1
|
Sridharan Iyer S, Wu J, Pollard TD, Voth GA. Molecular mechanism of Arp2/3 complex activation by nucleation-promoting factors and an actin monomer. Proc Natl Acad Sci U S A 2025; 122:e2421467122. [PMID: 40048273 PMCID: PMC11912402 DOI: 10.1073/pnas.2421467122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025] Open
Abstract
Arp (actin-related protein) 2/3 complex nucleates actin filament branches on the sides of preexisting actin filaments during cell and organelle movements. We used computer simulations of mammalian Arp2/3 complex to address fundamental questions about the mechanism. Metadynamics and umbrella free energy sampling simulations of the pathway revealed that a clash between the D-loop of Arp2 and Arp3 produces an energy barrier of 20 ± 6 kcal/mol between the inactive splayed and active short-pitch conformations of Arp2/3 complex. Atomistic molecular dynamics simulations showed that binding the CA motif of the nucleation-promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASp) to inactive, splayed Arp2/3 complex shifts it toward the short-pitch active conformation and opens a binding site for an actin monomer on Arp3. Other simulations showed that this actin monomer stabilizes a transition state of Arp2/3 complex. These observations together with prior experimental work provide insights required to propose a physically grounded pathway for actin filament branch formation.
Collapse
Affiliation(s)
- Sahithya Sridharan Iyer
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Cell Biology, Yale University, New Haven, CT06511
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Koundinya N, Aguilar RM, Wetzel K, Tomasso MR, Nagarajan P, McGuirk ER, Padrick SB, Goode BL. Two ligands of Arp2/3 complex, yeast coronin and GMF, interact and synergize in pruning branched actin networks. J Biol Chem 2025; 301:108191. [PMID: 39826693 PMCID: PMC11872438 DOI: 10.1016/j.jbc.2025.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The rapid turnover of branched actin networks underlies key in vivo processes such as lamellipodial extension, endocytosis, phagocytosis, and intracellular transport. However, our understanding of the mechanisms used to dissociate, or "prune," branched filaments has remained limited. Glia maturation factor (GMF) is a cofilin family protein that binds to the Arp2/3 complex and catalyzes branch dissociation. Here, we show that another ligand of Arp2/3 complex, Saccharomyces cerevisiae coronin (Crn1), enhances Gmf1-mediated debranching by 8- to 10-fold, and that these effects depend on Arp2/3-binding "C" and "A" motifs in Crn1. Further, we show that Crn1 directly binds with high affinity (KD = 1.4 nM) to S. cerevisiae GMF (Gmf1), and together they form a stable ternary Crn1-Gmf1-Arp2/3 complex in solution. Using single-molecule analysis, we show that Gmf1 binds transiently and multiple times to F-actin branch junctions prior to debranching. These and other results suggest a mechanism of mutual recruitment, in which Crn1 increases the on-rate of Gmf1 for branch junctions and Gmf1 blocks Crn1 binding to actin filament sides, increasing its availability to bind branch junctions. Taken together, these observations reveal an unanticipated mechanism in which two distinct ligands of the Arp2/3 complex bind to each other and synergize to prune actin branches.
Collapse
Affiliation(s)
- Neha Koundinya
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Kathryn Wetzel
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Emma R McGuirk
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
3
|
Saks AJ, Barrie KR, Rebowski G, Dominguez R. NPF binding to Arp2 is allosterically linked to the release of ArpC5's N-terminal tail and conformational changes in Arp2/3 complex. Proc Natl Acad Sci U S A 2025; 122:e2421557122. [PMID: 40042350 PMCID: PMC11873952 DOI: 10.1073/pnas.2421557122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
Arp2/3 complex generates branched actin networks essential for numerous motile functions of the cell. It comprises seven subunits: actin-related proteins (Arps) 2 and 3 and five scaffolding subunits (ArpC1-5). The complex adopts two major conformations: inactive, with the Arps interacting end-to-end, and active, with the Arps aligned side-by-side like subunits in the actin filament. Activation involves several cofactors, including ATP, WASP-family nucleation-promoting factors (NPFs), actin monomers, and the mother actin filament. NPFs bind to two sites, one on Arp2-ArpC1 and one on Arp3, delivering actin subunits at the barbed end of the Arps to initiate branch elongation. However, the mechanisms by which each NPF drives the equilibrium toward activation remain unclear. We present two cryo-electron microscopy (cryo-EM) structures of Arp2/3 complex at 2.9-Å resolution: one with NPFs bound to Arp3 and ArpC1 but not Arp2 and another with NPFs bound to Arp3 and Arp2-ArpC1. The structures reveal that NPF binding to Arp2 is allosterically linked to the release of ArpC5's N-terminal tail from Arp2 and conformational changes in Arp2, including closure of its ATP-binding cleft and partial rotation and translation toward its position in the active complex at the branch. Previous work identified another allosteric switch linking NPF binding to Arp3 with the release of its inhibitory C-terminal tail, which we also observe. In summary, both NPF-binding sites induce allosteric changes in Arp2/3 complex, collectively shifting the equilibrium toward activation.
Collapse
Affiliation(s)
- Andrew J. Saks
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kyle R. Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Biochemistry, Biophysics, Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Biochemistry, Biophysics, Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
4
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
5
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
6
|
Chavali SS, Chou SZ, Cao W, Pollard TD, De La Cruz EM, Sindelar CV. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. Nat Commun 2024; 15:2059. [PMID: 38448439 PMCID: PMC10918085 DOI: 10.1038/s41467-024-46179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Arp2/3 complex nucleates branched actin filaments for cell and organelle movements. Here we report a 2.7 Å resolution cryo-EM structure of the mature branch junction formed by S. pombe Arp2/3 complex that provides details about interactions with both mother and daughter filaments. We determine a second structure at 3.2 Å resolution with the phosphate analog BeFx bound with ADP to Arp3 and ATP bound to Arp2. In this ADP-BeFx transition state the outer domain of Arp3 is rotated 2° toward the mother filament compared with the ADP state and makes slightly broader contacts with actin in both the mother and daughter filaments. Thus, dissociation of Pi from the ADP-Pi transition state reduces the interactions of Arp2/3 complex with the actin filaments and may contribute to the lower mechanical stability of mature branch junctions with ADP bound to the Arps. Our structures also reveal that the mother filament in contact with Arp2/3 complex is slightly bent and twisted, consistent with the preference of Arp2/3 complex binding curved actin filaments. The small degree of twisting constrains models of actin filament mechanics.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
| | - Steven Z Chou
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA
| | - Thomas D Pollard
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Cell Biology, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
- Department of Molecular and Cell Biology, University of California, 638 Barker Hall, Berkeley, CA, 94720-3200, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
| | - Charles V Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT, 06520-8103, USA.
| |
Collapse
|
7
|
McGuirk ER, Koundinya N, Nagarajan P, Padrick SB, Goode BL. Direct observation of cortactin protecting Arp2/3-actin filament branch junctions from GMF-mediated destabilization. Eur J Cell Biol 2024; 103:151378. [PMID: 38071835 PMCID: PMC10843626 DOI: 10.1016/j.ejcb.2023.151378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
How cells tightly control the formation and turnover of branched actin filament arrays to drive cell motility, endocytosis, and other cellular processes is still not well understood. Here, we investigated the mechanistic relationship between two binding partners of the Arp2/3 complex, glia maturation factor (GMF) and cortactin. Individually, GMF and cortactin have opposite effects on the stability of actin filament branches, but it is unknown how they work in concert with each other to govern branch turnover. Using TIRF microscopy, we observe that GMF's branch destabilizing activities are potently blocked by cortactin (IC50 = 1.3 nM) and that this inhibition requires direct interactions of cortactin with Arp2/3 complex. The simplest model that would explain these results is competition for binding Arp2/3 complex. However, we find that cortactin and GMF do not compete for free Arp2/3 complex in solution. Further, we use single molecule analysis to show that cortactin's on-rate (3 ×107 s-1 M-1) and off-rate (0.03 s-1) at branch junctions are minimally affected by excess GMF. Together, these results show that cortactin binds with high affinity to branch junctions, where it blocks the destabilizing effects of GMF, possibly by a mechanism that is allosteric in nature. In addition, the affinities we measure for cortactin at actin filament branch junctions (Kd = 0.9 nM) and filament sides (Kd = 206 nM) are approximately 20-fold stronger than previously reported. These observations contribute to an emerging view of molecular complexity in how Arp2/3 complex is regulated through the integration of multiple inputs.
Collapse
Affiliation(s)
- Emma R McGuirk
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Neha Koundinya
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Priyashree Nagarajan
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
8
|
Cao L, Way M. The stabilization of Arp2/3 complex generated actin filaments. Biochem Soc Trans 2024; 52:343-352. [PMID: 38288872 PMCID: PMC10903444 DOI: 10.1042/bst20230638] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/29/2024]
Abstract
The Arp2/3 complex, which generates both branched but also linear actin filaments via activation of SPIN90, is evolutionarily conserved in eukaryotes. Several factors regulate the stability of filaments generated by the Arp2/3 complex to maintain the dynamics and architecture of actin networks. In this review, we summarise recent studies on the molecular mechanisms governing the tuning of Arp2/3 complex nucleated actin filaments, which includes investigations using microfluidics and single-molecule imaging to reveal the mechanosensitivity, dissociation and regeneration of actin branches. We also discuss the high-resolution cryo-EM structure of cortactin bound to actin branches, as well as the differences and similarities between the stability of Arp2/3 complex nucleated branches and linear filaments. These new studies provide a clearer picture of the stabilisation of Arp2/3 nucleated filaments at the molecular level. We also identified gaps in our understanding of how different factors collectively contribute to the stabilisation of Arp2/3 complex-generated actin networks.
Collapse
Affiliation(s)
- LuYan Cao
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
- Department of Infectious Disease, Imperial College, London W2 1PG, U.K
| |
Collapse
|
9
|
Ghasemi F, Cao L, Mladenov M, Guichard B, Way M, Jégou A, Romet-Lemonne G. Regeneration of actin filament branches from the same Arp2/3 complex. SCIENCE ADVANCES 2024; 10:eadj7681. [PMID: 38277459 PMCID: PMC10816697 DOI: 10.1126/sciadv.adj7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Branched actin filaments are found in many key cellular structures. Branches are nucleated by the Arp2/3 complex activated by nucleation-promoting factor (NPF) proteins and bound to the side of preexisting "mother" filaments. Over time, branches dissociate from their mother filament, leading to network reorganization and turnover, but this mechanism is less understood. Here, using microfluidics and purified proteins, we examined the dissociation of individual branches under controlled biochemical and mechanical conditions. We observe that the Arp2/3 complex remains bound to the mother filament after most debranching events, even when accelerated by force. Strikingly, this surviving Arp2/3 complex readily nucleates a new actin filament branch, without being activated anew by an NPF: It simply needs to exchange its nucleotide and bind an actin monomer. The protein glia maturation factor (GMF), which accelerates debranching, prevents branch renucleation. Our results suggest that actin filament renucleation can provide a self-repair mechanism, helping branched networks to sustain mechanical stress in cells over extended periods of time.
Collapse
Affiliation(s)
- Foad Ghasemi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - LuYan Cao
- The Francis Crick Institute, London, UK
| | | | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | |
Collapse
|
10
|
Stromberg KA, Spain T, Tomlin SA, Powell J, Amarillo KD, Schroeder CM. Evolutionary diversification reveals distinct somatic versus germline cytoskeletal functions of the Arp2 branched actin nucleator protein. Curr Biol 2023; 33:5326-5339.e7. [PMID: 37977138 PMCID: PMC10785674 DOI: 10.1016/j.cub.2023.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Branched actin networks are critical in many cellular processes, including cell motility and division. Arp2, a protein within the seven-membered Arp2/3 complex, is responsible for generating branched actin. Given its essential roles, Arp2 evolves under stringent sequence conservation throughout eukaryotic evolution. We unexpectedly discovered recurrent evolutionary diversification of Arp2 in Drosophila, yielding independently arising paralogs Arp2D in obscura species and Arp2D2 in montium species. Both paralogs are unusually testis-enriched in expression relative to Arp2. We investigated whether their sequence divergence from canonical Arp2 led to functional specialization by replacing Arp2 in D. melanogaster with either Arp2D or Arp2D2. Despite their divergence, we surprisingly found that both complement Arp2's essential function in somatic tissue, suggesting they have preserved the ability to polymerize branched actin even in a non-native species. However, we found that Arp2D- and Arp2D2-expressing males display defects throughout sperm development, with Arp2D resulting in more pronounced deficiencies and subfertility, suggesting the Arp2 paralogs are cross-species incompatible in the testis. We focused on Arp2D and pinpointed two highly diverged structural regions-the D-loop and C terminus-and found that they contribute to germline defects in D. melanogaster sperm development. However, while the Arp2D C terminus is suboptimal in the D. melanogaster testis, it is essential for Arp2D somatic function. Testis cytology of the paralogs' native species revealed striking differences in germline actin structures, indicating unique cytoskeletal requirements. Our findings suggest canonical Arp2 function differs between somatic versus germline contexts, and Arp2 paralogs may have recurrently evolved for species-specialized actin branching in the testis.
Collapse
Affiliation(s)
- Kaitlin A Stromberg
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Tristan Spain
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Sarah A Tomlin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Jordan Powell
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Kristen Dominique Amarillo
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Courtney M Schroeder
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Wu J, Xue W, Voth GA. K-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules. J Chem Theory Comput 2023; 19:8987-8997. [PMID: 37957028 PMCID: PMC10720621 DOI: 10.1021/acs.jctc.3c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.
Collapse
Affiliation(s)
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, The James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Fregoso FE, Boczkowska M, Rebowski G, Carman PJ, van Eeuwen T, Dominguez R. Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins. Nat Commun 2023; 14:6894. [PMID: 37898612 PMCID: PMC10613254 DOI: 10.1038/s41467-023-42229-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.89 Å resolution cryo-EM structure of cortactin's N-terminal domain (Cort1-76) bound to Arp2/3 complex. Cortactin binds Arp2/3 complex through an inverted Acidic domain (D20-V29), which targets the same site on Arp3 as the Acidic domain of NPFs but with opposite polarity. Sequences N- and C-terminal to cortactin's Acidic domain do not increase its affinity for Arp2/3 complex but contribute toward coactivation with NPFs. Coactivation further increases with NPF dimerization and for longer cortactin constructs with stronger binding to F-actin. The results suggest that cortactin contributes to Arp2/3 complex coactivation with NPFs in two ways, by helping recruit the complex to F-actin and by stabilizing the short-pitch (active) conformation, which are both byproducts of cortactin's core function in branch stabilization.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Singh Y, Hocky GM, Nolen BJ. Molecular dynamics simulations support a multistep pathway for activation of branched actin filament nucleation by Arp2/3 complex. J Biol Chem 2023; 299:105169. [PMID: 37595874 PMCID: PMC10514467 DOI: 10.1016/j.jbc.2023.105169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Actin-related protein 2/3 complex (Arp2/3 complex) catalyzes the nucleation of branched actin filaments that push against membranes in processes like cellular motility and endocytosis. During activation by WASP proteins, the complex must bind WASP and engage the side of a pre-existing (mother) filament before a branched filament is nucleated. Recent high-resolution structures of activated Arp2/3 complex revealed two major sets of activating conformational changes. How these activating conformational changes are triggered by interactions of Arp2/3 complex with actin filaments and WASP remains unclear. Here we use a recent high-resolution structure of Arp2/3 complex at a branch junction to design all-atom molecular dynamics simulations that elucidate the pathway between the active and inactive states. We ran a total of ∼4.6 microseconds of both unbiased and steered all-atom molecular dynamics simulations starting from three different binding states, including Arp2/3 complex within a branch junction, bound only to a mother filament, and alone in solution. These simulations indicate that the contacts with the mother filament are mostly insensitive to the massive rigid body motion that moves Arp2 and Arp3 into a short pitch helical (filament-like) arrangement, suggesting actin filaments alone do not stimulate the short pitch conformational change. In contrast, contacts with the mother filament stabilize subunit flattening in Arp3, an intrasubunit change that converts Arp3 from a conformation that mimics an actin monomer to one that mimics a filamentous actin subunit. Our results support a multistep activation pathway that has important implications for understanding how WASP-mediated activation allows Arp2/3 complex to assemble force-producing actin networks.
Collapse
Affiliation(s)
| | - Glen M Hocky
- Department of Chemistry, New York University; Simons Center for Computational Physical Chemistry, New York University.
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon.
| |
Collapse
|
15
|
van Eeuwen T, Boczkowska M, Rebowski G, Carman PJ, Fregoso FE, Dominguez R. Transition State of Arp2/3 Complex Activation by Actin-Bound Dimeric Nucleation-Promoting Factor. Proc Natl Acad Sci U S A 2023; 120:e2306165120. [PMID: 37549294 PMCID: PMC10434305 DOI: 10.1073/pnas.2306165120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/03/2023] [Indexed: 08/09/2023] Open
Abstract
Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament. Several cofactors drive the transition toward the active state, including ATP binding to the Arps, WASP-family nucleation-promoting factors (NPFs), actin monomers, and binding of Arp2/3 complex to the mother filament. The precise contribution of each cofactor to activation is poorly understood. We report the 3.32-Å resolution cryo-electron microscopy structure of a transition state of Arp2/3 complex activation with bound constitutively dimeric NPF. Arp2/3 complex-binding region of the NPF N-WASP was fused C-terminally to the α and β subunits of the CapZ heterodimer. One arm of the NPF dimer binds Arp2 and the other binds actin and Arp3. The conformation of the complex is intermediate between those of inactive and active Arp2/3 complex. Arp2, Arp3, and actin also adopt intermediate conformations between monomeric (G-actin) and filamentous (F-actin) states, but only actin hydrolyzes ATP. In solution, the transition complex is kinetically shifted toward the short-pitch conformation and has higher affinity for F-actin than inactive Arp2/3 complex. The results reveal how all the activating cofactors contribute in a coordinated manner toward Arp2/3 complex activation.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter J. Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Fred E. Fregoso
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
16
|
Stromberg KA, Spain T, Tomlin SA, Amarillo KD, Schroeder CM. Evolutionary diversification reveals distinct somatic versus germline cytoskeletal functions of the Arp2 branched actin nucleator protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530036. [PMID: 36909544 PMCID: PMC10002617 DOI: 10.1101/2023.02.25.530036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Branched actin networks are critical in many cellular processes, including cell motility and division. Arp2, a protein within the 7-membered Arp2/3 complex, is responsible for generating branched actin. Given its essential roles, Arp2 evolves under stringent sequence conservation throughout eukaryotic evolution. We unexpectedly discovered recurrent evolutionary diversification of Arp2 in Drosophila, yielding independently arising paralogs Arp2D in obscura species and Arp2D2 in montium species. Both paralogs are unusually testis-enriched in expression relative to Arp2. We investigated whether their sequence divergence from canonical Arp2 led to functional specialization by replacing Arp2 in D. melanogaster with either Arp2D or Arp2D2. Despite their divergence, we surprisingly found both complement Arp2's essential function in the soma, suggesting they have preserved the ability to polymerize branched actin even in a non-native species. However, we found that Arp2D-expressing males are subfertile and display many defects throughout sperm development. We pinpointed two highly diverged structural regions in Arp2D that contribute to these defects: subdomain 2 and the C-terminus. We expected that germline function would be rescued by replacing Arp2D's long and charged C-terminus with Arp2's short C-terminus, yet surprisingly, the essential somatic function of Arp2D was lost. Therefore, while Arp2D's structural divergence is incompatible with D. melanogaster sperm development, its unique C-terminus has evolved a critical role in actin polymerization. Our findings suggest canonical Arp2's function differs between somatic versus germline contexts, and Arp2 paralogs have recurrently evolved and specialized for actin branching in the testis.
Collapse
Affiliation(s)
| | - Tristan Spain
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX
| | - Sarah A. Tomlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | |
Collapse
|
17
|
Fäßler F, Javoor MG, Datler J, Döring H, Hofer FW, Dimchev G, Hodirnau VV, Faix J, Rottner K, Schur FK. ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning. SCIENCE ADVANCES 2023; 9:eadd6495. [PMID: 36662867 PMCID: PMC9858492 DOI: 10.1126/sciadv.add6495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/20/2022] [Indexed: 05/10/2023]
Abstract
Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform-specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Hermann Döring
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Florian W. Hofer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
18
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
19
|
Chung J, Goode BL, Gelles J. Single-molecule analysis of actin filament debranching by cofilin and GMF. Proc Natl Acad Sci U S A 2022; 119:e2115129119. [PMID: 35858314 PMCID: PMC9304009 DOI: 10.1073/pnas.2115129119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells contain branched actin networks that are essential for endocytosis, motility, and other key cellular processes. These networks, which are formed by filamentous actin and the Arp2/3 complex, must subsequently be debranched to allow network remodeling and to recycle the Arp2/3 complex. Debranching appears to be catalyzed by two different members of the actin depolymerizing factor homology protein family: cofilin and glial maturation factor (GMF). However, their mechanisms of debranching are only partially understood. Here, we used single-molecule fluorescence imaging of Arp2/3 complex and actin filaments under physiological ionic conditions to observe debranching by GMF and cofilin. We demonstrate that cofilin, like GMF, is an authentic debrancher independent of its filament-severing activity and that the debranching activities of the two proteins are additive. While GMF binds directly to the Arp2/3 complex, cofilin selectively accumulates on branch-junction daughter filaments in tropomyosin-decorated networks just prior to debranching events. Quantitative comparison of debranching rates with the known kinetics of cofilin-actin binding suggests that cofilin occupancy of a particular single actin site at the branch junction is sufficient to trigger debranching. In rare cases in which the order of departure could be resolved during GMF- or cofilin-induced debranching, the Arp2/3 complex left the branch junction bound to the pointed end of the daughter filament, suggesting that both GMF and cofilin can work by destabilizing the mother filament-Arp2/3 complex interface. Taken together, these observations suggest that GMF and cofilin promote debranching by distinct yet complementary mechanisms.
Collapse
Affiliation(s)
- Johnson Chung
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| |
Collapse
|
20
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
22
|
Fregoso FE, van Eeuwen T, Simanov G, Rebowski G, Boczkowska M, Zimmet A, Gautreau AM, Dominguez R. Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat Commun 2022; 13:628. [PMID: 35110533 PMCID: PMC8810855 DOI: 10.1038/s41467-022-28112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin’s mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.24-Å resolution. Unexpectedly, Arpin binds Arp2/3 complex similarly to WASP-family nucleation-promoting factors (NPFs) that activate the complex. However, whereas NPFs bind to two sites on Arp2/3 complex, on Arp2-ArpC1 and Arp3, Arpin only binds to the site on Arp3. Like NPFs, Arpin has a C-helix that binds at the barbed end of Arp3. Mutagenesis studies in vitro and in cells reveal how sequence differences within the C-helix define the molecular basis for inhibition by Arpin vs. activation by NPFs. The Arp2/3 complex inhibitor Arpin controls cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex Here, the authors use structural, biochemical, and cellular studies to reveal Arpin’s mechanism of inhibition.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor van Eeuwen
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Grzegorz Rebowski
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Austin Zimmet
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Gautreau AM, Fregoso FE, Simanov G, Dominguez R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol 2021; 32:421-432. [PMID: 34836783 PMCID: PMC9018471 DOI: 10.1016/j.tcb.2021.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces that drive cellular processes ranging from membrane remodeling to cell and organelle motility. Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex and by stabilizing or disassembling branched networks. Here, we review recent advances in our understanding of Arp2/3 complex regulation, including high-resolution cryoelectron microscopy (cryo-EM) structures that illuminate the mechanisms of Arp2/3 complex activation and branch formation, and novel cellular pathways of branch formation, stabilization, and debranching. We also identify major gaps in our understanding of Arp2/3 complex inhibition and branch stabilization and disassembly.
Collapse
Affiliation(s)
- Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Fäßler F, Dimchev G, Hodirnau VV, Wan W, Schur FKM. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nat Commun 2020; 11:6437. [PMID: 33353942 PMCID: PMC7755917 DOI: 10.1038/s41467-020-20286-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
Collapse
Affiliation(s)
- Florian Fäßler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, United States of America
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
25
|
Shaaban M, Chowdhury S, Nolen BJ. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Nat Struct Mol Biol 2020; 27:1009-1016. [PMID: 32839613 DOI: 10.1038/s41594-020-0481-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
Arp2/3 complex, a crucial actin filament nucleator, undergoes structural rearrangements during activation by nucleation-promoting factors (NPFs). However, the conformational pathway leading to the nucleation-competent state is unclear due to lack of high-resolution structures of the activated state. Here we report a ~3.9 Å resolution cryo-EM structure of activated Schizosaccharomyces pombe Arp2/3 complex bound to the S. pombe NPF Dip1 and attached to the end of the nucleated actin filament. The structure reveals global and local conformational changes that allow the two actin-related proteins in Arp2/3 complex to mimic a filamentous actin dimer and template nucleation. Activation occurs through a clamp-twisting mechanism, in which Dip1 forces two core subunits in Arp2/3 complex to pivot around one another, shifting half of the complex into a new activated position. By showing how Dip1 stimulates activation, the structure reveals how NPFs can activate Arp2/3 complex in diverse cellular processes.
Collapse
Affiliation(s)
- Mohammed Shaaban
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
26
|
von Loeffelholz O, Purkiss A, Cao L, Kjaer S, Kogata N, Romet-Lemonne G, Way M, Moores CA. Cryo-EM of human Arp2/3 complexes provides structural insights into actin nucleation modulation by ARPC5 isoforms. Biol Open 2020; 9:bio054304. [PMID: 32661131 PMCID: PMC7406314 DOI: 10.1242/bio.054304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
The Arp2/3 complex regulates many cellular processes by stimulating formation of branched actin filament networks. Because three of its seven subunits exist as two different isoforms, mammals produce a family of Arp2/3 complexes with different properties that may be suited to different physiological contexts. To shed light on how isoform diversification affects Arp2/3 function, we determined a 4.2 Å resolution cryo-EM structure of the most active human Arp2/3 complex containing ARPC1B and ARPC5L, and compared it with the structure of the least active ARPC1A-ARPC5-containing complex. The architecture of each isoform-specific Arp2/3 complex is the same. Strikingly, however, the N-terminal half of ARPC5L is partially disordered compared to ARPC5, suggesting that this region of ARPC5/ARPC5L is an important determinant of complex activity. Confirming this idea, the nucleation activity of Arp2/3 complexes containing hybrid ARPC5/ARPC5L subunits is higher when the ARPC5L N-terminus is present, thereby providing insight into activity differences between the different Arp2/3 complexes.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Andrew Purkiss
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luyan Cao
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Svend Kjaer
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Naoko Kogata
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Michael Way
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Carolyn A Moores
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
27
|
Gerlach BD, Tubbesing K, Liao G, Rezey AC, Wang R, Barroso M, Tang DD. Phosphorylation of GMFγ by c-Abl Coordinates Lamellipodial and Focal Adhesion Dynamics to Regulate Airway Smooth Muscle Cell Migration. Am J Respir Cell Mol Biol 2020; 61:219-231. [PMID: 30811945 DOI: 10.1165/rcmb.2018-0352oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Airway smooth muscle cells require coordinated protrusion and focal adhesion dynamics to migrate properly. However, the signaling cascades that connect these two processes remain incompletely understood. Glia maturation factor (GMF)-γ has been implicated in inducing actin debranching and inhibiting nucleation. In this study, we discovered that GMFγ phosphorylation at Y104 regulates human airway smooth muscle cell migration. Using high-resolution microscopy coupled with three-dimensional object-based quantitative image analysis software, Imaris 9.2.0, phosphomimetic mutant, Y104D-GMFγ, was enriched at nascent adhesions along the leading edge where it recruited activated neural Wiskott-Aldrich syndrome protein (N-WASP; pY256) to promote actin-branch formation, which enhanced lamellipodial dynamics and limited the growth of focal adhesions. Unexpectedly, we found that nonphosphorylated mutant, Y104F-GMFγ, was enriched in growing adhesions where it promoted a linear branch organization and focal adhesion clustering, and recruited zyxin to increase maturation, thus inhibiting lamellipodial dynamics and cell migration. The localization of GMFγ between the leading edge and focal adhesions was dependent upon myosin activity. Furthermore, c-Abl tyrosine kinase regulated the GMFγ phosphorylation-dependent processes. Together, these results unveil the importance of GMFγ phosphorylation in coordinating lamellipodial and focal adhesion dynamics to regulate cell migration.
Collapse
Affiliation(s)
- Brennan D Gerlach
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Kate Tubbesing
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Guoning Liao
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Alyssa C Rezey
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Margarida Barroso
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
28
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
29
|
Balzer CJ, Wagner AR, Helgeson LA, Nolen BJ. Dip1 Co-opts Features of Branching Nucleation to Create Linear Actin Filaments that Activate WASP-Bound Arp2/3 Complex. Curr Biol 2018; 28:3886-3891.e4. [PMID: 30471998 DOI: 10.1016/j.cub.2018.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
When activated by Wiskott-Aldrich syndrome proteins (WASP), Arp2/3 complex nucleates branched actin filaments important for processes like cellular motility and endocytosis [1]. WASP-mediated activation of Arp2/3 complex requires a preformed actin filament, ensuring that activation by WASP creates branched instead of linear filaments. However, this biochemical requirement also means that assembly of branched actin networks must be primed with an initial seed filament [2-4]. We recently described a class of activators called WISH/DIP/SPIN90 (WDS) proteins, which, unlike WASP, activate Arp2/3 complex without a preformed filament [4]. Although this property may allow WDS proteins to serve as seed filament generators, it is unknown whether actin filaments nucleated by WDS-activated Arp2/3 complex can activate WASP-bound Arp2/3 complex. Further, despite their potential importance as branched actin network initiators, little is known about how WDS proteins turn on Arp2/3 complex. Here, we use two-color single-molecule total internal reflection fluorescence (TIRF) microscopy to show that Dip1, the S. pombe WDS protein [5], co-opts features of branching nucleation to activate Arp2/3 complex. Specifically, it activates Arp2/3 complex to nucleate linear filaments analogous to the branch created by WASP-mediated activation. The barbed ends of Dip1-Arp2/3 nucleated filaments are free to elongate, and their pointed ends remain anchored to Dip1-bound Arp2/3 complex. The linear filaments nucleated by Dip1-bound Arp2/3 complex activate WASP-bound Arp2/3 complex as potently as spontaneously nucleated or branched actin filaments. These observations provide important insights into the regulation of Arp2/3 complex by its activators and the molecular basis for initiation of branched actin networks.
Collapse
Affiliation(s)
- Connor J Balzer
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Andrew R Wagner
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Luke A Helgeson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, 1229 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
30
|
Luan Q, Liu SL, Helgeson LA, Nolen BJ. Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex. EMBO J 2018; 37:embj.2018100005. [PMID: 30322896 DOI: 10.15252/embj.2018100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Unlike the WASP family of Arp2/3 complex activators, WISH/DIP/SPIN90 (WDS) family proteins activate actin filament nucleation by the Arp2/3 complex without the need for a preformed actin filament. This allows WDS proteins to initiate branched actin network assembly by providing seed filaments that activate WASP-bound Arp2/3 complex. Despite their important role in actin network initiation, it is unclear how WDS proteins drive the activating steps that require both WASP and pre-existing actin filaments during WASP-mediated nucleation. Here, we show that SPIN90 folds into an armadillo repeat domain that binds a surface of Arp2/3 complex distinct from the two WASP sites, straddling a hinge point that may stimulate movement of the Arp2 subunit into the activated short-pitch conformation. SPIN90 binds a surface on Arp2/3 complex that overlaps with actin filament binding, explaining how it could stimulate the same structural rearrangements in the complex as pre-existing actin filaments. By revealing how WDS proteins activate the Arp2/3 complex, these data provide a molecular foundation to understand initiation of dendritic actin networks and regulation of Arp2/3 complex by its activators.
Collapse
Affiliation(s)
- Qing Luan
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Luke A Helgeson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
31
|
Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA, and actin filaments. Proc Natl Acad Sci U S A 2018; 115:E8642-E8651. [PMID: 30150414 DOI: 10.1073/pnas.1717594115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We used fluorescence spectroscopy and EM to determine how binding of ATP, nucleation-promoting factors, actin monomers, and actin filaments changes the conformation of Arp2/3 complex during the process that nucleates an actin filament branch. We mutated subunits of Schizosaccharomyces pombe Arp2/3 complex for labeling with fluorescent dyes at either the C termini of Arp2 and Arp3 or ArpC1 and ArpC3. We measured Förster resonance energy transfer (FRET) efficiency (ETeff) between the dyes in the presence of the various ligands. We also computed class averages from electron micrographs of negatively stained specimens. ATP binding made small conformational changes of the nucleotide-binding cleft of the Arp2 subunit. WASp-VCA, WASp-CA, and WASp-actin-VCA changed the ETeff between the dyes on the Arp2 and Arp3 subunits much more than between dyes on ArpC1 and ArpC3. Ensemble FRET detected an additional structural change that brought ArpC1 and ArpC3 closer together when Arp2/3 complex bound actin filaments. VCA binding to Arp2/3 complex causes a conformational change that favors binding to the side of an actin filament, which allows further changes required to nucleate a daughter filament.
Collapse
|
32
|
Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF. Nat Commun 2018; 9:2895. [PMID: 30042427 PMCID: PMC6057921 DOI: 10.1038/s41467-018-05260-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Formation and turnover of branched actin networks underlies cell migration and other essential force-driven processes. Type I nucleation-promoting factors (NPFs) such as WASP recruit actin monomers to Arp2/3 complex to stimulate nucleation. In contrast, mechanisms of type II NPFs such as Abp1 (also known as HIP55 and Drebrin-like protein) are less well understood. Here, we use single-molecule analysis to investigate yeast Abp1 effects on Arp2/3 complex, and find that Abp1 strongly enhances Arp2/3-dependent branch nucleation by stabilizing Arp2/3 on sides of mother filaments. Abp1 binds dynamically to filament sides, with sub-second lifetimes, yet associates stably with branch junctions. Further, we uncover a role for Abp1 in protecting filament junctions from GMF-induced debranching by competing with GMF for Arp2/3 binding. These data, combined with EM structures of Abp1 dimers bound to Arp2/3 complex in two different conformations, expand our mechanistic understanding of type II NPFs. Abp1, a type II actin nucleation promoting factor, is a known component of branched actin networks but its mechanism remains poorly understood. Here, the authors find that Abp1 enhances Arp2/3-mediated actin branch formation, and blocks ‘debranching’ by GMF, making it a pro-branching factor.
Collapse
|
33
|
Ou X, Wang M, Mao S, Cao J, Cheng A, Zhu D, Chen S, Jia R, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Peppelenbosch MP, Pan Q. Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Front Cell Infect Microbiol 2018; 8:249. [PMID: 30073153 PMCID: PMC6058041 DOI: 10.3389/fcimb.2018.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Live attenuated vaccines are widely used to protect humans or animals from pathogen infections. We have previously developed a chicken embryo-attenuated Duck Hepatitis A Virus genotype 1 (DHAV-1) vaccine (CH60 strain). This study aims to understand the mechanisms that drive a virulent strain to an attenuated virus. Here, we systematically compared five DHAV-1 chicken embryo attenuated strains and 68 virulent strains. Phylogenetic analysis indicated that duck virulent strains isolated from different geographic regions of China undergo a convergent evolution in the chicken embryos. Comparative analysis indicated that the codon usage bias of the attenuated strains were shaped by chicken codons usage bias, which essentially contributed to viral adaption in the unsuitable host driven by incompatible translation. Of note, the missense mutations in coding region and mutations in untranslated regions may also contribute to viral attenuation of DHAV-1 to some extent. Importantly, we have experimentally confirmed that the expression levels of four viral proteins (2A3pro, 2A3pro, 3Cpro, and 3Dpro) in the liver and kidney of ducks infected with an attenuated strain are significantly lower than that infected with a virulent strain, despite with similar virus load. Thus, the key mechanisms of viral attenuation revealed by this study may lead to innovative and easy approaches in designing live attenuated vaccines.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Maheshwari D, Shukla VK, Jain A, Tripathi S, Kumar D, Arora A. Solution structure and dynamics of glia maturation factor from Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1008-1020. [PMID: 29981887 DOI: 10.1016/j.bbapap.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The GMF class of the ADF-H domain family proteins regulate actin dynamics by binding to the Arp2/3 complex and F-actin through their Site-1 and Site-2, respectively. CeGMF of C. elegans is analogous to GMFγ of human and mouse and is 138 amino acids in length. METHODS We have characterized the solution structure and dynamics of CeGMF by solution NMR spectroscopy and its thermal stability by DSC. RESULTS The solution structure of CeGMF shows canonical ADF-H fold with two additional β-strands in the β4-β5 loop region. The Site-1 of CeGMF is well formed and residues of all three regions of Site-1 show dynamic flexibility. However, the β4-β5 loop of Site-2 is less inclined towards the C-terminal, as the latter is truncated by four residues in comparison to GMF isoforms of human and mouse. Regions of Site-2 show motions on ns-ps timescale, but dynamic flexibility of β4-β5 loop is low in comparison to corresponding F-loop region of ADF/cofilin UNC-60B. A general difference in packing of α3 and α1 between GMF and ADF/cofilins was noticed. Additionally, thermal stability of CeGMF was significantly higher than its ADF/cofilin homologs. CONCLUSION We have presented the first solution structure of GMF from C. elegans, which highlights the structural differences between the Site-2 of CeGMF and mammalian GMF isoforms. Further, we have seen the differences in structure, dynamics, and thermal stability of GMF and ADF/cofilin. GENERAL SIGNIFICANCE This study provides a useful insight to structural and dynamics factors that define the specificity of GMF towards Arp2/3 complex.
Collapse
Affiliation(s)
- Diva Maheshwari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Vaibhav Kumar Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sarita Tripathi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India.
| |
Collapse
|
35
|
Hilton DM, Aguilar RM, Johnston AB, Goode BL. Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. J Mol Biol 2018; 430:3323-3336. [PMID: 29928893 DOI: 10.1016/j.jmb.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Twinfilin is a highly conserved member of the actin depolymerization factor homology (ADF-H) protein superfamily, which also includes ADF/Cofilin, Abp1/Drebrin, GMF, and Coactosin. Twinfilin has a unique molecular architecture consisting of two ADF-H domains joined by a linker and followed by a C-terminal tail. Yeast Twinfilin, in conjunction with yeast cyclase-associated protein (Srv2/CAP), increases the rate of depolymerization at both the barbed and pointed ends of actin filaments. However, it has remained unclear whether these activities extend to Twinfilin homologs in other species. To address this, we purified the three mouse Twinfilin isoforms (mTwf1, mTwf2a, mTwf2b) and mouse CAP1, and used total internal reflection fluorescence microscopy assays to study their effects on filament disassembly. Our results show that all three mouse Twinfilin isoforms accelerate barbed end depolymerization similar to yeast Twinfilin, suggesting that this activity is evolutionarily conserved. In striking contrast, mouse Twinfilin isoforms and CAP1 failed to induce rapid pointed end depolymerization. Using chimeras, we show that the yeast-specific pointed end depolymerization activity is specified by the C-terminal ADF-H domain of yeast Twinfilin. In addition, Tropomyosin decoration of filaments failed to impede depolymerization by yeast and mouse Twinfilin and Srv2/CAP, but inhibited Cofilin severing. Together, our results indicate that Twinfilin has conserved functions in regulating barbed end dynamics, although its ability to drive rapid pointed end depolymerization appears to be species-specific. We discuss the implications of this work, including that pointed end depolymerization may be catalyzed by different ADF-H family members in different species.
Collapse
Affiliation(s)
- Denise M Hilton
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
36
|
Goode BL, Sweeney MO, Eskin JA. GMF as an Actin Network Remodeling Factor. Trends Cell Biol 2018; 28:749-760. [PMID: 29779865 DOI: 10.1016/j.tcb.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
Abstract
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
Collapse
Affiliation(s)
- Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA.
| | - Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Julian A Eskin
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
37
|
Innocenti M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr 2018. [PMID: 29513145 DOI: 10.1080/19336918.2018.1448352] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lamellipodia and ruffles are veil-shaped cell protrusions composed of a highly branched actin filament meshwork assembled by the Arp2/3 complex. These structures not only hallmark the leading edge of cells adopting the adhesion-based mesenchymal mode of migration but are also thought to drive cell movement. Although regarded as textbook knowledge, the mechanism of formation of lamellipodia and ruffles has been revisited in the last years leveraging new technologies. Furthermore, recent observations have also challenged our current view of the function of lamellipodia and ruffles in mesenchymal cell migration. Here, I review this literature and compare it with older studies to highlight the controversies and the outstanding open issues in the field. Moreover, I outline simple and plausible explanations to reconcile conflicting results and conclusions. Finally, I integrate the mechanisms regulating actin-based protrusion in a unifying model that accounts for random and ballistic mesenchymal cell migration.
Collapse
Affiliation(s)
- Metello Innocenti
- a Division of Molecular Genetics, The Netherlands Cancer Institute , Plesmanlaan 121, Amsterdam , CX , The Netherlands
| |
Collapse
|
38
|
Liu X, Salokas K, Tamene F, Jiu Y, Weldatsadik RG, Öhman T, Varjosalo M. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun 2018; 9:1188. [PMID: 29568061 PMCID: PMC5864832 DOI: 10.1038/s41467-018-03523-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 11/09/2022] Open
Abstract
Protein-protein interactions govern almost all cellular functions. These complex networks of stable and transient associations can be mapped by affinity purification mass spectrometry (AP-MS) and complementary proximity-based labeling methods such as BioID. To exploit the advantages of both strategies, we here design and optimize an integrated approach combining AP-MS and BioID in a single construct, which we term MAC-tag. We systematically apply the MAC-tag approach to 18 subcellular and 3 sub-organelle localization markers, generating a molecular context database, which can be used to define a protein’s molecular location. In addition, we show that combining the AP-MS and BioID results makes it possible to obtain interaction distances within a protein complex. Taken together, our integrated strategy enables the comprehensive mapping of the physical and functional interactions of proteins, defining their molecular context and improving our understanding of the cellular interactome. AP-MS and BioID provide complementary insights into cellular protein interaction networks. To facilitate their combined use, the authors here present an AP-MS- and BioID-compatible affinity tag, enabling efficient determination of cellular protein locations and interaction distances.
Collapse
Affiliation(s)
- Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland.,Proteomics Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Yaming Jiu
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland
| | - Rigbe G Weldatsadik
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland.,Proteomics Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Tiina Öhman
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland.,Proteomics Unit, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland. .,Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014, Finland. .,Proteomics Unit, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
39
|
Popinako A, Antonov M, Dibrova D, Chemeris A, Sokolova OS. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation. Biochem Biophys Res Commun 2018; 496:529-535. [PMID: 29339159 DOI: 10.1016/j.bbrc.2018.01.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites.
Collapse
Affiliation(s)
- A Popinako
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of RAS, 33 Leninsky Ave, bld. 2, Moscow, 119071, Russia
| | - M Antonov
- M.K. Ammosov North-Eastern Federal University, 58 Belinskiy str, suite 312, Yakutsk, 677980, Republic of Sakha (Yakutia), Russia
| | - D Dibrova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - A Chemeris
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - O S Sokolova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia.
| |
Collapse
|
40
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
41
|
The Structure of the ZMYND8/Drebrin Complex Suggests a Cytoplasmic Sequestering Mechanism of ZMYND8 by Drebrin. Structure 2017; 25:1657-1666.e3. [DOI: 10.1016/j.str.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
|
42
|
Sokolova OS, Chemeris A, Guo S, Alioto SL, Gandhi M, Padrick S, Pechnikova E, David V, Gautreau A, Goode BL. Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin. J Mol Biol 2016; 429:237-248. [PMID: 27939292 DOI: 10.1016/j.jmb.2016.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. To better understand Arp2/3 complex regulation, we used single-particle electron microscopy to compare the structures of Arp2/3 complex bound to three different inhibitory ligands: glia maturation factor (GMF), Coronin, and Arpin. Although the three inhibitors have distinct binding sites on Arp2/3 complex, they each induced an "open" nucleation-inactive conformation. Coronin promoted a standard (previously described) open conformation of Arp2/3 complex, with the N-terminal β-propeller domain of Coronin positioned near the p35/ARPC2 subunit of Arp2/3 complex. GMF induced two distinct open conformations of Arp2/3 complex, which correlated with the two suggested binding sites for GMF. Furthermore, GMF synergized with Coronin in inhibiting actin nucleation by Arp2/3 complex. Arpin, which uses VCA-related acidic (A) motifs to interact with the Arp2/3 complex, induced the standard open conformation, and two new masses appeared at positions near Arp2 and Arp3. Furthermore, Arpin showed additive inhibitory effects on Arp2/3 complex with Coronin and GMF. Together, these data suggest that Arp2/3 complex conformation is highly polymorphic and that its activities can be controlled combinatorially by different inhibitory ligands.
Collapse
Affiliation(s)
- Olga S Sokolova
- Department of Biology, Moscow M.V. Lomonosov University, Moscow 119234, Russia
| | - Angelina Chemeris
- Department of Biology, Moscow M.V. Lomonosov University, Moscow 119234, Russia; Ecole Polytechnique, CNRS UMR7654, Palaiseau 91120, France
| | - Siyang Guo
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Meghal Gandhi
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Shae Padrick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - Violaine David
- Ecole Polytechnique, CNRS UMR7654, Palaiseau 91120, France
| | | | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
43
|
Rodnick-Smith M, Liu SL, Balzer CJ, Luan Q, Nolen BJ. Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex. Nat Commun 2016; 7:12226. [PMID: 27417392 PMCID: PMC4947185 DOI: 10.1038/ncomms12226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
Nucleation of branched actin filaments by Arp2/3 complex is tightly regulated to control actin assembly in cells. Arp2/3 complex activation involves conformational changes brought about by ATP, Nucleation Promoting Factor (NPF) proteins, actin filaments and NPF-recruited actin monomers. To understand how these factors promote activation, we must first understand how the complex is held inactive in their absence. Here we demonstrate that the Arp3 C-terminal tail is a structural switch that prevents Arp2/3 complex from adopting an active conformation. The interaction between the tail and a hydrophobic groove in Arp3 blocks movement of Arp2 and Arp3 into an activated filament-like (short pitch) conformation. Our data indicate ATP binding destabilizes this interaction via an allosteric link between the Arp3 nucleotide cleft and the hydrophobic groove, thereby promoting the short-pitch conformation. Our results help explain how Arp2/3 complex is locked in an inactive state without activators and how autoinhibition is relieved.
Collapse
Affiliation(s)
- Max Rodnick-Smith
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Su-Ling Liu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Connor J Balzer
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Qing Luan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
44
|
Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex. Proc Natl Acad Sci U S A 2016; 113:E3834-43. [PMID: 27325766 DOI: 10.1073/pnas.1517798113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Arp2/3 (Actin-related proteins 2/3) complex is activated by WASP (Wiskott-Aldrich syndrome protein) family proteins to nucleate branched actin filaments that are important for cellular motility. WASP recruits actin monomers to the complex and stimulates movement of Arp2 and Arp3 into a "short-pitch" conformation that mimics the arrangement of actin subunits within filaments. The relative contribution of these functions in Arp2/3 complex activation and the mechanism by which WASP stimulates the conformational change have been unknown. We purified budding yeast Arp2/3 complex held in or near the short-pitch conformation by an engineered covalent cross-link to determine if the WASP-induced conformational change is sufficient for activity. Remarkably, cross-linked Arp2/3 complex bypasses the need for WASP in activation and is more active than WASP-activated Arp2/3 complex. These data indicate that stimulation of the short-pitch conformation is the critical activating function of WASP and that monomer delivery is not a fundamental requirement for nucleation but is a specific requirement for WASP-mediated activation. During activation, WASP limits nucleation rates by releasing slowly from nascent branches. The cross-linked complex is inhibited by WASP's CA region, even though CA potently stimulates cross-linking, suggesting that slow WASP detachment masks the activating potential of the short-pitch conformational switch. We use structure-based mutations and WASP-Arp fusion chimeras to determine how WASP stimulates movement toward the short-pitch conformation. Our data indicate that WASP displaces the autoinhibitory Arp3 C-terminal tail from a hydrophobic groove at Arp3's barbed end to destabilize the inactive state, providing a mechanism by which WASP stimulates the short-pitch conformation and activates Arp2/3 complex.
Collapse
|
45
|
Abstract
Seven decades of research have revealed much about actin structure, assembly, regulatory proteins, and cellular functions. However, some key information is still missing, so we do not understand the mechanisms of most processes that depend on actin. This chapter summarizes our current knowledge and explains some examples of work that will be required to fill these gaps and arrive at a mechanistic understanding of actin biology.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, 208103, New Haven, CT, 06520-8103, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, 208103, New Haven, CT, 06520-8103, USA. .,Department of Cell Biology, Yale University, 208103, New Haven, CT, 06520-8103, USA.
| |
Collapse
|
46
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
47
|
Hong NH, Qi A, Weaver AM. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions. J Cell Biol 2015; 210:753-69. [PMID: 26323691 PMCID: PMC4555817 DOI: 10.1083/jcb.201412127] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The late endosomal lipid PI(3,5)P2 binds to cortactin through the filamentous actin (F-actin) binding domain of cortactin, leading to removal of cortactin from endosomal actin networks and inhibition of cortactin-mediated branched actin nucleation and stabilization. Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.
Collapse
Affiliation(s)
- Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Aidong Qi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
48
|
Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Nat Commun 2015; 5:3308. [PMID: 24518936 DOI: 10.1038/ncomms4308] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022] Open
Abstract
Actin filament nucleation and branching by Arp2/3 complex is activated by nucleation-promoting factors (NPFs), whose C-terminal WCA region contains binding sites for actin (W) and Arp2/3 complex (CA). It is debated whether one or two NPFs are required for activation. Here we present evidence in support of the two-NPF model and show that actin plays a crucial role in the interactions of two mammalian NPFs, N-WASP and WAVE2, with Arp2/3 complex. Competition between actin-WCA and glia maturation factor (GMF) for binding to Arp2/3 complex suggests that during activation the first actin monomer binds at the barbed end of Arp2. Based on distance constraints obtained by time-resolved fluorescence resonance energy transfer, we define the relative position of the two actin-WCAs on Arp2/3 complex and propose an atomic model of the 11-subunit transitional complex.
Collapse
|
49
|
Haynes EM, Asokan SB, King SJ, Johnson HE, Haugh JM, Bear JE. GMFβ controls branched actin content and lamellipodial retraction in fibroblasts. J Cell Biol 2015; 209:803-12. [PMID: 26101216 PMCID: PMC4477851 DOI: 10.1083/jcb.201501094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary activity of GMFβ in vivo is actin branch disassembly (and not inhibition of Arp2/3 activation), and this activity plays an important role in lamellipodial dynamics and directional migration toward ECM cues. The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Heath E Johnson
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jason M Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
50
|
Jurgenson CT, Pollard TD. Crystals of the Arp2/3 complex in two new space groups with structural information about actin-related protein 2 and potential WASP binding sites. Acta Crystallogr F Struct Biol Commun 2015; 71:1161-8. [PMID: 26323303 PMCID: PMC4555924 DOI: 10.1107/s2053230x15013515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
Co-crystals of the bovine Arp2/3 complex with the CA motif from N-WASP in two new space groups were analyzed by X-ray diffraction. The crystals in the orthorhombic space group P212121 contained one complex per asymmetric unit, with unit-cell parameters a = 105.48, b = 156.71, c = 177.84 Å, and diffracted to 3.9 Å resolution. The crystals in the tetragonal space group P41 contained two complexes per asymmetric unit, with unit-cell parameters a = b = 149.93, c = 265.91 Å, and diffracted to 5.0 Å resolution. The electron-density maps of both new crystal forms had densities for small segments of subdomains 1 and 2 of Arp2. Both maps had density at the binding site on Arp3 for the C-terminal EWE tripeptide from N-WASP and a binding site proposed for the C motif of N-WASP in the barbed-end groove of Arp2. The map from the tetragonal crystal form had density near the barbed end of Arp3 that may correspond to the C helix of N-WASP. The noise levels and the low resolution of the maps made the assignment of specific molecular structures for any of these CA peptides impossible.
Collapse
Affiliation(s)
- Christopher T. Jurgenson
- Department of Chemistry and Physics, Delta State University, 1003 West Sunflower Road, Cleveland, MS 38733, USA
| | - Thomas D. Pollard
- Departments of Molecular, Cellular and Developmental Biology and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|