1
|
Hisler V, Bardot P, Detilleux D, Bernardini A, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Le Gras S, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription initiation in holo-TFIID-depleted mouse embryonic stem cells. Cell Rep 2024; 43:114791. [PMID: 39352809 PMCID: PMC11551524 DOI: 10.1016/j.celrep.2024.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The recognition of core promoter sequences by TFIID is the first step in RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is a trilobular complex, composed of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs). Why and how TAFs are necessary for the formation of TFIID domains and how they contribute to transcription initiation remain unclear. Inducible TAF7 or TAF10 depletion, followed by comprehensive analysis of TFIID subcomplex formation, chromatin binding, and nascent transcription in mouse embryonic stem cells, result in the formation of a TAF7-lacking TFIID or a minimal core-TFIID complex, respectively. These partial complexes support TBP recruitment at promoters and nascent Pol II transcription at most genes early after depletion, but importantly, TAF10 is necessary for efficient Pol II pausing. We show that partially assembled TFIID complexes can sustain Pol II transcription initiation but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Dylane Detilleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Claire Richard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Lynda Hadj Arab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Cynthia Ehrhard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; GenomEast (IGBMC), 67400 Illkirch, France
| | - Luc Négroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Proteomics Platform (IGBMC), 67400 Illkirch, France
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; INSERM, U1258, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
2
|
Luo X, Zou Q. Identifying the "stripe" transcription factors and cooperative binding related to DNA methylation. Commun Biol 2024; 7:1265. [PMID: 39367138 PMCID: PMC11452537 DOI: 10.1038/s42003-024-06992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
DNA methylation plays a critical role in gene regulation by modulating the DNA binding of transcription factors (TFs). This study integrates TFs' ChIP-seq profiles with WGBS profiles to investigate how DNA methylation affects protein interactions. Statistical methods and a 5-letter DNA motif calling model have been developed to characterize DNA sequences bound by proteins, while considering the effects of DNA modifications. By employing these methods, 79 significant universal "stripe" TFs and cofactors (USFs), 2360 co-binding protein pairs, and distinct protein modules associated with various DNA methylation states have been identified. The USFs hint a regulatory hierarchy within these protein interactions. Proteins preferentially bind to non-CpG sites in methylated regions, indicating binding affinity is not solely CpG-dependent. Proteins involved in methylation-specific USFs and cobinding pairs play essential roles in promoting and sustaining DNA methylation through interacting with DNMTs or inhibiting TET binding. These findings underscore the interplay between protein binding and methylation, offering insights into epigenetic regulation in cellular biology.
Collapse
Affiliation(s)
- Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
3
|
Rosenkrantz JL, Brandorff JE, Raghib S, Kapadia A, Vaine CA, Bragg DC, Farmiloe G, Jacobs FMJ. ZNF91 is an endogenous repressor of the molecular phenotype associated with X-linked dystonia-parkinsonism (XDP). Proc Natl Acad Sci U S A 2024; 121:e2401217121. [PMID: 39102544 PMCID: PMC11331120 DOI: 10.1073/pnas.2401217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - J. Elias Brandorff
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Sanaz Raghib
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Ashni Kapadia
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Christine A. Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Boston, MA02129
| | - Grace Farmiloe
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Frank M. J. Jacobs
- Faculty of Science, Evolutionary Neurogenomics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098 XH, The Netherlands
- Faculty of Science, Amsterdam Neuroscience, Complex Trait Genetics, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| |
Collapse
|
4
|
Wang S, Wang W. Interpretable prediction of mRNA abundance from promoter sequence using contextual regression models. NAR Genom Bioinform 2024; 6:lqae055. [PMID: 38807713 PMCID: PMC11131020 DOI: 10.1093/nargab/lqae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024] Open
Abstract
While machine learning models have been successfully applied to predicting gene expression from promoter sequences, it remains a great challenge to derive intuitive interpretation of the model and reveal DNA motif grammar such as motif cooperation and distance constraint between motif sites. Previous interpretation approaches are often time-consuming or have difficulty to learn the combinatory rules. In this work, we designed interpretable neural network models to predict the mRNA expression levels from DNA sequences. By applying the Contextual Regression framework we developed, we extracted weighted features to cluster samples into different groups, which have different gene expression levels. We performed motif analysis in each cluster and found motifs with active or repressive regulation on gene expression. By comparing the co-occurrence locations of discovered motifs, we also uncovered multiple grammars of motif combination including communities of cooperative motifs and distance constraints between motif pairs. These results revealed new insights of the regulatory architecture of promoter sequences.
Collapse
Affiliation(s)
- Song Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0359, USA
| |
Collapse
|
5
|
Miyasaka S, Kitada R, Kokubo T. Taf1 N-terminal domain 2 (TAND2) of TFIID promotes formation of stable and mobile unstable TBP-TATA complexes. Gene 2023; 889:147800. [PMID: 37716588 DOI: 10.1016/j.gene.2023.147800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
In eukaryotes, TATA-binding protein (TBP) occupancy of the core promoter globally correlates with transcriptional activity of class II genes. Elucidating how TBP is delivered to the TATA box or TATA-like element is crucial to understand the mechanisms of transcriptional regulation. A previous study demonstrated that the inhibitory DNA binding (IDB) surface of human TBP plays an indispensable role during the two-step formation of the TBP-TATA complex, first assuming an unstable and unbent intermediate conformation, and subsequently converting slowly to a stable and bent conformation. The DNA binding property of TBP is altered by physical contact of this surface with TBP regulators. In the present study, we examined whether the interaction between Taf1 N-terminal domain 2 (TAND2) and the IDB surface affected DNA binding property of yeast TBP by exploiting TAND2-fused TBP derivatives. TAND2 promoted formation of two distinct types of TBP-TATA complexes, which we arbitrarily designated as complex I and II. While complex I was stable and similar to the well-characterized original TBP-TATA complex, complex II was unstable and moved along DNA. Removal of TAND2 from TBP after complex formation revealed that continuous contact of TAND2 with the IDB surface was required for formation of complex II but not complex I. Further, TFIIA could be incorporated into the complex of TAND2-fused TBP and the TATA box, which was dependent on the amino-terminal non-conserved region of TBP, implying that this region could facilitate the exchange between TAND2 and TFIIA on the IDB surface. Collectively, these findings provide novel insights into the mechanism by which TBP is relieved from the interaction with TAND to bind the TATA box or TATA-like element within promoter-bound TFIID.
Collapse
Affiliation(s)
- Shinji Miyasaka
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Ryota Kitada
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Kokubo
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Engelhardt M, Hintze S, Wendegatz EC, Lettow J, Schüller HJ. Ino2, activator of yeast phospholipid biosynthetic genes, interacts with basal transcription factors TFIIA and Bdf1. Curr Genet 2023; 69:289-300. [PMID: 37947853 PMCID: PMC10716077 DOI: 10.1007/s00294-023-01277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal β-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.
Collapse
Affiliation(s)
- Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Stefan Hintze
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Munich, Germany
| | - Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut für Genetik und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
7
|
Hisler V, Bardot P, Detilleux D, Stierle M, Sanchez EG, Richard C, Arab LH, Ehrhard C, Morlet B, Hadzhiev Y, Jung M, Gras SL, Négroni L, Müller F, Tora L, Vincent SD. RNA polymerase II transcription with partially assembled TFIID complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.567046. [PMID: 38076793 PMCID: PMC10705246 DOI: 10.1101/2023.11.27.567046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.
Collapse
Affiliation(s)
- Vincent Hisler
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Paul Bardot
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Dylane Detilleux
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Matthieu Stierle
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Emmanuel Garcia Sanchez
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claire Richard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Lynda Hadj Arab
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Cynthia Ehrhard
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Bastien Morlet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Yavor Hadzhiev
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Matthieu Jung
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Stéphanie Le Gras
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- GenomEast
| | - Luc Négroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
- Proteomics platform
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - László Tora
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Stéphane D. Vincent
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- CNRS, UMR 7104, F-67400 Illkirch, France
- Inserm, UMR-S 1258, F-67400 Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| |
Collapse
|
8
|
Liao CC, Wang YS, Pi WC, Wang CH, Wu YM, Chen WY, Hsia KC. Structural convergence endows nuclear transport receptor Kap114p with a transcriptional repressor function toward TATA-binding protein. Nat Commun 2023; 14:5518. [PMID: 37684250 PMCID: PMC10491584 DOI: 10.1038/s41467-023-41206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the involvement of nuclear transport receptors, collectively termed karyopherin-β (Kap-β) in yeast, and various regulatory factors. In previous studies we showed that Kap114p, a Kap-β that mediates nuclear import of yeast TBP (yTBP), modulates yTBP-dependent transcription. However, how Kap114p associates with yTBP to exert its multifaceted functions has remained elusive. Here, we employ single-particle cryo-electron microscopy to determine the structure of Kap114p in complex with the core domain of yTBP (yTBPC). Remarkably, Kap114p wraps around the yTBPC N-terminal lobe, revealing a structure resembling transcriptional regulators in complex with TBP, suggesting convergent evolution of the two protein groups for a common function. We further demonstrate that Kap114p sequesters yTBP away from promoters, preventing a collapse of yTBP dynamics required for yeast responses to environmental stress. Hence, we demonstrate that nuclear transport receptors represent critical elements of the transcriptional regulatory network.
Collapse
Affiliation(s)
- Chung-Chi Liao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Sen Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Kuo-Chiang Hsia
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
9
|
Hu S, Song A, Peng L, Tang N, Qiao Z, Wang Z, Lan F, Chen FX. H3K4me2/3 modulate the stability of RNA polymerase II pausing. Cell Res 2023; 33:403-406. [PMID: 36922644 PMCID: PMC10156655 DOI: 10.1038/s41422-023-00794-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Affiliation(s)
- Shibin Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Linna Peng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Nan Tang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhibin Qiao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Lan
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Human Phenome Institute, Shanghai Key Laboratory of Radiation Oncology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Saleh MM, Hundley HA, Zentner GE. Involvement of the SAGA and TFIID coactivator complexes in transcriptional dysregulation caused by the separation of core and tail Mediator modules. G3 (BETHESDA, MD.) 2022; 12:jkac290. [PMID: 36331351 PMCID: PMC9713439 DOI: 10.1093/g3journal/jkac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Regulation of RNA polymerase II transcription requires the concerted efforts of several multisubunit coactivator complexes, which interact with the RNA polymerase II preinitiation complex to stimulate transcription. We previously showed that separation of the Mediator core from Mediator's tail module results in modest overactivation of genes annotated as highly dependent on TFIID for expression. However, it is unclear if other coactivators are involved in this phenomenon. Here, we show that the overactivation of certain genes by Mediator core/tail separation is blunted by disruption of the Spt-Ada-Gcn5-Acetyl transferase complex through the removal of its structural Spt20 subunit, though this downregulation does not appear to completely depend on reduced Spt-Ada-Gcn5-Acetyl transferase association with the genome. Consistent with the enrichment of TFIID-dependent genes among genes overactivated by Mediator core/tail separation, depletion of the essential TFIID subunit Taf13 suppressed the overactivation of these genes when Med16 was simultaneously removed. As with Spt-Ada-Gcn5-Acetyl transferase, this effect did not appear to be fully dependent on the reduced genomic association of TFIID. Given that the observed changes in gene expression could not be clearly linked to alterations in Spt-Ada-Gcn5-Acetyl transferase or TFIID occupancy, our data may suggest that the Mediator core/tail connection is important for the modulation of Spt-Ada-Gcn5-Acetyl transferase and/or TFIID conformation and/or function at target genes.
Collapse
Affiliation(s)
- Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Santana JF, Collins GS, Parida M, Luse DS, Price D. Differential dependencies of human RNA polymerase II promoters on TBP, TAF1, TFIIB and XPB. Nucleic Acids Res 2022; 50:9127-9148. [PMID: 35947745 PMCID: PMC9458433 DOI: 10.1093/nar/gkac678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
The effects of rapid acute depletion of components of RNA polymerase II (Pol II) general transcription factors (GTFs) that are thought to be critical for formation of preinitiation complexes (PICs) and initiation in vitro were quantified in HAP1 cells using precision nuclear run-on sequencing (PRO-Seq). The average dependencies for each factor across >70 000 promoters varied widely even though levels of depletions were similar. Some of the effects could be attributed to the presence or absence of core promoter elements such as the upstream TBP-specificity motif or downstream G-rich sequences, but some dependencies anti-correlated with such sequences. While depletion of TBP had a large effect on most Pol III promoters only a small fraction of Pol II promoters were similarly affected. TFIIB depletion had the largest general effect on Pol II and also correlated with apparent termination defects downstream of genes. Our results demonstrate that promoter activity is combinatorially influenced by recruitment of TFIID and sequence-specific transcription factors. They also suggest that interaction of the preinitiation complex (PIC) with nucleosomes can affect activity and that recruitment of TFIID containing TBP only plays a positive role at a subset of promoters.
Collapse
Affiliation(s)
- Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Geoffrey S Collins
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
12
|
Fischer V, Hisler V, Scheer E, Lata E, Morlet B, Plassard D, Helmlinger D, Devys D, Tora L, Vincent S. SUPT3H-less SAGA coactivator can assemble and function without significantly perturbing RNA polymerase II transcription in mammalian cells. Nucleic Acids Res 2022; 50:7972-7990. [PMID: 35871303 PMCID: PMC9371916 DOI: 10.1093/nar/gkac637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Coactivator complexes regulate chromatin accessibility and transcription. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved coactivator complex. The core module scaffolds the entire SAGA complex and adopts a histone octamer-like structure, which consists of six histone-fold domain (HFD)-containing proteins forming three histone-fold (HF) pairs, to which the double HFD-containing SUPT3H adds one HF pair. Spt3, the yeast ortholog of SUPT3H, interacts genetically and biochemically with the TATA binding protein (TBP) and contributes to global RNA polymerase II (Pol II) transcription. Here we demonstrate that (i) SAGA purified from human U2OS or mouse embryonic stem cells (mESC) can assemble without SUPT3H, (ii) SUPT3H is not essential for mESC survival, but required for their growth and self-renewal, and (iii) the loss of SUPT3H from mammalian cells affects the transcription of only a specific subset of genes. Accordingly, in the absence of SUPT3H no major change in TBP accumulation at gene promoters was observed. Thus, SUPT3H is not required for the assembly of SAGA, TBP recruitment, or overall Pol II transcription, but plays a role in mESC growth and self-renewal. Our data further suggest that yeast and mammalian SAGA complexes contribute to transcription regulation by distinct mechanisms.
Collapse
Affiliation(s)
- Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Lata
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Plateforme GenomEast, infrastructure France Génomique, 67404 Illkirch, France
| | | | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) , UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) , U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
13
|
Jiménez-Mejía G, Montalvo-Méndez R, Hernández-Bautista C, Altamirano-Torres C, Vázquez M, Zurita M, Reséndez-Pérez D. Trimeric complexes of Antp-TBP with TFIIEβ or Exd modulate transcriptional activity. Hereditas 2022; 159:23. [PMID: 35637493 PMCID: PMC9150345 DOI: 10.1186/s41065-022-00239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hox proteins finely coordinate antero-posterior axis during embryonic development and through their action specific target genes are expressed at the right time and space to determine the embryo body plan. As master transcriptional regulators, Hox proteins recognize DNA through the homeodomain (HD) and interact with a multitude of proteins, including general transcription factors and other cofactors. HD binding specificity increases by protein–protein interactions with a diversity of cofactors that outline the Hox interactome and determine the transcriptional landscape of the selected target genes. All these interactions clearly demonstrate Hox-driven transcriptional regulation, but its precise mechanism remains to be elucidated. Results Here we report Antennapedia (Antp) Hox protein–protein interaction with the TATA-binding protein (TBP) and the formation of novel trimeric complexes with TFIIEβ and Extradenticle (Exd), as well as its participation in transcriptional regulation. Using Bimolecular Fluorescence Complementation (BiFC), we detected the interaction of Antp-TBP and, in combination with Förster Resonance Energy Transfer (BiFC-FRET), the formation of the trimeric complex with TFIIEβ and Exd in living cells. Mutational analysis showed that Antp interacts with TBP through their N-terminal polyglutamine-stretches. The trimeric complexes of Antp-TBP with TFIIEβ and Exd were validated using different Antp mutations to disrupt the trimeric complexes. Interestingly, the trimeric complex Antp-TBP-TFIIEβ significantly increased the transcriptional activity of Antp, whereas Exd diminished its transactivation. Conclusions Our findings provide important insights into the Antp interactome with the direct interaction of Antp with TBP and the two new trimeric complexes with TFIIEβ and Exd. These novel interactions open the possibility to analyze promoter function and gene expression to measure transcription factor binding dynamics at target sites throughout the genome. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00239-8.
Collapse
|
14
|
Liu Y, Lin Y, Guo Y, Wu F, Zhang Y, Qi X, Wang Z, Wang Q. Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:155. [PMID: 34229745 PMCID: PMC8259078 DOI: 10.1186/s13068-021-02005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/26/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is widely used in traditional brewing and modern fermentation industries to produce biofuels, chemicals and other bioproducts, but challenged by various harsh industrial conditions, such as hyperosmotic, thermal and ethanol stresses. Thus, its stress tolerance enhancement has been attracting broad interests. Recently, CRISPR/Cas-based genome editing technology offers unprecedented tools to explore genetic modifications and performance improvement of S. cerevisiae. RESULTS Here, we presented that the Target-AID (activation-induced cytidine deaminase) base editor of enabling C-to-T substitutions could be harnessed to generate in situ nucleotide changes on the S. cerevisiae genome, thereby introducing protein point mutations in cells. The general transcription factor gene SPT15 was targeted, and total 36 mutants with diversified stress tolerances were obtained. Among them, the 18 tolerant mutants against hyperosmotic, thermal and ethanol stresses showed more than 1.5-fold increases of fermentation capacities. These mutations were mainly enriched at the N-terminal region and the convex surface of the saddle-shaped structure of Spt15. Comparative transcriptome analysis of three most stress-tolerant (A140G, P169A and R238K) and two most stress-sensitive (S118L and L214V) mutants revealed common and distinctive impacted global transcription reprogramming and transcriptional regulatory hubs in response to stresses, and these five amino acid changes had different effects on the interactions of Spt15 with DNA and other proteins in the RNA Polymerase II transcription machinery according to protein structure alignment analysis. CONCLUSIONS Taken together, our results demonstrated that the Target-AID base editor provided a powerful tool for targeted in situ mutagenesis in S. cerevisiae and more potential targets of Spt15 residues for enhancing yeast stress tolerance.
Collapse
Affiliation(s)
- Yanfang Liu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Fengli Wu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanyuan Zhang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xianni Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhen Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
16
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
What do Transcription Factors Interact With? J Mol Biol 2021; 433:166883. [PMID: 33621520 DOI: 10.1016/j.jmb.2021.166883] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Although we have made significant progress, we still possess a limited understanding of how genomic and epigenomic information directs gene expression programs through sequence-specific transcription factors (TFs). Extensive research has settled on three general classes of TF targets in metazoans: promoter accessibility via chromatin regulation (e.g., SAGA), assembly of the general transcription factors on promoter DNA (e.g., TFIID), and recruitment of RNA polymerase (Pol) II (e.g., Mediator) to establish a transcription pre-initiation complex (PIC). Here we discuss TFs and their targets. We also place this in the context of our current work with Saccharomyces (yeast), where we find that promoters typically lack an architecture that supports TF function. Moreover, yeast promoters that support TF binding also display interactions with cofactors like SAGA and Mediator, but not TFIID. It is unknown to what extent all genes in metazoans require TFs and their cofactors.
Collapse
|
18
|
Al Ali J, Vaine CA, Shah S, Campion L, Hakoum A, Supnet ML, Acuña P, Aldykiewicz G, Multhaupt‐Buell T, Ganza NG, Lagarde JB, De Guzman JK, Go C, Currall B, Trombetta B, Webb PK, Talkowski M, Arnold SE, Cheah PS, Ito N, Sharma N, Bragg DC, Ozelius L, Breakefield XO. TAF1 Transcripts and Neurofilament Light Chain as Biomarkers for X-linked Dystonia-Parkinsonism. Mov Disord 2021; 36:206-215. [PMID: 32975318 PMCID: PMC7891430 DOI: 10.1002/mds.28305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-linked dystonia-parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full-length mRNA transcript. OBJECTIVES The objective of this study was to discover cell-based and biofluid-based biomarkers for X-linked dystonia-parkinsonism. METHODS RNA from patient-derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet-digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5' and 3' to the retrotransposon insertion and the disease-specific splice variant TAF1-32i in whole-blood RNA. Plasma levels of neurofilament light chain were measured using single-molecule array. RESULTS In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1-3'/5' ratio was lower in patient samples, whereas TAF1-32i expression is higher relative to controls. In whole-blood RNA, both TAF1-3'/5' ratio and TAF1-32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79. CONCLUSIONS TAF1 dysregulation in blood serves as a disease-specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jamal Al Ali
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Christine A. Vaine
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Shivangi Shah
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Lindsey Campion
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Ahmad Hakoum
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Melanie L. Supnet
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Patrick Acuña
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
- Sunshine Care FoundationRoxas CityPhilippines
| | - Gabrielle Aldykiewicz
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Trisha Multhaupt‐Buell
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | | | - Jan K. De Guzman
- Sunshine Care FoundationRoxas CityPhilippines
- Department of NeurologyJose R. Reyes Memorial Medical CenterMetro ManilaPhilippines
| | - Criscely Go
- Department of NeurologyJose R. Reyes Memorial Medical CenterMetro ManilaPhilippines
| | - Benjamin Currall
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Center for Genomic Medicine, Mass General Research InstituteMassachusetts General HospitalBostonMassachusettsUSA
| | - Bianca Trombetta
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, Alzheimer's Clinical & Translational Research UnitMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Pia K. Webb
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, Alzheimer's Clinical & Translational Research UnitMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Michael Talkowski
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
- Center for Genomic Medicine, Mass General Research InstituteMassachusetts General HospitalBostonMassachusettsUSA
| | - Steven E. Arnold
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, Alzheimer's Clinical & Translational Research UnitMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Pike S. Cheah
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Human AnatomyFaculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdangMalaysia
| | - Naoto Ito
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nutan Sharma
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - D. Cristopher Bragg
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laurie Ozelius
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Xandra O. Breakefield
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Neurology, The Collaborative Center for X‐linked Dystonia‐ParkinsonismMassachusetts General HospitalCharlestownMassachusettsUSA
- Center for Molecular Imaging Research, Department of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
19
|
Perna S, Pinoli P, Ceri S, Wong L. NAUTICA: classifying transcription factor interactions by positional and protein-protein interaction information. Biol Direct 2020; 15:13. [PMID: 32938476 PMCID: PMC7493360 DOI: 10.1186/s13062-020-00268-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inferring the mechanisms that drive transcriptional regulation is of great interest to biologists. Generally, methods that predict physical interactions between transcription factors (TFs) based on positional information of their binding sites (e.g. chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) cannot distinguish between different kinds of interaction at the same binding spots, such as co-operation and competition. RESULTS In this work, we present the Network-Augmented Transcriptional Interaction and Coregulation Analyser (NAUTICA), which employs information from protein-protein interaction (PPI) networks to assign TF-TF interaction candidates to one of three classes: competition, co-operation and non-interactions. NAUTICA filters available PPI network edges and fits a prediction model based on the number of shared partners in the PPI network between two candidate interactors. CONCLUSIONS NAUTICA improves on existing positional information-based TF-TF interaction prediction results, demonstrating how PPI information can improve the quality of TF interaction prediction. NAUTICA predictions - both co-operations and competitions - are supported by literature investigation, providing evidence on its capability of providing novel interactions of both kinds. REVIEWERS This article was reviewed by Zoltán Hegedüs and Endre Barta.
Collapse
Affiliation(s)
- Stefano Perna
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Giuseppe Ponzio 34/5, 20133, Milan, Italy.
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Giuseppe Ponzio 34/5, 20133, Milan, Italy
| | - Stefano Ceri
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Giuseppe Ponzio 34/5, 20133, Milan, Italy
| | - Limsoon Wong
- National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Liao CC, Shankar S, Pi WC, Chang CC, Ahmed GR, Chen WY, Hsia KC. Karyopherin Kap114p-mediated trans-repression controls ribosomal gene expression under saline stress. EMBO Rep 2020; 21:e48324. [PMID: 32484313 DOI: 10.15252/embr.201948324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Nuclear accessibility of transcription factors controls gene expression, co-regulated by Ran-dependent nuclear localization and a competitive regulatory network. Here, we reveal that nuclear import factor-facilitated transcriptional repression attenuates ribosome biogenesis under chronic salt stress. Kap114p, one of the karyopherin-βs (Kap-βs) that mediates nuclear import of yeast TATA-binding protein (yTBP), exhibits a yTBP-binding affinity four orders of magnitude greater than its counterparts and suppresses binding of yTBP with DNA. Our crystal structure of Kap114p reveals an extensively negatively charged concave surface, accounting for high-affinity basic-protein binding. KAP114 knockout in yeast leads to a high-salt growth defect, with transcriptomic analyses revealing that Kap114p modulates expression of genes associated with ribosomal biogenesis by suppressing yTBP binding to target promoters, a trans-repression mechanism we attribute to reduced nuclear Ran levels under salinity stress. Our findings reveal that Ran integrates the nuclear transport pathway and transcription regulatory network, allowing yeast to respond to environmental stresses.
Collapse
Affiliation(s)
- Chung-Chi Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sahana Shankar
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
21
|
Molecular determinants underlying functional innovations of TBP and their impact on transcription initiation. Nat Commun 2020; 11:2384. [PMID: 32404905 PMCID: PMC7221094 DOI: 10.1038/s41467-020-16182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
TATA-box binding protein (TBP) is required for every single transcription event in archaea and eukaryotes. It binds DNA and harbors two repeats with an internal structural symmetry that show sequence asymmetry. At various times in evolution, TBP has acquired multiple interaction partners and different organisms have evolved TBP paralogs with additional protein regions. Together, these observations raise questions of what molecular determinants (i.e. key residues) led to the ability of TBP to acquire new interactions, resulting in an increasingly complex transcriptional system in eukaryotes. We present a comprehensive study of the evolutionary history of TBP and its interaction partners across all domains of life, including viruses. Our analysis reveals the molecular determinants and suggests a unified and multi-stage evolutionary model for the functional innovations of TBP. These findings highlight how concerted chemical changes on a conserved structural scaffold allow for the emergence of complexity in a fundamental biological process. The TATA-box binding protein (TBP) is required for transcription initiation in archaea and eukaryotes. Here the authors delineate how TBP’s function has evolved new functional features through context-dependent interactions with various protein partners.
Collapse
|
22
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
23
|
Papai G, Frechard A, Kolesnikova O, Crucifix C, Schultz P, Ben-Shem A. Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature 2020; 577:711-716. [PMID: 31969704 DOI: 10.1038/s41586-020-1944-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022]
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.
Collapse
Affiliation(s)
- Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Alexandre Frechard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Corinne Crucifix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - Adam Ben-Shem
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
24
|
Abstract
Specificity in transcriptional regulation is imparted by transcriptional activators that bind to specific DNA sequences from which they stimulate transcription. Specificity may be increased by slowing down the kinetics of regulation: by increasing the energy for dissociation of the activator-DNA complex or decreasing activator concentration. In general, higher dissociation energies imply longer DNA dwell times of the activator; the activator-bound gene may not readily turn off again. Lower activator concentrations entail longer pauses between binding events; the activator-unbound gene is not easily turned on again and activated transcription occurs in stochastic bursts. We show that kinetic proofreading of activator-DNA recognition-insertion of an energy-dissipating delay step into the activation pathway for transcription-reconciles high specificity of transcriptional regulation with fast regulatory kinetics. We show that kinetic proofreading results from the stochastic removal and reformation of promoter nucleosomes, at a distance from equilibrium.
Collapse
|
25
|
Patel AB, Greber BJ, Nogales E. Recent insights into the structure of TFIID, its assembly, and its binding to core promoter. Curr Opin Struct Biol 2019; 61:17-24. [PMID: 31751889 DOI: 10.1016/j.sbi.2019.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
TFIID is a large multiprotein assembly that serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II (Pol II). TFIID is involved in the recognition of the core promoter sequences and neighboring chromatin marks, and can interact with gene-specific activators and repressors. In order to obtain a better molecular and mechanistic understanding of the function of TFIID, its structure has been pursued for many years. However, the scarcity of TFIID and its highly flexible nature have made this pursuit very challenging. Recent breakthroughs, largely due to methodological advances in cryo-electron microscopy, have finally described the structure of this complex, both alone and engaged with core promoter DNA, revealing the functional significance of its conformational complexity in the process of core promoter recognition and initiation of Pol II transcription. Here, we review these recent structural insights and discuss their implications for our understanding of eukaryotic transcription initiation.
Collapse
Affiliation(s)
- Avinash B Patel
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA.
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Multiple direct interactions of TBP with the MYC oncoprotein. Nat Struct Mol Biol 2019; 26:1035-1043. [DOI: 10.1038/s41594-019-0321-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
|
27
|
Santiago Á, Razo-Hernández RS, Pastor N. The TATA-binding Protein DNA-binding domain of eukaryotic parasites is a potentially druggable target. Chem Biol Drug Des 2019; 95:130-149. [PMID: 31569300 DOI: 10.1111/cbdd.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/14/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
The TATA-binding protein (TBP) is a central transcription factor in eukaryotes that interacts with a large number of different transcription factors; thus, affecting these interactions will be lethal for any living being. In this work, we present the first structural and dynamic computational study of the surface properties of the TBP DNA-binding domain for a set of parasites involved in diseases of worldwide interest. The sequence and structural differences of these TBPs, as compared with human TBP, were proposed to select representative ensembles generated from molecular dynamics simulations and to evaluate their druggability by molecular ensemble-based docking of drug-like molecules. We found that potential druggable sites correspond to the NC2-binding site, N-terminal tail, H2 helix, and the interdomain region, with good selectivity for Plasmodium falciparum, Necator americanus, Entamoeba histolytica, Candida albicans, and Taenia solium TBPs. The best hit compounds share structural similarity among themselves and have predicted dissociation constants ranging from nM to μM. These can be proposed as initial scaffolds for experimental testing and further optimization. In light of the obtained results, we propose TBP as an attractive therapeutic target for treatment of parasitic diseases.
Collapse
Affiliation(s)
- Ángel Santiago
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Doctorado en Ciencias, CIDC-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
28
|
Co-translational assembly of mammalian nuclear multisubunit complexes. Nat Commun 2019; 10:1740. [PMID: 30988355 PMCID: PMC6465333 DOI: 10.1038/s41467-019-09749-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023] Open
Abstract
Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes. Genes encoding protein complex subunits are often dispersed in the genome of eukaryotes, raising the question how these protein complexes assemble. Here, the authors provide evidence that mammalian nuclear transcription complexes are formed co-translationally to ensure specific and functional interactions.
Collapse
|
29
|
Song PC, Le H, Acuna P, De Guzman JKP, Sharma N, Francouer TN, Dy ME, Go CL. Voice and swallowing dysfunction in X‐linked dystonia parkinsonism. Laryngoscope 2019; 130:171-177. [DOI: 10.1002/lary.27897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Phillip C. Song
- Department of OtolaryngologyMassachusetts Eye and Ear Infirmary Boston Massachusetts U.S.A
| | - Hoai Le
- Department of OtolaryngologyMassachusetts Eye and Ear Infirmary Boston Massachusetts U.S.A
| | - Patrick Acuna
- The Collaborative Center for X‐linked Dystonia ParkinsonismDepartment of Neurology, Massachusetts General Hospital Boston Massachusetts U.S.A
- Sunshine Care Foundation Roxas City Philippines
| | - Jan Kristopher Palentinos De Guzman
- The Collaborative Center for X‐linked Dystonia ParkinsonismDepartment of Neurology, Massachusetts General Hospital Boston Massachusetts U.S.A
| | - Nutan Sharma
- The Collaborative Center for X‐linked Dystonia ParkinsonismDepartment of Neurology, Massachusetts General Hospital Boston Massachusetts U.S.A
| | - Taylor N. Francouer
- Department of NeurologyMassachusetts General Hospital Boston Massachusetts U.S.A
| | - Marisela E. Dy
- Department of NeurologyBoston Children's Hospital/Massachusetts General Hospital Boston Massachusetts U.S.A
| | - Criscely L. Go
- Department of NeurologyJose R. Reyes Memorial Medical Center Manila Philippines
| |
Collapse
|
30
|
Bartold K, Pietrzyk-Le A, Lisowski W, Golebiewska K, Siklitskaya A, Borowicz P, Shao S, D'Souza F, Kutner W. Promoting bioanalytical concepts in genetics: A TATA box molecularly imprinted polymer as a small isolated fragment of the DNA damage repairing system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:1-10. [PMID: 30948043 DOI: 10.1016/j.msec.2019.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
We demonstrate that a new, stable, artificial TATA (T - thymine, A - adenine) box is recognized by amino acids recognizing the natural TATA box. Here, the former mimicked, as a minimal motif, oligodeoxyribonucleotide interactions with amino acids of proteins involved in repairing of damaged dsDNA. By electropolymerization, we molecularly imprinted non-labeled 5'-TATAAA-3' via Watson-Crick nucleobase pairing, thus synthesizing, in a one-step procedure, the hexakis[bis(2,2'-bithien-5-yl)] TTTATA and simultaneously hybridizing it with the 5'-TATAAA-3' template. That is, a stable dsDNA analog having a controlled sequence of nucleobases was formed in the molecularly imprinted polymer (MIP). The 5'-TATAAA-3' was by the X-ray photoelectron spectroscopy (XPS) depth profiling found to be homogeneously distributed both in the bulk of the MIP film and on its surface. The 5'-TATAAA-3' concentration in the 2.8(±0.2)-nm relative surface area, ~140-nm thick MIP film was 2.1 mM. The MIP served as a matrix of an artificial TATA box with the TATAAA-promoter sequence. We comprehensively characterized this artificial DNA hybrid by the polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Further, we examined interactions of DNA repairing TATA binding protein (TBP) amino acids with the artificial TATA box prepared. That is, molecules of l-phenylalanine aromatic amino acid were presumably engaged in stacking interactions with nucleobase steps of this artificial TATA box. The nitrogen-to‑phosphorus atomic % ratio on the surface of the MIP-(5'-TATAAA-3') film increased by ~1.6 times after film immersing in the l-glutamic acid solution, as determined using the XPS depth profiling. Furthermore, l-lysine and l-serine preferentially interacted with the phosphate moiety of 5'-TATAAA-3'. We monitored amino acids interactions with the artificial TATA box using real-time piezoelectric microgravimetry at a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy under flow injection analysis (FIA) conditions.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Shuai Shao
- Department of Chemistry, University of North Texas, Denton TX, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton TX, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Poland
| |
Collapse
|
31
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
32
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
33
|
Patel AB, Louder RK, Greber BJ, Grünberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 2018; 362:eaau8872. [PMID: 30442764 PMCID: PMC6446905 DOI: 10.1126/science.aau8872] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy, chemical cross-linking mass spectrometry, and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA box-binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.
Collapse
Affiliation(s)
- Avinash B Patel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Sebastian Grünberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Steve Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eva Nogales
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Kinyanyi D, Obiero G, Obiero GFO, Amwayi P, Mwaniki S, Wamalwa M. In silico structural and functional prediction of African swine fever virus protein-B263R reveals features of a TATA-binding protein. PeerJ 2018; 6:e4396. [PMID: 29492339 PMCID: PMC5825884 DOI: 10.7717/peerj.4396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of ASF, a fatal hemorrhagic fever that affects domestic pigs. There is currently no vaccine against ASFV, making it a significant threat to the pork industry. The ASFV genome sequence has been published; however, about half of ASFV open reading frames have not been characterized in terms of their structure and function despite being essential for our understanding of ASFV pathogenicity. The present study reports the three-dimensional structure and function of uncharacterized protein, pB263R (NP_042780.1), an open reading frame found in all ASFV strains. Sequence-based profiling and hidden Markov model search methods were used to identify remote pB263R homologs. Iterative Threading ASSEmbly Refinement (I-TASSER) was used to model the three-dimensional structure of pB263R. The posterior probability of fold family assignment was calculated using TM-fold, and biological function was assigned using TM-site, RaptorXBinding, Gene Ontology, and TM-align. Our results suggests that pB263R has the features of a TATA-binding protein and is thus likely to be involved in viral gene transcription.
Collapse
Affiliation(s)
- Dickson Kinyanyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - George Obiero
- Center for Biotechnology and Bioinformatics, University Of Nairobi, Nairobi, Kenya
| | - George F O Obiero
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Peris Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Stephen Mwaniki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| | - Mark Wamalwa
- Department of Biochemistry and Biotechnology, Kenyatta University, Ruiru, Kenya
| |
Collapse
|
35
|
Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc Natl Acad Sci U S A 2017; 114:E11020-E11028. [PMID: 29229810 PMCID: PMC5754783 DOI: 10.1073/pnas.1712526114] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genetic basis of X-Linked dystonia-parkinsonism (XDP) has been difficult to unravel, in part because all patients inherit the same haplotype of seven sequence variants, none of which has ever been identified in control individuals. This study revealed that one of the haplotype markers, a retrotransposon insertion within an intron of TAF1, has a variable number of hexameric repeats among affected individuals with an increase in repeat number strongly correlated with earlier age at disease onset. These data support a contributing role for this sequence in disease pathogenesis while further suggesting that XDP may be part of a growing list of neurodegenerative disorders associated with unstable repeat expansions. X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein–associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n. The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.
Collapse
|
36
|
Gupta K, Watson AA, Baptista T, Scheer E, Chambers AL, Koehler C, Zou J, Obong-Ebong I, Kandiah E, Temblador A, Round A, Forest E, Man P, Bieniossek C, Laue ED, Lemke EA, Rappsilber J, Robinson CV, Devys D, Tora L, Berger I. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. eLife 2017; 6:e30395. [PMID: 29111974 PMCID: PMC5690282 DOI: 10.7554/elife.30395] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
General transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-interaction domain (CTID) in TAF13, which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.
Collapse
Affiliation(s)
- Kapil Gupta
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- European Molecular Biology LaboratoryGrenobleFrance
| | | | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Anna L Chambers
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | | | - Juan Zou
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Ima Obong-Ebong
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Eaazhisai Kandiah
- European Molecular Biology LaboratoryGrenobleFrance
- Institut de Biologie Structurale IBSGrenobleFrance
| | | | - Adam Round
- European Molecular Biology LaboratoryGrenobleFrance
| | - Eric Forest
- Institut de Biologie Structurale IBSGrenobleFrance
| | - Petr Man
- Institute of MicrobiologyThe Czech Academy of SciencesVestecCzech Republic
- BioCeV - Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Ernest D Laue
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Juri Rappsilber
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
- Chair of BioanalyticsInstitute of Biotechnology, Technische Universität BerlinBerlinGermany
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryOxfordUnited Kingdom
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMCIllkirchFrance
- Centre National de la Recherche ScientifiqueIllkirchFrance
- Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Imre Berger
- BrisSynBio Centre, The School of Biochemistry, Faculty of Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
37
|
Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 2017; 68:118-129.e5. [PMID: 28918900 DOI: 10.1016/j.molcel.2017.08.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We re-examined the role of TFIID by rapid depletion of S. cerevisiae TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Taf1, Taf2, Taf7, Taf11, and Taf13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing, and TATA-less gene classes. The magnitude of TFIID dependence varies with growth conditions, although this variation is similar genome-wide. Many studies have suggested differences in gene-regulatory mechanisms between TATA and TATA-less genes, and these differences have been attributed in part to differential dependence on SAGA or TFIID. Our work indicates that TFIID participates in expression of nearly all yeast mRNAs and that differences in regulation between these two gene categories is due to other properties.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
38
|
p53 Dynamically Directs TFIID Assembly on Target Gene Promoters. Mol Cell Biol 2017; 37:MCB.00085-17. [PMID: 28416636 DOI: 10.1128/mcb.00085-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
p53 is a central regulator that turns on vast gene networks to maintain cellular integrity in the presence of various stimuli. p53 activates transcription initiation in part by aiding recruitment of TFIID to the promoter. However, the precise means by which p53 dynamically interacts with TFIID to facilitate assembly on target gene promoters remains elusive. To address this key issue, we have undertaken an integrated approach involving single-molecule fluorescence microscopy, single-particle cryo-electron microscopy, and biochemistry. Our real-time single-molecule imaging data demonstrate that TFIID alone binds poorly to native p53 target promoters. p53 unlocks TFIID's ability to bind DNA by stabilizing TFIID contacts with both the core promoter and a region within p53's response element. Analysis of single-molecule dissociation kinetics reveals that TFIID interacts with promoters via transient and prolonged DNA binding modes that are each regulated by p53. Importantly, our structural work reveals that TFIID's conversion to a rearranged DNA binding conformation is enhanced in the presence of DNA and p53. Notably, TFIID's interaction with DNA induces p53 to rapidly dissociate, which likely leads to additional rounds of p53-mediated recruitment of other basal factors. Collectively, these findings indicate that p53 dynamically escorts and loads TFIID onto its target promoters.
Collapse
|
39
|
Vaine CA, Shin D, Liu C, Hendriks WT, Dhakal J, Shin K, Sharma N, Bragg DC. X-linked Dystonia-Parkinsonism patient cells exhibit altered signaling via nuclear factor-kappa B. Neurobiol Dis 2016; 100:108-118. [PMID: 28017799 DOI: 10.1016/j.nbd.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative disease involving the loss of medium spiny neurons within the striatum. An XDP-specific haplotype has been identified, consisting of seven sequence variants which cluster around the human TAF1 gene, but a direct relationship between any of these variants and disease pathogenesis has not yet been demonstrated. Because the pathogenic gene lesion remains unclear, it has been difficult to predict cellular pathways which are affected in XDP cells. To address that issue, we assayed expression of defined gene sets in XDP vs. control fibroblasts to identify networks of functionally-related transcripts which may be dysregulated in XDP patient cells. That analysis derived a 51-gene signature distinguishing XDP vs. control fibroblasts which mapped strongly to nuclear factor-kappa B (NFκB), a transcription factor pathway also implicated in the pathogenesis of other neurodegenerative diseases, including Parkinson's (PD) and Huntington's disease (HD). Constitutive and TNFα-evoked NFκB signaling was further evaluated in XDP vs. control fibroblasts based on luciferase reporter activity, DNA binding of NFκB subunits, and endogenous target gene transcription. Compared to control cells, XDP fibroblasts exhibited decreased basal NFκB activity and decreased levels of the active NFκB p50 subunit, but increased target gene expression in response to TNFα. NFκB signaling was further examined in neural stem cells differentiated from XDP and control induced pluripotent stem cell (iPSC) lines, revealing a similar pattern of increased TNFα responses in the patient lines compared to controls. These data indicate that an NFκB signaling phenotype is present in both patient fibroblasts and neural stem cells, suggesting this pathway as a site of dysfunction in XDP.
Collapse
Affiliation(s)
- Christine A Vaine
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
de Jonge WJ, O'Duibhir E, Lijnzaad P, van Leenen D, Groot Koerkamp MJ, Kemmeren P, Holstege FC. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 2016; 36:274-290. [PMID: 27979920 PMCID: PMC5286361 DOI: 10.15252/embj.201695621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.
Collapse
Affiliation(s)
- Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marian Ja Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frank Cp Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
41
|
Zuo C, Chen K, Hewitt KJ, Bresnick EH, Keleş S. A Hierarchical Framework for State-Space Matrix Inference and Clustering. Ann Appl Stat 2016; 10:1348-1372. [PMID: 29910842 DOI: 10.1214/16-aoas938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, a large number of genomic and epigenomic studies have been focusing on the integrative analysis of multiple experimental datasets measured over a large number of observational units. The objectives of such studies include not only inferring a hidden state of activity for each unit over individual experiments, but also detecting highly associated clusters of units based on their inferred states. Although there are a number of methods tailored for specific datasets, there is currently no state-of-the-art modeling framework for this general class of problems. In this paper, we develop the MBASIC (Matrix Based Analysis for State-space Inference and Clustering) framework. MBASIC consists of two parts: state-space mapping and state-space clustering. In state-space mapping, it maps observations onto a finite state-space, representing the activation states of units across conditions. In state-space clustering, MBASIC incorporates a finite mixture model to cluster the units based on their inferred state-space profiles across all conditions. Both the state-space mapping and clustering can be simultaneously estimated through an Expectation-Maximization algorithm. MBASIC flexibly adapts to a large number of parametric distributions for the observed data, as well as the heterogeneity in replicate experiments. It allows for imposing structural assumptions on each cluster, and enables model selection using information criterion. In our data-driven simulation studies, MBASIC showed significant accuracy in recovering both the underlying state-space variables and clustering structures. We applied MBASIC to two genome research problems using large numbers of datasets from the ENCODE project. The first application grouped genes based on transcription factor occupancy profiles of their promoter regions in two different cell types. The second application focused on identifying groups of loci that are similar to a GATA2 binding site that is functional at its endogenous locus by utilizing transcription factor occupancy data and illustrated applicability of MBASIC in a wide variety of problems. In both studies, MBASIC showed higher levels of raw data fidelity than analyzing these data with a two-step approach using ENCODE results on transcription factor occupancy data.
Collapse
Affiliation(s)
- Chandler Zuo
- Department of Statistics, University of Wisconsin, Madison, WI, U.S.A.,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, U.S.A
| | - Kailei Chen
- Department of Statistics, University of Wisconsin, Madison, WI, U.S.A.,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, U.S.A
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, U.S.A
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, U.S.A
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin, Madison, WI, U.S.A.,Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, U.S.A
| |
Collapse
|
42
|
He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Near-atomic resolution visualization of human transcription promoter opening. Nature 2016; 533:359-65. [PMID: 27193682 PMCID: PMC4940141 DOI: 10.1038/nature17970] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB.
Collapse
Affiliation(s)
- Yuan He
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Carla Inouye
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Chou CC, Wang AHJ. Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. MOLECULAR BIOSYSTEMS 2016; 11:2144-51. [PMID: 26088262 DOI: 10.1039/c5mb00206k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aspartic acid and glutamic acid repeats in proteins exhibit strong negative charge distribution and they may play special biological roles. From 39,684 unique structural data in the RCSB Protein Data Bank (PDB), 173 structures were found to contain ordered D/E-rich repeat structures, and 57 of them were related to DNA/RNA functions. The frequency of occurrence of glutamic acid (36.90%) was higher than that of aspartic acid (27.02%). Glycine (2.38%), alanine (2.68%), valine (3.54%), leucine (5.57%), and isoleucine (3.34%), but not methionine (0.91%), were the most abundant hydrophobic residues. The available complex structures suggested that D/E-rich proteins might be involved in DNA mimicry, mRNA processing and regulation of the transcription complex. The region surrounding the D/E-rich repeat sequences plays important roles in the binding specificity toward the target proteins. The numbers and composition of aspartic acid and glutamic acid might also affect binding properties. Aspartic acid and glutamic acid are disorder-promoting residues in the intrinsically disorder proteins. Our findings suggest that the D/E-rich repeats are unique components of intrinsically disordered proteins, which are involved in the gene regulation and could serve as potential druggable fragments or drug targets.
Collapse
Affiliation(s)
- Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
44
|
Gupta K, Sari-Ak D, Haffke M, Trowitzsch S, Berger I. Zooming in on Transcription Preinitiation. J Mol Biol 2016; 428:2581-2591. [PMID: 27067110 PMCID: PMC4906157 DOI: 10.1016/j.jmb.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023]
Abstract
Class II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion. Recent results indicate that TFIID itself is built from distinct preformed submodules, which reside in the nucleus but also in the cytosol of cells. Here, we highlight recent insights in transcription factor assembly and the regulation of transcription preinitiation. Architectural models of human and yeast PIC were proposed. Mediator core–ITC complex structure reveals novel interactions. TFIID submodule residing in the cytoplasm has been discovered. Complex assembly emerges as key concept in transcription regulation.
Collapse
Affiliation(s)
- Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Duygu Sari-Ak
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Matthias Haffke
- Center for Proteomic Chemistry, Structural Biophysics, Novartis Institute for Biomedical Research NIBR, Fabrikstrasse 2, 4056 Basel, Switzerland
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main Germany
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
45
|
Gouge J, Satia K, Guthertz N, Widya M, Thompson AJ, Cousin P, Dergai O, Hernandez N, Vannini A. Redox Signaling by the RNA Polymerase III TFIIB-Related Factor Brf2. Cell 2016; 163:1375-87. [PMID: 26638071 PMCID: PMC4671959 DOI: 10.1016/j.cell.2015.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer. Architectural conservation of TFIIB and TFIIB-related factors Brf2 is a redox-sensing RNA polymerase III core transcription factor Brf2 regulates cellular responses to oxidative stress Brf2 amplification enables cancer cells to evade oxidative stress-induced apoptosis
Collapse
Affiliation(s)
- Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Karishma Satia
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nicolas Guthertz
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Marcella Widya
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Andrew James Thompson
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pascal Cousin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
46
|
Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531:604-9. [PMID: 27007846 PMCID: PMC4856295 DOI: 10.1038/nature17394] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Collapse
|
47
|
Ravarani CNJ, Chalancon G, Breker M, de Groot NS, Babu MM. Affinity and competition for TBP are molecular determinants of gene expression noise. Nat Commun 2016; 7:10417. [PMID: 26832815 PMCID: PMC4740812 DOI: 10.1038/ncomms10417] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell variation in gene expression levels (noise) generates phenotypic diversity and is an important phenomenon in evolution, development and disease. TATA-box binding protein (TBP) is an essential factor that is required at virtually every eukaryotic promoter to initiate transcription. While the presence of a TATA-box motif in the promoter has been strongly linked with noise, the molecular mechanism driving this relationship is less well understood. Through an integrated analysis of multiple large-scale data sets, computer simulation and experimental validation in yeast, we provide molecular insights into how noise arises as an emergent property of variable binding affinity of TBP for different promoter sequences, competition between interaction partners to bind the same surface on TBP (to either promote or disrupt transcription initiation) and variable residence times of TBP complexes at a promoter. These determinants may be fine-tuned under different conditions and during evolution to modulate eukaryotic gene expression noise.
Collapse
Affiliation(s)
- Charles N J Ravarani
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guilhem Chalancon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
48
|
Ito N, Hendriks WT, Dhakal J, Vaine CA, Liu C, Shin D, Shin K, Wakabayashi-Ito N, Dy M, Multhaupt-Buell T, Sharma N, Breakefield XO, Bragg DC. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells. Dis Model Mech 2016; 9:451-62. [PMID: 26769797 PMCID: PMC4852502 DOI: 10.1242/dmm.022590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known, in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containingTAF1, a large gene with at least 38 exons, and a multiple transcript system (MTS) composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon in intron 32 ofTAF1, as well as a neural-specific TAF1 isoform, N-TAF1, which showed decreased expression in post-mortem XDP brain compared with control tissue. Here, we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs) in order to further probe cellular defects associated with this disease. As initial validation of the model, we compared expression ofTAF1and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs). Compared with control cells, XDP fibroblasts exhibited decreased expression ofTAF1transcript fragments derived from exons 32-36, a region spanning the SVA insertion site. N-TAF1, which incorporates an alternative exon (exon 34'), was not expressed in fibroblasts, but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP, but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.
Collapse
Affiliation(s)
- Naoto Ito
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christine A Vaine
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Noriko Wakabayashi-Ito
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Marisela Dy
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Trisha Multhaupt-Buell
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Nutan Sharma
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xandra O Breakefield
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Rodríguez-Lima O, García-Gutierrez P, Jiménez L, Zarain-Herzberg Á, Lazzarini R, Landa A. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes. PLoS One 2015; 10:e0141818. [PMID: 26529408 PMCID: PMC4631506 DOI: 10.1371/journal.pone.0141818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.
Collapse
Affiliation(s)
- Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | | | - Lucía Jiménez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Roberto Lazzarini
- Departamento de Biología Experimental, Universidad Autónoma Metropolitana–Iztapalapa, México D.F., México
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
- * E-mail:
| |
Collapse
|
50
|
Iwasaki O, Tanizawa H, Kim KD, Yokoyama Y, Corcoran CJ, Tanaka A, Skordalakes E, Showe LC, Noma KI. Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes. Mol Cell 2015; 59:755-67. [PMID: 26257282 DOI: 10.1016/j.molcel.2015.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/16/2015] [Accepted: 07/01/2015] [Indexed: 10/25/2022]
Abstract
Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.
Collapse
|