijs LA, Yovich JL, Burton P, Hart RJ. Cohort profile: The Growing Up Healthy Study (GUHS)-A prospective and observational cohort study investigating the long-term health outcomes of offspring conceived after assisted reproductive technologies. PLoS One 2022; 17:e0272064. [PMID: 35867723 PMCID: PMC9307151 DOI: 10.1371/journal.pone.0272064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022] Open
Abstract
Worldwide, over 8 million children and adults are conceived following assisted reproductive technologies (ART), and their long-term health is of consequential public health interest. The objective of this paper is to describe the Growing up Healthy Study (GUHS) cohort in detail, publicise it and invite collaboration. Combining the data collected in the GUHS with other cohorts or databases will improve the much-needed knowledge about the effects of ART, and allow for better understanding of the long-term health outcomes of offspring conceived after ART. The GUHS cohort is a prospective observational study of adolescents and young adults conceived after assisted reproductive technologies (ART). It was established to determine if the long-term health of offspring conceived by ART differs from that of the general population. This was investigated by comparing a substantial number of health parameters to those of a representative population of offspring conceived without ART. The n = 303 GUHS participants were born between 1991-2001 in the two fertility clinics operating at the time in Perth, Western Australia, and undertook assessments at ages 14, 17 and 20, replicating the pre-defined study protocols from the reference cohort-the Raine Study. Participants were comprehensively phenotyped through detailed questionnaires, anthropometry, biochemical analyses, as well as age-specific assessments (asthma, atopy, cardiometabolic health, body composition, mental health, thyroid function, epigenetics and vision). To date the GUHS cohort has been used to study the methylation, cardiometabolic, and thyroid profiles, as well as respiratory and mental health. To summarise, the GUHS cohort provides a valuable addition to the limited knowledge of the long-term health outcomes of ART-conceived offspring.
Collapse
Affiliation(s)
| | - Laura A. Wijs
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia
| | - John L. Yovich
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
| | - Peter Burton
- Faculty of Health Science, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Roger J. Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
43
|
Zhao B, Ding X, Wang X, Sun Y, Gao S, Song X, Zhang B, Zhang Y, Wang Y. Supplementation with kaempferol relieves oxidative stress and enhances development of early bovine embryos in vitro. Reprod Domest Anim 2022; 57:1007-1015. [PMID: 35615974 DOI: 10.1111/rda.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Oxidative stress (OS) has been considered the principle cause of developmental failure of early embryos cultured in vitro; therefore, the addition of antioxidants is very important for improving in vitro culture (IVC) systems. Various antioxidants have been tested for IVC systems, but most have exhibited some side effects. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4h-1-benzopyran-4-one, KAE) is a flavonoid with strong antioxidant activity and no obvious side effects. This study explored the effect of KAE on antioxidant capacity and developmental competence of bovine embryos after fertilization. KAE was added to bovine IVC medium and significantly reduced reactive oxygen species (ROS) in 2-, 4- and 8-cell stage embryos and increased blastocyst formation. In addition, the level of H3K9ac was increased, the apoptotic index was reduced, and total cell numbers and trophectoderm cell numbers in day 7 blastocysts were increased significantly in KAE-treated embryos compared to control. Expression of the apoptotic gene, Bcl-2, was higher in blastocysts after KAE treatment, while expression of the endoplasmic reticulum (ER) stress genes, Bip and HDAC1, and the pro-apoptotic gene, Bax, were significantly lower in the KAE group. Thus, KAE significantly reduced ROS damage and improved development of IVC bovine embryos.
Collapse
Affiliation(s)
- Baobao Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xinyi Ding
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yu Sun
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Song Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Xuexiao Song
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Bihan Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, PR China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A & F University, Yangling, Shaanxi, PR China
| |
Collapse
|
44
|
Nishio M, Matsuura T, Hibi S, Ohta S, Oka C, Sasai N, Ishida Y, Matsuda E. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression. Cell Prolif 2022; 55:e13215. [PMID: 35297517 PMCID: PMC9055898 DOI: 10.1111/cpr.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Mammalian DNA methyltransferases are essential to re-establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)-a zinc finger type of MBP-is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear. MATERIALS AND METHODS This study used the Cre-loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real-time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms. RESULTS Germline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity. CONCLUSIONS These findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.
Collapse
Affiliation(s)
- Miki Nishio
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
- Cosmo Bio Co., Ltd.TokyoJapan
| | - Takuya Matsuura
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shunya Hibi
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shiomi Ohta
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Chio Oka
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Noriaki Sasai
- Development Biomedical ScienceNara Institute of Science and TechnologyIkomaJapan
| | - Yasumasa Ishida
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Eishou Matsuda
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| |
Collapse
|
45
|
Laurent A, Madigou T, Bizot M, Turpin M, Palierne G, Mahé E, Guimard S, Métivier R, Avner S, Le Péron C, Salbert G. TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Sci Alliance 2022; 5:5/7/e202101283. [PMID: 35351824 PMCID: PMC8963717 DOI: 10.26508/lsa.202101283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
TET2-mediated oxidation of 5-methylcytosine establishes an antiviral state and contributes to MYC-dependent down-regulation of genes involved in lysosome biogenesis and function in breast cancer cells. Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine. In addition to promoting the establishment of an antiviral state, TET2 activated 5mC turnover at thousands of MYC-binding motifs and down-regulated a panel of known MYC-repressed genes involved in lysosome biogenesis and function. Thus, an extensive cross-talk between TET2 and the oncogenic transcription factor MYC establishes a lysosomal storage disease–like state that contributes to an exacerbated sensitivity to autophagy inducers.
Collapse
Affiliation(s)
- Audrey Laurent
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Thierry Madigou
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Maud Bizot
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Marion Turpin
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gaëlle Palierne
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Elise Mahé
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Sarah Guimard
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Raphaël Métivier
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Stéphane Avner
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Christine Le Péron
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gilles Salbert
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| |
Collapse
|
46
|
Li XY, Pan JX, Zhu H, Ding GL, Huang HF. Environmental epigenetic interaction of gametes and early embryos. Biol Reprod 2022; 107:196-204. [PMID: 35323884 DOI: 10.1093/biolre/ioac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations. Adverse external influences during differentiation and development can cause damage to germ cells, which may then increase the risk of chronic disease development later in life. Here, we further elucidate and clarify the concept of gamete and embryo origins of adult diseases by focusing on the environmental insults on germ cells, from differentiation to maturation and fertilization.
Collapse
Affiliation(s)
- Xin-Yuan Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
47
|
Shafqat A, Kashir J, Alsalameh S, Alkattan K, Yaqinuddin A. Fertilization, Oocyte Activation, Calcium Release and Epigenetic Remodelling: Lessons From Cancer Models. Front Cell Dev Biol 2022; 10:781953. [PMID: 35309905 PMCID: PMC8931327 DOI: 10.3389/fcell.2022.781953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Oocyte activation deficiency (OAD) is the basis of Total Fertilisation Failure (TFF) and is attributed to mutations in the PLCζ gene—termed male factor infertility. This derives abnormal Ca2+ oscillations and could be the main cause of primary disruptions in the gene expression of Ca2+-related proteins. Epigenetic mechanisms are universally accepted as key regulators of gene expression. However, epigenetic dysregulations have not been considered as potential mechanisms of oocyte-borne OAD. Herein, we discuss changes in the DNA methylome during oogenesis and embryogenesis. We further highlight key pathways comprising the oocyte Ca2+ toolkit, which could be targets of epigenetic alterations, especially aberrations in DNA methylation. Considering that the vast majority of epigenetic modifications examined during fertilization revolve around alterations in DNA methylation, we aim in this article to associate Ca2+-specific mechanisms with these alterations. To strengthen this perspective, we bring evidence from cancer research on the intricate link between DNA methylation and Ca2+ signaling as cancer research has examined such questions in a lot more detail. From a therapeutic standpoint, if our hypothesis is proven to be correct, this will explain the cause of TFF in idiopathic cases and will open doors for novel therapeutic targets.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Ahmed Yaqinuddin,
| |
Collapse
|
48
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
49
|
Marino N, German R, Podicheti R, Rusch DB, Rockey P, Huang J, Sandusky GE, Temm CJ, Althouse S, Nephew KP, Nakshatri H, Liu J, Vode A, Cao S, Storniolo AMV. Aberrant epigenetic and transcriptional events associated with breast cancer risk. Clin Epigenetics 2022; 14:21. [PMID: 35139887 PMCID: PMC8830042 DOI: 10.1186/s13148-022-01239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. RESULTS Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. CONCLUSIONS Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA. .,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Pam Rockey
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Constance J Temm
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kenneth P Nephew
- Department of Anatomy, Cell Biology, & Physiology, Indiana University, Bloomington, IN, 47405, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Liu
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Ashley Vode
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.,Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
50
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|