1
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
2
|
Melling N, Fard-Aghaie MH, Hube-Magg C, Kluth M, Simon R, Tachezy M, Ghadban T, Reeh M, Izbicki JR, Sauter G, Grupp K. The 3-Biomarker Classifier-A Novel and Simple Molecular Risk Score Predicting Overall Survival in Patients with Colorectal Cancer. Cancers (Basel) 2024; 16:3223. [PMID: 39335194 PMCID: PMC11430685 DOI: 10.3390/cancers16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Several new molecular markers in colorectal carcinomas have been discovered; however, classical histopathological predictors are still being used to predict survival in patients. We present a novel risk score, which uses molecular markers, to predict outcomes in patients with colorectal carcinoma. METHODS The immunohistochemistry of tissue micro arrays was used to detect and quantify H2BUB1, RBM3 and Ki-67. Different intensities of staining were categorized for these markers and a score was established. A multivariate analysis was performed and survival curves were established. RESULTS 1791 patients were evaluated, and multivariate analysis revealed that our risk score, the 3-biomarker classifier, is an independent marker to predict survival. We found a high risk-score to be associated with dismal median survival for the patients. CONCLUSIONS A more personalized score might be able to better discriminate low- and high-risk patients and suggest adjuvant treatment compared to classical pathological staging. Our score can serve as a tool to predict outcomes in patients suffering from colorectal carcinoma.
Collapse
Affiliation(s)
- Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Mohammad H. Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Katharina Grupp
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| |
Collapse
|
3
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
4
|
Sadeghi L, Wright APH. GSK-J4 Inhibition of KDM6B Histone Demethylase Blocks Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells by Modulating NF-κB Signaling. Cells 2023; 12:2010. [PMID: 37566089 PMCID: PMC10416905 DOI: 10.3390/cells12152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Multiple signaling pathways facilitate the survival and drug resistance of malignant B-cells by regulating their migration and adhesion to microenvironmental niches. NF-κB pathways are commonly dysregulated in mantle cell lymphoma (MCL), but the exact underlying mechanisms are not well understood. Here, using a co-culture model system, we show that the adhesion of MCL cells to stromal cells is associated with elevated levels of KDM6B histone demethylase mRNA in adherent cells. The inhibition of KDM6B activity, using either a selective inhibitor (GSK-J4) or siRNA-mediated knockdown, reduces MCL adhesion to stromal cells. We showed that KDM6B is required both for the removal of repressive chromatin marks (H3K27me3) at the promoter region of NF-κB encoding genes and for inducing the expression of NF-κB genes in adherent MCL cells. GSK-J4 reduced protein levels of the RELA NF-κB subunit and impaired its nuclear localization. We further demonstrated that some adhesion-induced target genes require both induced NF-κB and KDM6B activity for their induction (e.g., IL-10 cytokine gene), while others require induction of NF-κB but not KDM6B (e.g., CCR7 chemokine gene). In conclusion, KDM6B induces the NF-κB pathway at different levels in MCL, thereby facilitating MCL cell adhesion, survival, and drug resistance. KDM6B represents a novel potential therapeutic target for MCL.
Collapse
Affiliation(s)
- Laia Sadeghi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | | |
Collapse
|
5
|
Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, Wang F, Xu J, Pei H, Huang J, Chen X. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci U S A 2023; 120:e2303479120. [PMID: 37155876 PMCID: PMC10193940 DOI: 10.1073/pnas.2303479120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.
Collapse
Affiliation(s)
- Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Donghao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Fangwei Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Jun Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, Wu X, Chen G, Yuan S, Wang T. Single-nucleus RNA sequencing and deep tissue proteomics reveal distinct tumour microenvironment in stage-I and II cervical cancer. J Exp Clin Cancer Res 2023; 42:28. [PMID: 36683048 PMCID: PMC9869594 DOI: 10.1186/s13046-023-02598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.
Collapse
Affiliation(s)
- Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | | | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Songhua Yuan
- Department of Gynaecology, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
7
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
8
|
The Mis6 inner kinetochore subcomplex maintains CENP-A nucleosomes against centromeric non-coding transcription during mitosis. Commun Biol 2022; 5:818. [PMID: 35970865 PMCID: PMC9378642 DOI: 10.1038/s42003-022-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Centromeres are established by nucleosomes containing the histone H3 variant CENP-A. CENP-A is recruited to centromeres by the Mis18–HJURP machinery. During mitosis, CENP-A recruitment ceases, implying the necessity of CENP-A maintenance at centromeres, although the exact underlying mechanism remains elusive. Herein, we show that the inner kinetochore protein Mis6 (CENP-I) and Mis15 (CENP-N) retain CENP-A during mitosis in fission yeast. Eliminating Mis6 or Mis15 during mitosis caused immediate loss of pre-existing CENP-A at centromeres. CENP-A loss occurred due to the transcriptional upregulation of non-coding RNAs at the central core region of centromeres, as confirmed by the observation RNA polymerase II inhibition preventing CENP-A loss from centromeres in the mis6 mutant. Thus, we concluded that the inner kinetochore complex containing Mis6–Mis15 blocks the indiscriminate transcription of non-coding RNAs at the core centromere, thereby retaining the epigenetic inheritance of CENP-A during mitosis. The kinetochore protein Mis6 (CENP-I) plays an important role in CENP-A maintenance during mitosis in fission yeast and blocks the indiscriminate transcription of non-coding RNAs at the core centromere to retain CENP-A during mitosis.
Collapse
|
9
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
10
|
Wang P, Guo K, Su Q, Deng J, Zhang X, Tu L. Histone ubiquitination controls organ size in cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1005-1020. [PMID: 35218092 DOI: 10.1111/tpj.15716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitination plays a vital role in modifying protein activity and destiny. Ub-conjugating enzyme E2 is one of the enzymes that participates in this precise process. There are at least 169 E2 proteins in the allotetraploid cotton (Gossypium hirsutum), but their function remains unknown. Here we identify an E2 gene GhUBC2L and show its positive role in cell proliferation and expansion. Complete knock-down of GhUBC2L in cotton resulted in retarded growth and reduced organ size. Conversely, overexpression of GhUBC2L promoted cotton growth, generating enlarged organs in size. Monoubiquitination of H2A and H2B was strongly impaired in GhUBC2L-suppressed cotton but slightly enhanced in GhUBC2L-overexpressed plant. GhUbox8, a U-box type E3 ligase protein, was found to interact with GhUBC2L both in vivo and in vitro, indicating their synergistical function in protein ubiquitination. Furthermore, GhUbox8 was shown to interact with a series of histone proteins, including histone H2A and H2B, indicating its potential monoubiquitination on H2A and H2B. Expression of genes relating to cell cycle and organ development were altered when the expression of GhUBC2L was changed. Our results show that GhUBC2L modulates histone monoubiquitination synergistically with GhUbox8 to regulate the expression of genes involved in organ development and cell cycle, thus controlling organ size in cotton. This research provides new insights into the role of protein ubiquitination in organ size control. Histone monoubiquitination plays an important role in plant development. Here, we identified an E2 enzyme GhUBC2L that modulates histone monoubiquitination synergistically with an E3 ligase GhUbox8 to mediate organ size control in cotton.
Collapse
Affiliation(s)
- Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qian Su
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
11
|
Zhou J, Xing Z, Xiao Y, Li M, Li X, Wang D, Dong Z. The Value of H2BC12 for Predicting Poor Survival Outcomes in Patients With WHO Grade II and III Gliomas. Front Mol Biosci 2022; 9:816939. [PMID: 35547391 PMCID: PMC9081347 DOI: 10.3389/fmolb.2022.816939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Glioma is a common primary malignant brain tumor. Grade II (GII) gliomas are prone to develop into anaplastic grade III (GIII) gliomas, which indicate a higher malignancy and poorer survival outcome. This study aimed to satisfy the increasing demand for novel sensitive biomarkers and potential therapeutic targets in the treatment of GII and GIII gliomas. Methods: A TCGA dataset was used to investigate the expression of H2BC12 mRNA in GII and GIII gliomas and its relation to clinical pathologic characteristics. Glioma tissues were collected to verify results from the TCGA dataset, and H2BC12 mRNA was detected by RT-qPCR. ROC analysis was employed to evaluate the classification power for GII and GIII. The significance of H2BC12 mRNA GII and GIII gliomas was also investigated. In addition, H2BC12 expression-related pathways were enriched by gene set enrichment analysis (GSEA). DNA methylation level and mutation of H2BC12 were analyzed by the UALCAN and CBioPortal databases, respectively. Results: Based on the sample data from multiple databases and RT-qPCR, higher expression of H2BC12 mRNA was found in GII and GIII glioma tissue compared to normal tissue, which was consistent with a trend with our clinical specimen. H2BC12 mRNA had a better power in distinguishing between GII and GIII and yielded an AUC of 0.706 with a sensitivity of 76.9% and specificity of 81.8%. Meanwhile, high H2BC12 levels were associated with IDH status, 1p/19q codeletion, primary therapy outcome, and the histological type of gliomas. Moreover, the overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) of GII glioma patients with higher levels of H2BC12 were shorter than those of patients with lower levels as well as GIII patients. In the multivariate analysis, a high H2BC12 level was an independent predictor for poor survival outcomes of gliomas. The Wnt or PI3K-AKT signaling pathways, DNA repair, cellular senescence, and DNA double-strand break repair were differentially activated in phenotypes that were positively associated with H2BC12. H2BC12 DNA methylation was high in TP53 nonmutant patients, and no H2BC12 mutation was observed in gliomas patients. Conclusion: H2BC12 is a promising biomarker for the diagnosis and prognosis of patients with WHO grade II and III gliomas.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Zhaoquan Xing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Mengyou Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong,
| |
Collapse
|
12
|
The histone chaperone FACT facilitates heterochromatin spreading by regulating histone turnover and H3K9 methylation states. Cell Rep 2021; 37:109944. [PMID: 34731638 PMCID: PMC8608617 DOI: 10.1016/j.celrep.2021.109944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin formation requires three distinct steps: nucleation, self-propagation (spreading) along the chromosome, and faithful maintenance after each replication cycle. Impeding any of those steps induces heterochromatin defects and improper gene expression. The essential histone chaperone FACT (facilitates chromatin transcription) has been implicated in heterochromatin silencing, but the mechanisms by which FACT engages in this process remain opaque. Here, we pinpoint its function to the heterochromatin spreading process in fission yeast. FACT impairment reduces nucleation-distal H3K9me3 and HP1/Swi6 accumulation at subtelomeres and derepresses genes in the vicinity of heterochromatin boundaries. FACT promotes spreading by repressing heterochromatic histone turnover, which is crucial for the H3K9me2 to me3 transition that enables spreading. FACT mutant spreading defects are suppressed by removal of the H3K9 methylation antagonist Epe1. Together, our study identifies FACT as a histone chaperone that promotes heterochromatin spreading and lends support to the model that regulated histone turnover controls the propagation of repressive methylation marks. Heterochromatin establishment requires distinct nucleation and spreading steps. Murawska et al. show that the conserved and essential histone chaperone FACT facilitates the heterochromatin spreading process by maintaining low heterochromatic histone turnover, which enables a productive H3K9 trimethylation step by the methyltransferase Clr4 in fission yeast.
Collapse
|
13
|
Pinto D, Pagé V, Fisher RP, Tanny JC. New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Curr Genet 2021; 67:695-705. [PMID: 34089069 DOI: 10.1007/s00294-021-01196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023]
Abstract
Co-transcriptional histone modifications are a ubiquitous feature of RNA polymerase II (RNAPII) transcription, with profound but incompletely understood effects on gene expression. Unlike the covalent marks found at promoters, which are thought to be instructive for transcriptional activation, these modifications occur in gene bodies as a result of transcription, which has made elucidation of their functions challenging. Here we review recent insights into the regulation and roles of two such modifications: monoubiquitylation of histone H2B at lysine 120 (H2Bub1) and methylation of histone H3 at lysine 36 (H3K36me). Both H2Bub1 and H3K36me are enriched in the coding regions of transcribed genes, with highly overlapping distributions, but they were thought to work largely independently. We highlight our recent demonstration that, as was previously shown for H3K36me, H2Bub1 signals to the histone deacetylase (HDAC) complex Rpd3S/Clr6-CII, and that Rpd3S/Clr6-CII and H2Bub1 function in the same pathway to repress aberrant antisense transcription initiating within gene coding regions. Moreover, both of these histone modification pathways are influenced by protein phosphorylation catalyzed by the cyclin-dependent kinases (CDKs) that regulate RNAPII elongation, chiefly Cdk9. Therefore, H2Bub1 and H3K36me are more tightly linked than previously thought, sharing both upstream regulatory inputs and downstream effectors. Moreover, these newfound connections suggest extensive, bidirectional signaling between RNAPII elongation complexes and chromatin-modifying enzymes, which helps to determine transcriptional outputs and should be a focus for future investigation.
Collapse
Affiliation(s)
- Daniel Pinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Vivane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Ventura TMO, Ribeiro NR, Taira EA, de Souza-E-Silva CM, Rubira CMF, Santos PSDS, Buzalaf MAR. Radiotherapy changes acquired enamel pellicle proteome in head and neck cancer patients. J Dent 2021; 108:103642. [PMID: 33757866 DOI: 10.1016/j.jdent.2021.103642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To evaluate in vivo the proteomic profile of the acquired enamel pellicle (AEP) in patients with head and neck cancer (HNC) before, during and after radiotherapy. METHODS Nine patients, after prophylaxis, had their AEPs collected before (BRT), during (DRT; 2-5 weeks) and after (ART; 3-4 months) radiotherapy. AEP was also collected from nine healthy patients (Control). The proteins were extracted in biological triplicate and processed by label-free proteomics. RESULTS Statherin was increased more than 9-fold and several hemoglobin subunits were increased more than 5-fold DRT compared to BRT, while lactotransferrin, proline-rich proteins, cystatins, neutrophil defensins 1 and 3 and histatin-1 were decreased. ART, there was an increase in lactotransferrin and several isoforms of histones, while statherin and alpha-amylase proteins were decreased. MOAP-1 was exclusively found ART in comparison to BRT. When compared to Control, AEP of patients BRT showed an increase in proteins related to the perception of bitter taste, mucin-7 and alpha-amylases, while cystatin-S was decreased. CONCLUSIONS HNC and radiotherapy remarkably altered the proteome of the AEP. Antibacterial and acid-resistant proteins were decreased during radiotherapy. CLINICAL SIGNIFICANCE Our results provide important information for designing more effective dental products for these patients, in addition to contributing to a better understanding of the differential protective roles of the AEP proteins during radiotherapy. Moreover, some proteins identified in the AEP after radiotherapy may serve as prognostic markers for survival of HNC patients.
Collapse
Affiliation(s)
- Talita Mendes Oliveira Ventura
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Nathalia Regina Ribeiro
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Even Akemi Taira
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Cintia Maria de Souza-E-Silva
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Cássia Maria Fischer Rubira
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil.
| |
Collapse
|
15
|
RPA-mediated recruitment of Bre1 couples histone H2B ubiquitination to DNA replication and repair. Proc Natl Acad Sci U S A 2021; 118:2017497118. [PMID: 33602814 DOI: 10.1073/pnas.2017497118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin E3 ligase Bre1-mediated H2B monoubiquitination (H2Bub) is essential for proper DNA replication and repair in eukaryotes. Deficiency in H2Bub causes genome instability and cancer. How the Bre1-H2Bub pathway is evoked in response to DNA replication or repair remains unknown. Here, we identify that the single-stranded DNA (ssDNA) binding factor RPA acts as a key mediator that couples Bre1-mediated H2Bub to DNA replication and repair in yeast. We found that RPA interacts with Bre1 in vitro and in vivo, and this interaction is stimulated by ssDNA. This association ensures the recruitment of Bre1 to replication forks or DNA breaks but does not affect its E3 ligase activity. Disruption of the interaction abolishes the local enrichment of H2Bub, resulting in impaired DNA replication, response to replication stress, and repair by homologous recombination, accompanied by increased genome instability and DNA damage sensitivity. Notably, we found that RNF20, the human homolog of Bre1, interacts with RPA70 in a conserved mode. Thus, RPA functions as a master regulator for the spatial-temporal control of H2Bub chromatin landscape during DNA replication and recombination, extending the versatile roles of RPA in guarding genome stability.
Collapse
|
16
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
17
|
Marsh DJ, Ma Y, Dickson KA. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 2020; 12:E3462. [PMID: 33233707 PMCID: PMC7699835 DOI: 10.3390/cancers12113462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.
Collapse
Affiliation(s)
- Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
- Kolling Institute, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| | - Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| |
Collapse
|
18
|
Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2020; 40:465-474. [PMID: 33199825 PMCID: PMC7819849 DOI: 10.1038/s41388-020-01556-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
RNF40 (OMIM: 607700) is a really interesting new gene (RING) finger E3 ubiquitin ligase containing multiple coiled-coil domains and a C-terminal RING finger motif, which engage in protein–DNA and protein–protein interactions. RNF40 encodes a polypeptide of 1001 amino acids with a predicted molecular mass of 113,678 Da. RNF40 and its paralog RNF20 form a stable heterodimer complex that can monoubiquitylate histone H2B at lysine 120 as well as other nonhistone proteins. Cancer is a major public health problem and the second leading cause of death. Through its protein ubiquitylation activity, RNF40 acts as a tumor suppressor or oncogene to play major epigenetic roles in cancer development, progression, and metastasis, highlighting the essential function of RNF40 and the importance of studying it. In this review, we summarize current knowledge about RNF40 gene structure and the role of RNF40 in histone H2B monoubiquitylation, DNA damage repair, apoptosis, cancer development, and metastasis. We also underscore challenges in applying this information to cancer prognosis and prevention and highlight the urgent need for additional investigations of RNF40 as a potential target for cancer therapeutics.
Collapse
|
19
|
Spt5 Phosphorylation and the Rtf1 Plus3 Domain Promote Rtf1 Function through Distinct Mechanisms. Mol Cell Biol 2020; 40:MCB.00150-20. [PMID: 32366382 DOI: 10.1128/mcb.00150-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Rtf1 is a conserved RNA polymerase II (RNAPII) elongation factor that promotes cotranscriptional histone modification, RNAPII transcript elongation, and mRNA processing. Rtf1 function requires the phosphorylation of Spt5, an essential RNAPII processivity factor. Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), the catalytic component of positive transcription elongation factor b (P-TEFb). Rtf1 recognizes phosphorylated Spt5 (pSpt5) through its Plus3 domain. Since Spt5 is a unique target of Cdk9 and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. Here, we dissect Rtf1 regulation by pSpt5 in the fission yeast Schizosaccharomyces pombe We demonstrate that the Plus3 domain of Rtf1 (Prf1 in S. pombe) and pSpt5 are functionally distinct and that they act in parallel to promote Prf1 function. This alternate Plus3 domain function involves an interface that overlaps the pSpt5-binding site and that can interact with single-stranded nucleic acid or with the polymerase-associated factor (PAF) complex in vitro We further show that the C-terminal region of Prf1, which also interacts with PAF, has a similar parallel function with pSpt5. Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation.
Collapse
|
20
|
The H2B ubiquitin-protein ligase RNF40 is required for somatic cell reprogramming. Cell Death Dis 2020; 11:287. [PMID: 32341358 PMCID: PMC7184622 DOI: 10.1038/s41419-020-2482-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires a resetting of the epigenome in order to facilitate a cell fate transition. Previous studies have shown that epigenetic modifying enzymes play a central role in controlling induced pluripotency and the generation of iPSC. Here we show that RNF40, a histone H2B lysine 120 E3 ubiquitin-protein ligase, is specifically required for early reprogramming during induced pluripotency. Loss of RNF40-mediated H2B monoubiquitination (H2Bub1) impaired early gene activation in reprogramming. We further show that RNF40 contributes to tissue-specific gene suppression via indirect effects by controlling the expression of the polycomb repressive complex-2 histone methyltransferase component EZH2, as well as through more direct effects by promoting the resolution of H3K4me3/H3K27me3 bivalency on H2Bub1-occupied pluripotency genes. Thus, we identify RNF40 as a central epigenetic mediator of cell state transition with distinct functions in resetting somatic cell state to pluripotency.
Collapse
|
21
|
Singh PP, Shukla M, White SA, Lafos M, Tong P, Auchynnikava T, Spanos C, Rappsilber J, Pidoux AL, Allshire RC. Hap2-Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes Dev 2020; 34:226-238. [PMID: 31919190 PMCID: PMC7000912 DOI: 10.1101/gad.332536.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Collapse
Affiliation(s)
- Puneet P. Singh
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Manu Shukla
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Sharon A. White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom;,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
22
|
Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells. PLoS Pathog 2020; 16:e1008264. [PMID: 31999790 PMCID: PMC6991963 DOI: 10.1371/journal.ppat.1008264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir that at any time can reactivate the integrated HIV-1. Here we confirmed that latently infected cells from HIV-1 positive study participants exhibited active HIV-1 transcription but without production of mature spliced mRNAs. To elucidate the mechanisms behind this we employed primary HIV-1 latency models to study latency establishment and maintenance. We characterized proviral transcription and chromatin development in cultures of resting primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (e.g. H3K27ac) and elongating RNAPII remained detectable at the latent provirus, despite prolonged proviral silencing. In many aspects, latent HIV-1 resembled an active enhancer in a subset of resting cells. The enhancer chromatin actively promoted latency and the enhancer-specific CBP/P300-inhibitor GNE049 was identified as a new latency reversal agent. The division of the latent reservoir according to distinct chromatin compositions with different reactivation potential enforces the notion that even though a relatively large set of cells contains the HIV-1 provirus, only a discrete subset is readily able to reactivate the provirus and spread the infection. HIV infection is a devastating disease affecting 35 million people worldwide. Current anti-retroviral treatment is highly effective and has made the HIV infection chronic. However, despite more effective treatments, the prospects of a cure are distant. The problem for an HIV cure is that, even though the virus particles are eradicated, the infected cells maintain the information of remake the virus. This information is integrated in the host cell as a provirus. The provirus switches between active and inactive states. Thereby, the infected cells evade both the immune system and death associated with massive viral production. We have characterized the composition of proviral chromatin and how it connects with transcription and viral production. In resting primary CD4+ T-cells, we follow the fate of the provirus starting at infection until latency is firmly established. Only in a fraction of intact proviruses were we able to reverse latency and that this was highly regulated by the chromatin composition. Whereas the proviruses encompassed in heterochromatin were refractory to activation, latent proviruses with “enhancer” characteristics were readily activated. Our study provides key insights as to detect the remaining HIV-1 infected cells capable of reseeding the infection, and the mechanisms whereby they are maintained.
Collapse
|
23
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
24
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
25
|
Krajewski WA. "Direct" and "Indirect" Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. Bioessays 2019; 42:e1900136. [PMID: 31805213 DOI: 10.1002/bies.201900136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Indexed: 12/26/2022]
Abstract
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone "readers," and as determinants of chromatin array compaction. Alterations of histone charges by "small" chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
26
|
Nardi IK, Stark JM, Larsen A, Salgia R, Raz DJ. USP22 Interacts with PALB2 and Promotes Chemotherapy Resistance via Homologous Recombination of DNA Double-Strand Breaks. Mol Cancer Res 2019; 18:424-435. [PMID: 31685642 PMCID: PMC9285637 DOI: 10.1158/1541-7786.mcr-19-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is a highly conserved pathway that can facilitate the repair of DNA double-strand breaks (DSB). Several Deubiquitinases (DUB) have been implicated as key players in DNA damage repair (DDR) through HR. Here, we report USP22, a DUB that is highly overexpressed in multiple cancer types, is necessary for HR through a direct interaction with PALB2 through its C-terminal WD40 domain. This interaction stimulates USP22 catalytic activity in vitro. Furthermore, we show USP22 is necessary for BRCA2, PALB2, and Rad51 recruitment to DSBs and this is, in part, through USP22 stabilizing BRCA2 and PALB2 levels. Taken together, our results describe a role for USP22 in DNA repair. IMPLICATIONS: This research provides new and exciting mechanistic insights into how USP22 overexpression promotes chemoresistance in lung cancer. We believe this study, and others, will help aid in developing targeted drugs toward USP22 and known binding partners for lung cancer treatment.
Collapse
Affiliation(s)
- Isaac K Nardi
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California.
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, California
| | - Adrien Larsen
- Department of Computational Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
27
|
Pagé V, Chen JJ, Durand-Dubief M, Grabowski D, Oya E, Sansô M, Martin RD, Hébert TE, Fisher RP, Ekwall K, Tanny JC. Histone H2B Ubiquitylation Regulates Histone Gene Expression by Suppressing Antisense Transcription in Fission Yeast. Genetics 2019; 213:161-172. [PMID: 31345994 PMCID: PMC6727805 DOI: 10.1534/genetics.119.302499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Histone H2B monoubiquitylation (H2Bub1) is tightly linked to RNA polymerase II transcription elongation, and is also directly implicated in DNA replication and repair. Loss of H2Bub1 is associated with defects in cell cycle progression, but how these are related to its various functions, and the underlying mechanisms involved, is not understood. Here we describe a role for H2Bub1 in the regulation of replication-dependent histone genes in the fission yeast Schizosaccharomyces pombe H2Bub1 activates histone genes indirectly by suppressing antisense transcription of ams2+ -a gene encoding a GATA-type transcription factor that activates histone genes and is required for assembly of centromeric chromatin. Mutants lacking the ubiquitylation site in H2B or the H2B-specific E3 ubiquitin ligase Brl2 had elevated levels of ams2+ antisense transcripts and reduced Ams2 protein levels. These defects were reversed upon inhibition of Cdk9-an ortholog of the kinase component of positive transcription elongation factor b (P-TEFb)-indicating that they likely resulted from aberrant transcription elongation. Reduced Cdk9 activity also partially rescued chromosome segregation phenotypes of H2Bub1 mutants. In a genome-wide analysis, loss of H2Bub1 led to increased antisense transcripts at over 500 protein-coding genes in H2Bub1 mutants; for a subset of these, including several genes involved in chromosome segregation and chromatin assembly, antisense derepression was Cdk9-dependent. Our results highlight antisense suppression as a key feature of cell cycle-dependent gene regulation by H2Bub1, and suggest that aberrant transcription elongation may underlie the effects of H2Bub1 loss on cell cycle progression.
Collapse
Affiliation(s)
- Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jennifer J Chen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mickael Durand-Dubief
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm 17177, Sweden
| | - David Grabowski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Eriko Oya
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm 17177, Sweden
| | - Miriam Sansô
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai School of Medicine, New York, New York 10029
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai School of Medicine, New York, New York 10029
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm 17177, Sweden
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
28
|
Zheng S, Li D, Lu Z, Liu G, Wang M, Xing P, Wang M, Dong Y, Wang X, Li J, Zhang S, Peng H, Ira G, Li G, Chen X. Bre1-dependent H2B ubiquitination promotes homologous recombination by stimulating histone eviction at DNA breaks. Nucleic Acids Res 2019; 46:11326-11339. [PMID: 30304473 PMCID: PMC6265479 DOI: 10.1093/nar/gky918] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.
Collapse
Affiliation(s)
- Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhen Lu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guangxue Liu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Meng Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Dong
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Haoyang Peng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Grzegorz Ira
- The Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
29
|
Negative Regulation of the Mis17-Mis6 Centromere Complex by mRNA Decay Pathway and EKC/KEOPS Complex in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:1815-1823. [PMID: 30967422 PMCID: PMC6553542 DOI: 10.1534/g3.119.400227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mitotic kinetochore forms at the centromere for proper chromosome segregation. Deposition of the centromere-specific histone H3 variant, spCENP-A/Cnp1, is vital for the formation of centromere-specific chromatin and the Mis17-Mis6 complex of the fission yeast Schizosaccharomyces pombe is required for this deposition. Here we identified extragenic suppressors for a Mis17-Mis6 complex temperature-sensitive (ts) mutant, mis17-S353P, using whole-genome sequencing. The large and small daughter nuclei phenotype observed in mis17-S353P was greatly rescued by these suppressors. Suppressor mutations in two ribonuclease genes involved in the mRNA decay pathway, exo2 and pan2, may affect Mis17 protein level, as mis17 mutant protein level was recovered in mis17-S353P exo2 double mutant cells. Suppressor mutations in EKC/KEOPS complex genes may not regulate Mis17 protein level, but restored centromeric localization of spCENP-A/Cnp1, Mis6 and Mis15 in mis17-S353P. Therefore, the EKC/KEOPS complex may inhibit Mis17-Mis6 complex formation or centromeric localization. Mutational analysis in protein structure indicated that suppressor mutations in the EKC/KEOPS complex may interfere with its kinase activity or complex formation. Our results suggest that the mRNA decay pathway and the EKC/KEOPS complex negatively regulate Mis17-Mis6 complex-mediated centromere formation by distinct and unexpected mechanisms.
Collapse
|
30
|
Zhou X, Wu S, Zhou H, Wang M, Wang M, Lü Y, Cheng Z, Xu J, Ai Y. Marek's Disease Virus Regulates the Ubiquitylome of Chicken CD4 + T Cells to Promote Tumorigenesis. Int J Mol Sci 2019; 20:E2089. [PMID: 31035338 PMCID: PMC6539122 DOI: 10.3390/ijms20092089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek's disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek's disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, 126 Xin Min Avenue, Changchun 130021, Jilin, China.
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Menghan Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yan Lü
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Zhongyi Cheng
- Jingjie PTM Biolabs Co. Ltd., 452 6th Street, Hangzhou Eco. & Tech. Developmental Area, Hangzhou 310018, Zhejiang, China.
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| |
Collapse
|
31
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
32
|
Feng H, Li X, Chen H, Deng J, Zhang C, Liu J, Wang T, Zhang X, Dong J. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26S proteasome pathway. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5059-5075. [PMID: 30053051 PMCID: PMC6184758 DOI: 10.1093/jxb/ery269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 05/02/2023]
Abstract
Cotton fibers, which are extremely elongated single cells of epidermal seed trichomes and have highly thickened cell walls, constitute the most important natural textile material worldwide. However, the regulation of fiber development is not well understood. Here, we report that GhHUB2, a functional homolog of AtHUB2, controls fiber elongation and secondary cell wall (SCW) deposition. GhHUB2 is ubiquitously expressed, including within fibers. Overexpression of GhHUB2 in cotton increased fiber length and SCW thickness, while RNAi knockdown of GhHUB2 resulted in shortened fibers and thinner cell walls. We found that GhHUB2 interacted with GhKNL1, a transcriptional repressor predominantly expressed in developing fibers, and that GhHUB2 ubiquitinated and degraded GhKNL1 via the ubiquitin-26S proteasome pathway. GhHUB2 negatively regulated GhKNL1 protein levels and lead to the disinhibition of genes such as GhXTH1, Gh1,3-β-G, GhCesA4, GhAGP4, GhCTL1, and GhCOBL4, thus promoting fiber elongation and enhancing SCW biosynthesis. We found that GhREV-08, a transcription factor that participates in SCW deposition and auxin signaling pathway, was a direct target of GhKNL1. In conclusion, our study uncovers a novel function of HUB2 in plants in addition to its monoubiquitination of H2B. Moreover, we provide evidence for control of the fiber development by the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Lu M, He X. Intricate regulation on epigenetic stability of the subtelomeric heterochromatin and the centromeric chromatin in fission yeast. Curr Genet 2018; 65:381-386. [PMID: 30244281 DOI: 10.1007/s00294-018-0886-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/30/2023]
Abstract
In eukaryotes, the integrity of chromatin structure and organization is crucial to diverse key cellular processes from development to disease avoidance. To maintain the cell identity through mitotic cell generations, the genome (the genomic DNA sequence) as well as the epigenome (pertaining various forms of epigenetic information carriers, such as histone modifications, nucleosome positioning and the chromatin organization) is inherited with high fidelity. In comparison to the wealth of knowledge on genetic stability, we know much less on what may control the accuracy of epigenetic inheritance. In our recent work in the fission yeast Schizosaccharomyces pombe, by quantifying the epigenetic fidelity of CENP-A/Cnp1 or H3K9me2 nucleosome inheritance through cell divisions, we demonstrated that Ccp1, a homolog of histone chaperone Vps75 in budding yeast, participates in the modulation of centromeric nucleosomal epigenetic stability as well as proper heterochromatin organization. In this essay, we focus on discussing the uniquely high dynamicity of the subtelomeric heterochromatin regions and the complex mechanisms regulating epigenetic stability of centromeric chromatin.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
34
|
Lu M, He X. Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in Schizosaccharomyces pombe. J Biol Chem 2018; 293:12068-12080. [PMID: 29899117 PMCID: PMC6078436 DOI: 10.1074/jbc.ra118.003873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Distinct chromatin organization features, such as centromeres and heterochromatin domains, are inherited epigenetically. However, the mechanisms that modulate the accuracy of epigenetic inheritance, especially at the individual nucleosome level, are not well-understood. Here, using ChIP and next-generation sequencing (ChIP-Seq), we characterized Ccp1, a homolog of the histone chaperone Vps75 in budding yeast that functions in centromere chromatin duplication and heterochromatin maintenance in fission yeast (Schizosaccharomyces pombe). We show that Ccp1 is enriched at the central core regions of the centromeres. Of note, among all histone chaperones characterized, deletion of the ccp1 gene uniquely reduced the rate of epigenetic switching, manifested as position effect variegation within the centromeric core region (CEN-PEV). In contrast, gene deletion of other histone chaperones either elevated the PEV switching rates or did not affect centromeric PEV. Ccp1 and the kinetochore components Mis6 and Sim4 were mutually dependent for centromere or kinetochore association at the proper levels. Moreover, Ccp1 influenced heterochromatin distribution at multiple loci in the genome, including the subtelomeric and the pericentromeric regions. We also found that Gar2, a protein predominantly enriched in the nucleolus, functions similarly to Ccp1 in modulating the epigenetic stability of centromeric regions, although its mechanism remained unclear. Together, our results identify Ccp1 as an important player in modulating epigenetic stability and maintaining proper organization of multiple chromatin domains throughout the fission yeast genome.
Collapse
Affiliation(s)
- Min Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
35
|
Zhu J, Cheng KCL, Yuen KWY. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-A HCP-3 Deposition and De Novo Centromere Establishment in Caenorhabditis elegans Artificial Chromosomes. Epigenetics Chromatin 2018; 11:16. [PMID: 29653589 PMCID: PMC5898018 DOI: 10.1186/s13072-018-0185-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection. Results DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-AHCP−3 and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-AHCP-3 loading. Conclusions Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-AHCP−3-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Kevin Chi Lok Cheng
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
36
|
Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Sci Rep 2017; 7:16495. [PMID: 29184082 PMCID: PMC5705706 DOI: 10.1038/s41598-017-16472-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Heterogeneity in terms of tumor characteristics, prognosis, and survival among cancer patients is an unsolved issue. Here, we systematically analyzed the aberrant expression patterns of cervical cancer using RNA-Seq data from The Cancer Genome Atlas (TCGA). We incorporated gene profiling, molecular signatures, functional and pathway information with gene set enrichment and protein-protein interaction (PPI) network analysis, to identify sub-networks of genes. Those identified genes relating to DNA replication and DNA repair-mediated signaling pathways associated with systemic lupus erythematosus (SLE). Next, we combined cross-validated prognostic scores to build an integrated prognostic model for survival prediction. The combined approach revealed that the DNA repair-mediated including the functional interaction module of 18 histone genes (Histone cluster 1 H2A, B and H4), were significantly correlated with the survival rate. Furthermore, five of these histone genes were highly expressed in three cervical cancer cohorts from the Oncomine database. Comparison of high and low histone variant-expressing human cervical cancer cell lines revealed different responses to DNA damage, suggesting protective functions of histone genes against DNA damage. Collectively, we provide evidence that two SLE-associated gene sets (HIST1H2BD and HIST1H2BJ; and HIST1H2BD, HIST1H2BJ, HIST1H2BH, HIST1H2AM and HIST1H4K) can be used as prognostic factors for survival prediction among cervical cancer patients.
Collapse
|
37
|
Hernández-Saavedra D, Strakovsky RS, Ostrosky-Wegman P, Pan YX. Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors. Adv Nutr 2017; 8:889-904. [PMID: 29141972 PMCID: PMC5683002 DOI: 10.3945/an.117.016402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy.
Collapse
Affiliation(s)
| | | | | | - Yuan-Xiang Pan
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition,,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Champaign, IL; and
| |
Collapse
|
38
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 PMCID: PMC5699866 DOI: 10.7554/elife.28231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1’s function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment. Most of the DNA in a cell is stored in structures called chromosomes. During every cell cycle, each cell needs to replicate its chromosomes, hold the two chromosome copies (also known as “sister chromatids”) together before cell division, and distribute them equally to the two new cells. Each step must be executed accurately otherwise the new cells will have extra or missing chromosomes – a condition that is seen in many cancer cells and that can cause embryos to die. Since these processes are so essential to life, they are highly similar in a range of species, from single-celled organisms such as yeast to multicellular organisms like humans. However, it was not clear when and how sister chromatids first join together, or how this process is linked to DNA replication. The DNA in the sister chromatids is wrapped around proteins called histones to form a structure known as chromatin. An enzyme called Bre1 plays roles in gene transcription and DNA replication and repair by adding ubiquitin molecules to a histone called H2B. Now, by using genetic, molecular and cell biological approaches to study baker and brewer yeast cells, Zhang et al. show that the activity of Bre1 helps to hold sister chromatids together. Specifically, Bre1 recruits proteins to the chromatin before and during DNA replication, which help to initiate replication and to establish cohesion between the sister chromatids. The ubiquitin molecule attached to H2B by Bre1 is also essential for establishing cohesion, acting as a mark that helps to link the two processes. In the future it will be worthwhile to investigate whether genetic mutations that prevent sister chromatids adhering to each other is a major cause of the chromosome abnormalities seen in cancer cells. This knowledge may be useful for diagnosing cancers. Drugs that prevent the activity of Bre1 and other proteins involved in holding together sister chromatids could also be developed as potential cancer treatments that kill cancer cells by causing instability in their number of chromosomes.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 DOI: 10.7554/elife.28231.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 05/25/2023] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Sun R, Fu L, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells. Mol Cell Proteomics 2017; 16:1789-1800. [PMID: 28814509 DOI: 10.1074/mcp.ra117.000116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile.
Collapse
Affiliation(s)
- Rui Sun
- From the ‡State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ling Fu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Keke Liu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Caiping Tian
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yong Yang
- From the ‡State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Keri A Tallman
- ¶Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Ned A Porter
- ¶Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Daniel C Liebler
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jing Yang
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| |
Collapse
|
41
|
Schalch T, Steiner FA. Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma 2017; 126:443-455. [PMID: 27858158 PMCID: PMC5509776 DOI: 10.1007/s00412-016-0620-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.
Collapse
Affiliation(s)
- Thomas Schalch
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Florian A Steiner
- Department of Molecular Biology, Sciences III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
42
|
Dickson KA, Cole AJ, Gill AJ, Clarkson A, Gard GB, Chou A, Kennedy CJ, Henderson BR, Fereday S, Traficante N, Alsop K, Bowtell DD, deFazio A, Clifton-Bligh R, Marsh DJ. The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer. Hum Mol Genet 2017; 25:5460-5471. [PMID: 27798111 DOI: 10.1093/hmg/ddw362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Enzymatic factors driving cancer-associated chromatin remodelling are of increasing interest as the role of the cancer epigenome in gene expression and DNA repair processes becomes elucidated. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) is a central histone modification that functions in histone cross-talk, transcriptional elongation, DNA repair, maintaining centromeric chromatin and replication-dependent histone mRNA 3'-end processing, as well as being required for the differentiation of stem cells. The loss of global H2Bub1 is seen in a number of aggressive malignancies and has been linked to tumour progression and/or a poorer prognosis in some cancers. Here, we analyse a large cohort of high-grade serous ovarian cancers (HGSOC) and show loss of global H2Bub1 in 77% (313 of 407) of tumours. Loss of H2Bub1 was seen at all stages (I-IV) of HGSOC, indicating it is a relatively early epigenomic event in this aggressive malignancy. Manipulation of key H2Bub1 E3 ubiquitin ligases, RNF20, RNF40 and BRCA1, in ovarian cancer cell line models modulated H2Bub1 levels, indicative of the role of these RING finger ligases in monoubiquitination of H2Bub1 in vitro. However, in primary HGSOC, loss of RNF20 protein expression was identified in just 6% of tumours (26 of 424) and did not correlate with global H2Bub1 loss. Similarly, germline mutation of BRCA1 did not show a correlation with the global H2Bub1 loss. We conclude that the regulation of tumour-associated H2Bub1 levels is complex. Aberrant expression of alternative histone-associated 'writer' or 'eraser' enzymes are likely responsible for the global loss of H2Bub1 seen in HGSOC.
Collapse
Affiliation(s)
- Kristie-Ann Dickson
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney NSW, and Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adele Clarkson
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney NSW, and Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Gregory B Gard
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Angela Chou
- Department of Anatomical Pathology, SYDPATH, St Vincents Hospitals, Darlinghurst, NSW, Australia
| | - Catherine J Kennedy
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | - Sian Fereday
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nadia Traficante
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathryn Alsop
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David D Bowtell
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia and.,The Kinghorn Cancer Centre and Garvan Institute, Darlinghurst, NSW, Australia
| | - Anna deFazio
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
43
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Cáceres-Gutiérrez R, Herrera LA. Centromeric Non-coding Transcription: Opening the Black Box of Chromosomal Instability? Curr Genomics 2017; 18:227-235. [PMID: 28603453 PMCID: PMC5439370 DOI: 10.2174/1389202917666161102095508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/01/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, mitosis is tightly regulated to avoid the generation of numerical chromosome aberrations, or aneuploidies. The aneuploid phenotype is a consequence of chromosomal instability (CIN), i.e., an enhanced rate of chromosome segregation errors, which is frequently found in cancer cells and is associated with tumor aggressiveness and increased tumor cell survival potential. To avoid the generation of aneuploidies, cells rely on the spindle assembly checkpoint (SAC), a widely conserved mechanism that protects the genome against this type of error. This signaling pathway stops mitotic pro-gression before anaphase until all chromosomes are correctly attached to spindle microtubules. Howev-er, impairment of the SAC cannot account for the establishment of CIN because cells bearing this phe-notype have a functional SAC. Hence, in cells with CIN, anaphase is not triggered until all chromo-somes are correctly attached to spindle microtubules and congressed at the metaphase plate. Thus, an in-teresting question arises: What mechanisms actually mediate CIN in cancer cells? Recent research has shown that some pathways involved in chromosome segregation are closely associated to centromere-encoded non-coding RNA (cencRNA) and that these RNAs are deregulated in abnormal conditions, such as cancer. These mechanisms may provide new explanations for chromosome segregation errors. The present review discusses some of these findings and proposes novel mechanisms for the establish-ment of CIN based on regulation by cencRNA.
Collapse
Affiliation(s)
- Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| |
Collapse
|
45
|
Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler JA, Han F. Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. THE NEW PHYTOLOGIST 2017; 214:682-694. [PMID: 28079247 DOI: 10.1111/nph.14415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 05/03/2023]
Abstract
The genomic stability of all organisms requires precise cell division with proper chromosome orientation. The Bub1-H2Aph-Sgo1 pathway and spindle assembly checkpoint (SAC) components have been identified in yeast and mammals that are important for sister centromere orientation and chromosome segregation. However, their roles in plants are not clear. Maize meiotic mutants and minichromosomes were used to study the role of H2AThr133 phosphorylation and SAC components in sister centromere orientation and chromosome segregation. Unlike previously reported, SAC protein Bub1-Sgo1 recruitment was independent of Rec8 in maize and did not play a role in centromere protection in meiosis I. Chromatin immunoprecipitation sequencing analysis with immnolocalization results indicate most CENH3 nucleosomes contain phosphorylated H2AThr133 in centromeric regions. H2AThr133ph spreads to encompass centromeric regions including the inner centromeric and pericentromeric regions during (pro)metaphase. The presence and localization of SAC components and H2AThr133ph on maize lines containing sister chromatids separate precociously in anaphase I revealed no direct role of these proteins on centromere orientation in meiosis I . This work sheds light on the relationship between H2AThr133ph and CENH3 nucleosome in plants, and the phosphorylation with dynamic location changes in centomeric regions suggests temporal and spatial regulation roles for H2A phosphorylation in chromosome segregation.
Collapse
Affiliation(s)
- Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhua Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
46
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
47
|
Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nat Commun 2016; 7:13334. [PMID: 27841270 PMCID: PMC5114538 DOI: 10.1038/ncomms13334] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
Centromeres consist of specialized centrochromatin containing CENP-A nucleosomes intermingled with H3 nucleosomes carrying transcription-associated modifications. We have designed a novel synthetic biology 'in situ epistasis' analysis in which H3 dimethylated on lysine 4 (H3K4me2) demethylase LSD2 plus synthetic modules with competing activities are simultaneously targeted to a synthetic alphoidtetO HAC centromere. This allows us to uncouple transcription from histone modifications at the centromere. Here, we report that H3K4me2 loss decreases centromeric transcription, CENP-A assembly and stability and causes spreading of H3K9me3 across the HAC, ultimately inactivating the centromere. Surprisingly, CENP-28/Eaf6-induced transcription of the alphoidtetO array associated with H4K12 acetylation does not rescue the phenotype, whereas p65-induced transcription associated with H3K9 acetylation does rescue. Thus mitotic transcription plus histone modifications including H3K9ac constitute the 'epigenetic landscape' allowing CENP-A assembly and centrochromatin maintenance. H3K4me2 is required for the transcription and H3K9ac may form a barrier to prevent heterochromatin spreading and kinetochore inactivation at human centromeres.
Collapse
|
48
|
Foglizzo M, Middleton AJ, Day CL. Structure and Function of the RING Domains of RNF20 and RNF40, Dimeric E3 Ligases that Monoubiquitylate Histone H2B. J Mol Biol 2016; 428:4073-4086. [PMID: 27569044 DOI: 10.1016/j.jmb.2016.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/01/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023]
Abstract
Monoubiquitylation of histone H2B is a post-translational mark that plays key roles in regulation of transcription and genome stability. In humans, attachment of ubiquitin to lysine 120 of histone H2B depends on the activity of the E2 ubiquitin-conjugating enzyme, Ube2B, and the really interesting new gene (RING) E3 ligases, RING finger protein (RNF) 20 and RNF40. To better understand the molecular basis of this modification, we have solved the crystal structure of the RNF20 RING domain and show that it is a homodimer that specifically interacts with the Ube2B~Ub conjugate. By mutating residues at the E3-E2 and E3-ubiquitin interfaces, we identify key contacts required for interaction of the RNF20 RING domain with the Ube2B~Ub conjugate. These mutants were used to generate a structure-based model of the RNF20-Ube2B~Ub complex that reveals differences from other RING-E2~Ub complexes, and suggests how the RNF20-Ube2B~Ub complex might interact with its nucleosomal substrate. Additionally, we show that the RING domains of RNF20 and RNF40 can form a stable heterodimer that is active. Together, our studies provide new insights into the mechanisms that regulate RNF20-mediated ubiquitin transfer from Ube2B.
Collapse
Affiliation(s)
- Martina Foglizzo
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Adam J Middleton
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
49
|
Xu Z, Song Z, Li G, Tu H, Liu W, Liu Y, Wang P, Wang Y, Cui X, Liu C, Shang Y, de Rooij DG, Gao F, Li W. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation. Nucleic Acids Res 2016; 44:9681-9697. [PMID: 27431324 PMCID: PMC5175339 DOI: 10.1093/nar/gkw652] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20−/− spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB) repair. Further investigations reveal that the depletion of RNF20 in the germ cells affects chromatin relaxation, thus preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. The gametogenetic defects of the H2B ubiquitination deficient cells could be partially rescued by forced chromatin relaxation. Taken together, our results demonstrate that RNF20/Bre1p-mediated H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation, and suggest an old drug may provide a new way to treat some oligo- or azoospermia patients with chromatin relaxation disorders.
Collapse
Affiliation(s)
- Zhiliang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Huayu Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujiao Liu
- College of Marine Life, Ocean University of China, Qingdao 266003, China
| | - Pan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanting Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Prendergast L, Müller S, Liu Y, Huang H, Dingli F, Loew D, Vassias I, Patel DJ, Sullivan KF, Almouzni G. The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes Dev 2016; 30:1313-26. [PMID: 27284163 PMCID: PMC4911930 DOI: 10.1101/gad.275073.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/02/2016] [Indexed: 01/28/2023]
Abstract
Prendergast et al. identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone FACT, as CENP-W-binding partners through a proteomic screen. They developed a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Collapse
Affiliation(s)
- Lisa Prendergast
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Sebastian Müller
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Yiwei Liu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Florent Dingli
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Damarys Loew
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Isabelle Vassias
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Kevin F Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Geneviève Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| |
Collapse
|