1
|
Whitfield C, Kelly SD, Stanton TD, Wyres KL, Clarke BR, Forrester TJB, Kowalczyk A. O-antigen polysaccharides in Klebsiella pneumoniae: structures and molecular basis for antigenic diversity. Microbiol Mol Biol Rev 2025:e0009023. [PMID: 40116577 DOI: 10.1128/mmbr.00090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
SUMMARYKlebsiella pneumoniae is a gram-negative species, whose isolates are found in the environment and as commensals in the human gastrointestinal tract. This bacterium is among the leading causes of a range of nosocomial and community-acquired infections, particularly in immunocompromised individuals, where it can give rise to pneumonia, urinary tract infections, septicemia, and liver abscesses. Treatment of K. pneumoniae infections is compromised by the emergence of isolates producing carbapenemase and extended-spectrum β-lactamase enzymes, making it a high priority for new therapeutic approaches including vaccination and immunoprophylaxis. One potential target for these strategies is the O-antigen polysaccharide component of lipopolysaccharides, which are important virulence determinants for K. pneumoniae. Consideration of immunotherapeutic opportunities requires a comprehensive and fundamental understanding of O-polysaccharide structures, distribution of particular O serotypes in clinical isolates, and the potential for antigenic diversification. The number of recognized K. pneumoniae O-polysaccharide antigens has varied over time, complicated by the observation that some examples share similar structural (and potentially antigenically cross-reactive) elements, and by the existence of genetic loci for which corresponding O-polysaccharide structures have yet to be determined. Here, we provide a comprehensive integration of the current carbohydrate structures and genetic information, together with a proposal for an updated classification system for K. pneumoniae O-antigens, that is being implemented in Kaptive for molecular serotyping. The accumulated insight into O-polysaccharide assembly pathways is used to describe the molecular basis for O-antigen diversity in K. pneumoniae.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tom D Stanton
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Kelly L Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taylor J B Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Agnieszka Kowalczyk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Waller AA, Ribardo DA, Hendrixson DR. FlaG competes with FliS-flagellin complexes for access to FlhA in the flagellar T3SS to control Campylobacter jejuni filament length. Proc Natl Acad Sci U S A 2024; 121:e2414393121. [PMID: 39441631 PMCID: PMC11536152 DOI: 10.1073/pnas.2414393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.
Collapse
Affiliation(s)
- Alexis A. Waller
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| |
Collapse
|
3
|
Zhu D, Zhang Y, Wang Z, Dai J, Zhuge X. Exploiting membrane vesicles derived from avian pathogenic Escherichia coli as a cross-protective subunit vaccine candidate against avian colibacillosis. Poult Sci 2024; 103:104148. [PMID: 39142031 PMCID: PMC11379662 DOI: 10.1016/j.psj.2024.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a notable pathogen that frequently leads to avian colibacillosis, posing a substantial risk to both the poultry industry and public health. The commercial vaccines against avian colibacillosis are primarily inactivated vaccines, but their effectiveness is limited to specific serotypes. Recent advances have highlighted bacterial membrane vesicles (MV) as a promising candidate in vaccine research. How to produce bacterial MVs vaccines on a large scale is a significant challenge for the industrialization of MVs. The msbB gene encodes an acyltransferase and has been implicated in altering the acylation pattern of lipid A, leading to a decrease in lipid A content in lipopolysaccharides (LPS). Here, we evaluated the immunoprotective efficacy of MVs derived from the LPS low-expressed APEC strain FY26ΔmsbB, which was an APEC mutant strain with a deletion of the msbB gene. The nitrogen cavitation technique was employed to extract APEC MVs, with results indicating a significant increase in MVs yield compared to that obtained under natural culture. The immunization effectiveness was assessed, revealing that FY26ΔmsbB MVs elicited an antibody response of laying hens and facilitated bacterial clearance. Protective efficacy studies demonstrated that immunization with FY26ΔmsbB MVs conferred the immune protection in chickens challenged with the wild-type APEC strain FY26. Notably, LPS low-carried MVs recovered from the mutant FY26ΔmsbB also displayed cross-protective capabilities, and effectively safeguarding against infections caused by O1, O7, O45, O78, and O101 serotypes virulent APEC strains. These findings suggest that MVs generated from the LPS low-expressed APEC strain FY26ΔmsbB represent a novel and empirically validated subunit vaccine for the prevention and control of infections by various APEC serotypes.
Collapse
Affiliation(s)
- Dongyu Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
4
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
5
|
Legueux-Cajgfinger Y, Velusamy M, Fathallah S, Vallin B, Duca L, Dauchez M, Vincent P, Limon I, Blaise R. Unraveling the inhibitory mechanism of adenylyl cyclase 8E: New insights into regulatory pathways of cAMP signal integration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119645. [PMID: 38016490 DOI: 10.1016/j.bbamcr.2023.119645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Adenylyl Cyclase 8E (AC8E), which lacks part of M1 transmembrane domain, has been previously shown to dimerize with AC3 and down-regulate its activity, but the molecular mechanism of this inhibitory effect has remained elusive. Here, we first show that AC8E also inhibits AC2 and AC6, highlighting the functional importance of this novel regulatory mechanism in the cAMP signaling pathway across AC families. We then completed the partial structure of Bos taurus AC9 using combinations of comparative modeling and fold recognition methods, and used this as a template to build the first full 3D-models of AC8 and AC8E. These models evidenced that the lack of M1 transmembrane domain of AC8E shifts the N-terminal domain, which impacts the orientation of the helical domains, thus affecting the catalytic site. This was confirmed in living cells with cAMP imaging, where we showed that the N-terminal domain is required for reducing cAMP production. Our data also show that AC8E prevents the translocation of other ACs towards the plasma membrane, further reducing the cAMP responsiveness to extracellular signals. This newly discovered dual inhibitory mechanism provides an additional level of regulation of cAMP-dependent signals integration.
Collapse
Affiliation(s)
- Yohan Legueux-Cajgfinger
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France
| | - Mahesh Velusamy
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, F-51095 Reims, France
| | - Samar Fathallah
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France
| | - Benjamin Vallin
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France
| | - Laurent Duca
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, F-51095 Reims, France
| | - Manuel Dauchez
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, F-51095 Reims, France
| | - Pierre Vincent
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France; IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabelle Limon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France
| | - Régis Blaise
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, 7 quai St-Bernard, F-75005 Paris, France.
| |
Collapse
|
6
|
Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, Kowarik M, Follador R, Lowary TL, Serventi F, Whitfield C. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2023; 120:e2301302120. [PMID: 37428935 PMCID: PMC10629545 DOI: 10.1073/pnas.2301302120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
Carbapenemase and extended β-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | | | | | - Martin Braun
- LimmaTech Biologics AG, Schlieren8952, Switzerland
| | - Ryan P. Sweeney
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | | | | | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Nangang11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
7
|
Stephens Z, Wilson LFL, Zimmer J. Diverse mechanisms of polysaccharide biosynthesis, assembly and secretion across kingdoms. Curr Opin Struct Biol 2023; 79:102564. [PMID: 36870276 DOI: 10.1016/j.sbi.2023.102564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 03/06/2023]
Abstract
Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.
Collapse
Affiliation(s)
- Zachery Stephens
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Louis F L Wilson
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
9
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
10
|
Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol 2022; 7:953-961. [PMID: 35760837 DOI: 10.1038/s41564-022-01150-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
Asgard archaea are globally distributed prokaryotic microorganisms related to eukaryotes; however, viruses that infect these organisms have not been described. Here, using metagenome sequences recovered from deep-sea hydrothermal sediments, we characterize six relatively large (up to 117 kb) double-stranded DNA (dsDNA) viral genomes that infected two Asgard archaeal phyla, Lokiarchaeota and Helarchaeota. These viruses encode Caudovirales-like structural proteins, as well as proteins distinct from those described in known archaeal viruses. Their genomes contain around 1-5% of genes associated with eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs) and appear to be capable of semi-autonomous genome replication, repair, epigenetic modifications and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. Genomic analysis of these Asgard viruses reveals that they contain features of both prokaryotic and eukaryotic viruses, and provides insights into their potential infection and host interaction mechanisms.
Collapse
|
11
|
Wang Z, Fan F, Wang J, Wang L, Hu H, Wang C, Wang X. Engineering Escherichia coli to produce Bordetella pertussis oligosaccharide with multiple trisaccharide units. Metab Eng 2021; 69:147-162. [PMID: 34863939 DOI: 10.1016/j.ymben.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022]
Abstract
The immunogenicity of the pertussis vaccine can be significantly improved by adding Bordetella pertussis oligosaccharide with multiple trisaccharide units. The more trisaccharide units there are, the better the efficiency of the immune response induction. However, natural B. pertussis oligosaccharides usually contain only a single terminal trisaccharide unit. In addition, B. pertussis is pathogenic, and there are potential safety hazards when preparing oligosaccharides from B. pertussis. In this study, Escherichia coli MG1655 was engineered to produce B. pertussis oligosaccharides containing multiple trisaccharide units. Fifty-nine genes relevant to the biosynthesis of the O-antigen and core oligosaccharide of lipopolysaccharide, enterobacterial common antigen, and colanic acid were deleted in MG1655, resulting in strain MDCO020. Then, 25 genes relevant to the biosynthesis of the oligosaccharide antigen in B. pertussis and 3 genes relevant to the repeating trisaccharide unit in Pseudomonas aeruginosa PAO1 were overexpressed in MDCO020, resulting in the recombinant E. coli MDCO020/pWpBpD5. The production of B. pertussis oligosaccharide with multiple trisaccharide units by MDCO020/pWpBpD5 was confirmed by SDS-PAGE and 1H NMR analyses, and its immune response-stimulating activity was confirmed by using rabbit anti-pertussis serum.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fengfeng Fan
- Suzhou Microvac Biotech Co., Ltd., Suzhou, 215021, China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liangjia Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hao Hu
- Suzhou Microvac Biotech Co., Ltd., Suzhou, 215021, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Abidi W, Torres-Sánchez L, Siroy A, Krasteva PV. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol Rev 2021; 46:6388354. [PMID: 34634120 PMCID: PMC8892547 DOI: 10.1093/femsre/fuab051] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.
Collapse
Affiliation(s)
- Wiem Abidi
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Lucía Torres-Sánchez
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Axel Siroy
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Petya Violinova Krasteva
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
13
|
Molecular ruler of the attachment organelle in Mycoplasma pneumoniae. PLoS Pathog 2021; 17:e1009621. [PMID: 34111235 PMCID: PMC8191905 DOI: 10.1371/journal.ppat.1009621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles. Mycoplasma pneumoniae, a pathogen of “walking pneumonia”, have a membrane protrusion with a precise length of 250–300 nm specially developed to support their parasitic lifestyles. To date, however, there has been no report focusing on the potential length-control mechanisms of this characteristic architecture called an attachment organelle. Here, we found that the coiled-coil domains of the 200-kDa protein HMW2 are aligned in parallel along the cell axis, and acts as a molecular ruler by the assembly into a physical scaffold. The molecular ruler could be engineered by genetic modification to produce both longer and shorter attachment organelle. The analyses of the length-controlled mutant highlight a simple design principle of cellular organization in a small bacterium.
Collapse
|
14
|
An ABC transporter Wzm-Wzt catalyzes translocation of lipid-linked galactan across the plasma membrane in mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2023663118. [PMID: 33879617 DOI: 10.1073/pnas.2023663118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.
Collapse
|
15
|
Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport. Proc Natl Acad Sci U S A 2020; 118:2016144118. [PMID: 33443152 DOI: 10.1073/pnas.2016144118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
O antigens are important cell surface polysaccharides in gram-negative bacteria where they extend core lipopolysaccharides in the extracellular leaflet of the outer membrane. O antigen structures are serotype specific and form extended cell surface barriers endowing many pathogens with survival benefits. In the ABC transporter-dependent biosynthesis pathway, O antigens are assembled on the cytosolic side of the inner membrane on a lipid anchor and reoriented to the periplasmic leaflet by the channel-forming WzmWzt ABC transporter for ligation to the core lipopolysaccharides. In many cases, this process depends on the chemical modification of the O antigen's nonreducing terminus, sensed by WzmWzt via a carbohydrate-binding domain (CBD) that extends its nucleotide-binding domain (NBD). Here, we provide the cryo-electron microscopy structure of the full-length WzmWzt transporter from Aquifex aeolicus bound to adenosine triphosphate (ATP) and in a lipid environment, revealing a highly asymmetric transporter organization. The CBDs dimerize and associate with only one NBD. Conserved loops at the CBD dimer interface straddle a conserved peripheral NBD helix. The CBD dimer is oriented perpendicularly to the NBDs and its putative ligand-binding sites face the transporter to likely modulate ATPase activity upon O antigen binding. Further, our structure reveals a closed WzmWzt conformation in which an aromatic belt near the periplasmic channel exit seals the transporter in a resting, ATP-bound state. The sealed transmembrane channel is asymmetric, with one open and one closed cytosolic and periplasmic portal. The structure provides important insights into O antigen recruitment to and translocation by WzmWzt and related ABC transporters.
Collapse
|
16
|
Lipoteichoic acid polymer length is determined by competition between free starter units. Proc Natl Acad Sci U S A 2020; 117:29669-29676. [PMID: 33172991 DOI: 10.1073/pnas.2008929117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate polymers exhibit incredible chemical and structural diversity, yet are produced by polymerases without a template to guide length and composition. As the length of carbohydrate polymers is critical for their biological functions, understanding the mechanisms that determine polymer length is an important area of investigation. Most Gram-positive bacteria produce anionic glycopolymers called lipoteichoic acids (LTA) that are synthesized by lipoteichoic acid synthase (LtaS) on a diglucosyl-diacylglycerol (Glc2DAG) starter unit embedded in the extracellular leaflet of the cell membrane. LtaS can use phosphatidylglycerol (PG) as an alternative starter unit, but PG-anchored LTA polymers are significantly longer, and cells that make these abnormally long polymers exhibit major defects in cell growth and division. To determine how LTA polymer length is controlled, we reconstituted Staphylococcus aureus LtaS in vitro. We show that polymer length is an intrinsic property of LtaS that is directly regulated by the identity and concentration of lipid starter units. Polymerization is processive, and the overall reaction rate is substantially faster for the preferred Glc2DAG starter unit, yet the use of Glc2DAG leads to shorter polymers. We propose a simple mechanism to explain this surprising result: free starter units terminate polymerization by displacing the lipid anchor of the growing polymer from its binding site on the enzyme. Because LtaS is conserved across most Gram-positive bacteria and is important for survival, this reconstituted system should be useful for characterizing inhibitors of this key cell envelope enzyme.
Collapse
|
17
|
Identification of the Pseudomonas aeruginosa O17 and O15 O-Specific Antigen Biosynthesis Loci Reveals an ABC Transporter-Dependent Synthesis Pathway and Mechanisms of Genetic Diversity. J Bacteriol 2020; 202:JB.00347-20. [PMID: 32690555 DOI: 10.1128/jb.00347-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCE P. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Collapse
|
18
|
Evans LS, Hussain R, Siligardi G, Williamson PT. Magnetically aligned membrane mimetics enabling comparable chiroptical and magnetic resonance spectroscopy studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183343. [DOI: 10.1016/j.bbamem.2020.183343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
19
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
20
|
Whitfield C, Williams DM, Kelly SD. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J Biol Chem 2020; 295:10593-10609. [PMID: 32424042 DOI: 10.1074/jbc.rev120.009402] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Lipopolysaccharides are critical components of bacterial outer membranes. The more conserved lipid A part of the lipopolysaccharide molecule is a major element in the permeability barrier imposed by the outer membrane and offers a pathogen-associated molecular pattern recognized by innate immune systems. In contrast, the long-chain O-antigen polysaccharide (O-PS) shows remarkable structural diversity and fulfills a range of functions, depending on bacterial lifestyles. O-PS production is vital for the success of clinically important Gram-negative pathogens. The biological properties and functions of O-PSs are mostly independent of specific structures, but the size distribution of O-PS chains is particularly important in many contexts. Despite the vast O-PS chemical diversity, most are produced in bacterial cells by two assembly strategies, and the different mechanisms employed in these pathways to regulate chain-length distribution are emerging. Here, we review our current understanding of the mechanisms involved in regulating O-PS chain-length distribution and discuss their impact on microbial cell biology.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
22
|
Mann E, Kimber MS, Whitfield C. Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters. Glycobiology 2020; 29:822-838. [PMID: 31504498 DOI: 10.1093/glycob/cwz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The structures of bacterial cell surface glycans are remarkably diverse. In spite of this diversity, the general strategies used for their assembly are limited. In one of the major processes, found in both Gram-positive and Gram-negative bacteria, the glycan is polymerized in the cytoplasm on a polyprenol lipid carrier and exported from the cytoplasm by an ATP-binding cassette (ABC) transporter. The ABC transporter actively participates in determining the chain length of the glycan substrate, which impacts functional properties of the glycoconjugate products. A subset of these systems employs an additional elaborate glycan capping strategy that dictates the size distribution of the products. The hallmarks of prototypical capped glycan systems are a chain-terminating enzyme possessing a coiled-coil molecular ruler and an ABC transporter possessing a carbohydrate-binding module, which recognizes the glycan cap. To date, detailed investigations are limited to a small number of prototypes, and here, we used our current understanding of these processes for a bioinformatics census of other examples in available genome sequences. This study not only revealed additional instances of existing terminators but also predicted new chemistries as well as systems that diverge from the established prototypes. These analyses enable some new functional hypotheses and offer a roadmap for future research.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
23
|
New insights into lipopolysaccharide assembly and export. Curr Opin Chem Biol 2019; 53:37-43. [DOI: 10.1016/j.cbpa.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
24
|
The role of circular dichroism spectroscopy in the era of integrative structural biology. Curr Opin Struct Biol 2019; 58:191-196. [DOI: 10.1016/j.sbi.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
|
25
|
Mann E, Kelly SD, Al-Abdul-Wahid MS, Clarke BR, Ovchinnikova OG, Liu B, Whitfield C. Substrate recognition by a carbohydrate-binding module in the prototypical ABC transporter for lipopolysaccharide O-antigen from Escherichia coli O9a. J Biol Chem 2019; 294:14978-14990. [PMID: 31416837 DOI: 10.1074/jbc.ra119.010323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli serotype O9a provides a model for export of lipopolysaccharide (LPS) O-antigen polysaccharide (O-PS) via ABC transporters. In O9a biosynthesis, a chain-terminator enzyme, WbdD, caps the nonreducing end of the glycan with a methylphosphate moiety and thereby establishes chain-length distribution. A carbohydrate-binding module (CBM) in the ABC transporter recognizes terminated glycans, ensuring that only mature O-PS is exported and incorporated into LPS. Here, we addressed two questions arising from this model. Are both residues in the binary terminator necessary for termination and export? And is a terminal methylphosphate moiety sufficient for export of heterologous glycans? To answer the first question, we uncoupled WbdD kinase and methyltransferase activities. WbdD mutants revealed that although the kinase activity is solely responsible for chain-length regulation, both activities are essential for CBM recognition and export. Consistent with this observation, a saturation transfer difference NMR experiment revealed a direct interaction between the CBM and the terminal methyl group. To determine whether methylphosphate is the sole determinant of substrate recognition by the CBM, we exploited Klebsiella pneumoniae O7, whose O-PS repeat-unit structure differs from O9a, but, as shown here, offers the second confirmed example of a terminal methylphosphate serving in substrate recognition. In vitro and in vivo experiments indicated that each CBM can bind the O-PS only with the native repeat unit, revealing that methylphosphate is essential but not sufficient for substrate recognition and export. Our findings provide important new insight into the structural determinants in a prototypical quality control system for glycan assembly and export.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 3 Hongda St. TEDA, Tianjin 300457, China
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Kelly SD, Clarke BR, Ovchinnikova OG, Sweeney RP, Williamson ML, Lowary TL, Whitfield C. Klebsiella pneumoniae O1 and O2ac antigens provide prototypes for an unusual strategy for polysaccharide antigen diversification. J Biol Chem 2019; 294:10863-10876. [PMID: 31138653 DOI: 10.1074/jbc.ra119.008969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
A limited range of different structures is observed in O-antigenic polysaccharides (OPSs) from Klebsiella pneumoniae lipopolysaccharides. Among these, several are based on modifications of a conserved core element of serotype O2a OPS, which has a disaccharide repeat structure [→3)-α-d-Galp-(1→3)-β-d-Galf-(1→]. Here, we describe the enzymatic pathways for a highly unusual modification strategy involving the attachment of a second glycan repeat-unit structure to the nonreducing terminus of O2a. This occurs by the addition of the O1 [→3)-α-d-Galp-(1→3)-β-d-Galp-(1→] or O2c [→3)-β-d-GlcpNAc-(1→5)-β-d-Galf-(1→] antigens. The organization of the enzyme activities performing these modifications differs, with the enzyme WbbY possessing two glycosyltransferase catalytic sites solely responsible for O1 antigen polymerization and forming a complex with the O2a glycosyltransferase WbbM. In contrast, O2c polymerization requires glycosyltransferases WbmV and WbmW, which interact with one another but apparently not with WbbM. Using defined synthetic acceptors and site-directed mutants to assign the activities of the WbbY catalytic sites, we found that the C-terminal WbbY domain is a UDP-Galp-dependent GT-A galactosyltransferase adding β-(1→3)-linked d-Galp, whereas the WbbY N terminus includes a GT-B enzyme adding α-(1→3)-linked d-Galp These activities build the O1 antigen on a terminal Galp in the O2a domain. Using similar approaches, we identified WbmV as the UDP-GlcNAc transferase and noted that WbmW represents a UDP-Galf-dependent enzyme and that both are GT-A members. WbmVW polymerizes the O2c antigen on a terminal Galf. Our results provide mechanistic and conceptual insights into an important strategy for polysaccharide antigen diversification in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Ryan P Sweeney
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Monica L Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and.
| |
Collapse
|
27
|
Sundaramoorthy J, Park GT, Komagamine K, Tsukamoto C, Chang JH, Lee JD, Kim JH, Seo HS, Song JT. Biosynthesis of DDMP saponins in soybean is regulated by a distinct UDP-glycosyltransferase. THE NEW PHYTOLOGIST 2019; 222:261-274. [PMID: 30414191 DOI: 10.1111/nph.15588] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
2,3-Dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins are one of the major saponin groups that are widely distributed in legumes such as pea, barrel medic, chickpea, and soybean. The steps involved in DDMP saponin biosynthesis remain uncharacterized at the molecular level. We isolated two recessive mutants that lack DDMP saponins from an ethyl methanesulfonate-induced mutant population of soybean cultivar Pungsannamul. Segregation analysis showed that the production of DDMP saponins is controlled by a single locus, named Sg-9. The locus was physically mapped to a 130-kb region on chromosome 16. Nucleotide sequence analysis of candidate genes in the region revealed that each mutant has a single-nucleotide polymorphism in the Glyma.16G033700 encoding a UDP-glycosyltransferase UGT73B4. Enzyme assays and mass spectrum-coupled chromatographic analysis reveal that the Sg-9 protein has glycosyltransferase activity, converting sapogenins and group B saponins to glycosylated products, and that mutant proteins had only partial activities. The tissue-specific expression profile of Sg-9 matches the accumulation pattern of DDMP saponins. This is the first report on a new gene and its function in the biosynthesis of DDMP saponins. Our findings indicate that Sg-9 encodes a putative DDMP transferase that plays a critical role in the biosynthesis of DDMP saponins.
Collapse
Affiliation(s)
| | - Gyu Tae Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kumpei Komagamine
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Chigen Tsukamoto
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, 41566, Korea
| | - Hak Soo Seo
- Department of Plant Bioscience, Seoul National University, Seoul, 08826, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| |
Collapse
|
28
|
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat Commun 2019; 10:824. [PMID: 30778065 PMCID: PMC6379404 DOI: 10.1038/s41467-019-08646-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel's periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter's resting state.
Collapse
Affiliation(s)
- Christopher A Caffalette
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
29
|
Sweeney RP, Lowary TL. A Route to Polyprenol Pyrophosphate-Based Probes of O-Polysaccharide Biosynthesis in Klebsiella pneumoniae O2a. Org Lett 2019; 21:1050-1053. [PMID: 30681873 DOI: 10.1021/acs.orglett.8b04093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An approach for the assembly of polyprenol pyrophosphate-based probes of O-polysaccharide biosynthesis in Klebsiella pneumoniae serotype O2a is described. This convergent route features high-yielding, diastereoselective glycosylations and the late-stage installation of the polyprenol pyrophosphate moiety. Although applied to the synthesis of a nonasaccharide bearing a farnesyl group (1), the modular nature of the route makes it amenable to the synthesis of additional derivatives containing either larger glycans or different lipid domains.
Collapse
Affiliation(s)
- Ryan P Sweeney
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton AB T6G 2G2 , Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton AB T6G 2G2 , Canada
| |
Collapse
|
30
|
Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide. Int J Microbiol 2018; 2018:5319146. [PMID: 30595696 PMCID: PMC6286764 DOI: 10.1155/2018/5319146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
The lipid component of the outer leaflet of the outer membrane of Gram-negative bacteria is primarily composed of the glycolipid lipopolysaccharide (LPS), which serves to form a protective barrier against hydrophobic toxins and many antibiotics. LPS is comprised of three regions: the lipid A membrane anchor, the nonrepeating core oligosaccharide, and the repeating O-antigen polysaccharide. The lipid A portion is also referred to as endotoxin as its overstimulation of the toll-like receptor 4 during systemic infection precipitates potentially fatal septic shock. Because of the importance of LPS for the viability and virulence of human pathogens, understanding how LPS is synthesized and transported to the outer leaflet of the outer membrane is important for developing novel antibiotics to combat resistant Gram-negative strains. The following review describes the current state of our understanding of the proteins responsible for the synthesis and transport of LPS with an emphasis on the contribution of protein structures to our understanding of their functions. Because the lipid A portion of LPS is relatively well conserved, a detailed description of the biosynthetic enzymes in the Raetz pathway of lipid A synthesis is provided. Conversely, less well-conserved biosynthetic enzymes later in LPS synthesis are described primarily to demonstrate conserved principles of LPS synthesis. Finally, the conserved LPS transport systems are described in detail.
Collapse
|
31
|
Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, Mrksich M, Jewett MC, DeLisa MP. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery. Nat Commun 2018; 9:2686. [PMID: 30002445 PMCID: PMC6043479 DOI: 10.1038/s41467-018-05110-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
The emerging discipline of bacterial glycoengineering has made it possible to produce designer glycans and glycoconjugates for use as vaccines and therapeutics. Unfortunately, cell-based production of homogeneous glycoproteins remains a significant challenge due to cell viability constraints and the inability to control glycosylation components at precise ratios in vivo. To address these challenges, we describe a novel cell-free glycoprotein synthesis (CFGpS) technology that seamlessly integrates protein biosynthesis with asparagine-linked protein glycosylation. This technology leverages a glyco-optimized Escherichia coli strain to source cell extracts that are selectively enriched with glycosylation components, including oligosaccharyltransferases (OSTs) and lipid-linked oligosaccharides (LLOs). The resulting extracts enable a one-pot reaction scheme for efficient and site-specific glycosylation of target proteins. The CFGpS platform is highly modular, allowing the use of multiple distinct OSTs and structurally diverse LLOs. As such, we anticipate CFGpS will facilitate fundamental understanding in glycoscience and make possible applications in on demand biomanufacturing of glycoproteins. The ability to produce homogeneous glycoproteins is expected to advance fundamental understanding in glycoscience, but current in vivo-based production systems have several limitations. Here, the authors develop an E. coli extract-based one-pot system for customized production of N-linked glycoproteins.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.,Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Aravind Natarajan
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Cameron J Glasscock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Laura E Yates
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Karen J Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute B224, Evanston, IL, 60208-3120, USA
| | - Milan Mrksich
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.,Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Ramírez AS, Boilevin J, Mehdipour AR, Hummer G, Darbre T, Reymond JL, Locher KP. Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase. Nat Commun 2018; 9:445. [PMID: 29386647 PMCID: PMC5792488 DOI: 10.1038/s41467-018-02880-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
The membrane-associated, processive and retaining glycosyltransferase PglH from Campylobacter jejuni is part of the biosynthetic pathway of the lipid-linked oligosaccharide (LLO) that serves as the glycan donor in bacterial protein N-glycosylation. Using an unknown counting mechanism, PglH catalyzes the transfer of exactly three α1,4 N-acetylgalactosamine (GalNAc) units to the growing LLO precursor, GalNAc-α1,4-GalNAc-α1,3-Bac-α1-PP-undecaprenyl. Here, we present crystal structures of PglH in three distinct states, including a binary complex with UDP-GalNAc and two ternary complexes containing a chemo-enzymatically generated LLO analog and either UDP or synthetic, nonhydrolyzable UDP-CH2-GalNAc. PglH contains an amphipathic helix ("ruler helix") that has a dual role of facilitating membrane attachment and glycan counting. The ruler helix contains three positively charged side chains that can bind the pyrophosphate group of the LLO substrate and thus limit the addition of GalNAc units to three. These results, combined with molecular dynamics simulations, provide the mechanism of glycan counting by PglH.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, DE-60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University, DE-60438, Frankfurt, Germany
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, CH-3012, Berne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093, Zürich, Switzerland.
| |
Collapse
|
33
|
Wood CW, Woolfson DN. CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Protein Sci 2017; 27:103-111. [PMID: 28836317 PMCID: PMC5734305 DOI: 10.1002/pro.3279] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. LAY SUMMARY We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology.
Collapse
Affiliation(s)
- Christopher W Wood
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.,BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
34
|
Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCRJ 2017; 4:518-528. [PMID: 28989709 PMCID: PMC5619845 DOI: 10.1107/s2052252517008740] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 05/26/2023]
Abstract
Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
35
|
Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions. Biochem Soc Trans 2017; 44:810-23. [PMID: 27284046 PMCID: PMC4900758 DOI: 10.1042/bst20160023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/20/2023]
Abstract
This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins–synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs.
Collapse
|
36
|
Collins RF, Kargas V, Clarke BR, Siebert CA, Clare DK, Bond PJ, Whitfield C, Ford RC. Full-length, Oligomeric Structure of Wzz Determined by Cryoelectron Microscopy Reveals Insights into Membrane-Bound States. Structure 2017; 25:806-815.e3. [PMID: 28434914 DOI: 10.1016/j.str.2017.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022]
Abstract
Wzz is an integral inner membrane protein involved in regulating the length of lipopolysaccharide O-antigen glycans and essential for the virulence of many Gram-negative pathogens. In all Wzz homologs, the large periplasmic domain is proposed to be anchored by two transmembrane helices, but no information is available for the transmembrane and cytosolic domains. Here we have studied purified oligomeric Wzz complexes using cryoelectron microscopy and resolved the transmembrane regions within a semi-continuous detergent micelle. The transmembrane helices of each monomer display a right-handed super-helical twist, and do not interact with the neighboring transmembrane domains. Modeling, flexible fitting and multiscale simulation approaches were used to study the full-length complex and to provide explanations for the influence of the lipid bilayer on its oligomeric status. Based on structural and in silico observations, we propose a new mechanism for O-antigen chain-length regulation that invokes synergy of Wzz and its polymerase partner, Wzy.
Collapse
Affiliation(s)
- Richard F Collins
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK
| | - Vasileios Kargas
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK; Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore
| | - Brad R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - C Alistair Siebert
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Daniel K Clare
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Peter J Bond
- Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, The University of Manchester, Dover Street, Manchester M13 9PT, UK.
| |
Collapse
|
37
|
Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nat Microbiol 2017; 2:17027. [PMID: 28263305 PMCID: PMC5341770 DOI: 10.1038/nmicrobiol.2017.27] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal c-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here we identified an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase WarB. We established that WarA binds to c-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bi-functional Escherichia coli LPS O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host.
Collapse
|
38
|
Single polysaccharide assembly protein that integrates polymerization, termination, and chain-length quality control. Proc Natl Acad Sci U S A 2017; 114:E1215-E1223. [PMID: 28137848 DOI: 10.1073/pnas.1613609114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipopolysaccharides (LPS) are essential outer membrane glycolipids in most gram-negative bacteria. Biosynthesis of the O-antigenic polysaccharide (OPS) component of LPS follows one of three widely distributed strategies, and similar processes are used to assemble other bacterial surface glycoconjugates. This study focuses on the ATP-binding cassette (ABC) transporter-dependent pathway, where glycans are completed on undecaprenyl diphosphate carriers at the cytosol:membrane interface, before export by the ABC transporter. We describe Raoultella terrigena WbbB, a prototype for a family of proteins that, remarkably, integrates several key activities in polysaccharide biosynthesis into a single polypeptide. WbbB contains three glycosyltransferase (GT) modules. Each of the GT102 and GT103 modules characterized here represents a previously unrecognized GT family. They form a polymerase, generating a polysaccharide of [4)-α-Rhap-(1→3)-β-GlcpNAc-(1→] repeat units. The polymer chain is terminated by a β-linked Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) residue added by a third GT module belonging to the recently discovered GT99 family. The polymerase GT modules are separated from the GT99 chain terminator by a coiled-coil structure that forms a molecular ruler to determine product length. Different GT modules in the polymerase domains of other family members produce diversified OPS structures. These findings offer insight into glycan assembly mechanisms and the generation of antigenic diversity as well as potential tools for glycoengineering.
Collapse
|
39
|
Wesener DA, Levengood MR, Kiessling LL. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. J Biol Chem 2016; 292:2944-2955. [PMID: 28039359 DOI: 10.1074/jbc.m116.759340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
Collapse
Affiliation(s)
| | - Matthew R Levengood
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Laura L Kiessling
- From the Department of Biochemistry and .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
40
|
Glycolipid substrates for ABC transporters required for the assembly of bacterial cell-envelope and cell-surface glycoconjugates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1394-1403. [PMID: 27793707 DOI: 10.1016/j.bbalip.2016.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023]
Abstract
Glycoconjugates, molecules that contain sugar components, are major components of the cell envelopes of bacteria and cover much of their exposed surfaces. These molecules are involved in interactions with the surrounding environment and, in pathogens, play critical roles in the interplay with the host immune system. Despite the remarkable diversity in glycoconjugate structures, most are assembled by glycosyltransferases that act on lipid acceptors at the cytosolic membrane. The resulting glycolipids are then transported to the cell surface in processes that frequently begin with ATP-binding cassette transporters. This review summarizes current understanding of the structure and biosynthesis of glycolipid substrates and the structure and functions of their transporters. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
41
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, Thomson NR. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2016; 2:e000073. [PMID: 28348868 PMCID: PMC5320592 DOI: 10.1099/mgen.0.000073] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae. We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae, were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.
Collapse
Affiliation(s)
| | - Eva Heinz
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Kelly L. Wyres
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Kathryn E. Holt
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
43
|
Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99). Proc Natl Acad Sci U S A 2016; 113:E3120-9. [PMID: 27199480 DOI: 10.1073/pnas.1603146113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kdo (3-deoxy-d-manno-oct-2-ulosonic acid) is an eight-carbon sugar mostly confined to Gram-negative bacteria. It is often involved in attaching surface polysaccharides to their lipid anchors. α-Kdo provides a bridge between lipid A and the core oligosaccharide in all bacterial LPSs, whereas an oligosaccharide of β-Kdo residues links "group 2" capsular polysaccharides to (lyso)phosphatidylglycerol. β-Kdo is also found in a small number of other bacterial polysaccharides. The structure and function of the prototypical cytidine monophosphate-Kdo-dependent α-Kdo glycosyltransferase from LPS assembly is well characterized. In contrast, the β-Kdo counterparts were not identified as glycosyltransferase enzymes by bioinformatics tools and were not represented among the 98 currently recognized glycosyltransferase families in the Carbohydrate-Active Enzymes database. We report the crystallographic structure and function of a prototype β-Kdo GT from WbbB, a modular protein participating in LPS O-antigen synthesis in Raoultella terrigena The β-Kdo GT has dual Rossmann-fold motifs typical of GT-B enzymes, but extensive deletions, insertions, and rearrangements result in a unique architecture that makes it a prototype for a new GT family (GT99). The cytidine monophosphate-binding site in the C-terminal α/β domain closely resembles the corresponding site in bacterial sialyltransferases, suggesting an evolutionary connection that is not immediately evident from the overall fold or sequence similarities.
Collapse
|
44
|
Hussain R, Siligardi G. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:43-59. [PMID: 27553234 PMCID: PMC6126569 DOI: 10.1007/978-3-319-35072-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane proteins are notoriously difficult to crystallise for use in X-ray crystallographic structural determination, or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour in solution. The advantage of synchrotron radiation circular dichroism (SRCD) measured with synchrotron beamlines compared to the CD from benchtop instruments is the extended spectral far-UV region that increases the accuracy of secondary structure estimations, in particular under high ionic strength conditions. Membrane proteins are often available in small quantities, and for this SRCD measured at the Diamond B23 beamline has successfully facilitated molecular recognition studies. This was done by probing the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells (1-5 cm) of small volume capacity (70 μl-350 μl). In this chapter we describe the use of SRCD to qualitatively and quantitatively screen ligand binding interactions (exemplified by Sbma, Ace1 and FsrC proteins); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by FsrC); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by inositol transporters) as well as the stability of membrane proteins (exemplified by GalP, Ace1). The importance of the in solution characterisation of the conformational behaviour and ligand binding properties of proteins in both far- andnear-UV regions and the use of high-throughput CD (HT-CD) using 96- and 384-well multiplates to study the folding effects in various protein crystallisation buffers are also discussed.
Collapse
Affiliation(s)
- Rohanah Hussain
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| | - Giuliano Siligardi
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
| |
Collapse
|
45
|
Mann E, Mallette E, Clarke BR, Kimber MS, Whitfield C. The Klebsiella pneumoniae O12 ATP-binding Cassette (ABC) Transporter Recognizes the Terminal Residue of Its O-antigen Polysaccharide Substrate. J Biol Chem 2016; 291:9748-61. [PMID: 26934919 DOI: 10.1074/jbc.m116.719344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 11/06/2022] Open
Abstract
Export of the Escherichia coli serotype O9a O-antigenic polysaccharides (O-PS) involves an ATP-binding cassette (ABC) transporter. The process requires a non-reducing terminal residue, which is recognized by a carbohydrate-binding module (CBM) appended to the C terminus of the nucleotide-binding domain of the transporter. Here, we investigate the process in Klebsiella pneumoniae serotype O12 (and Raoultella terrigena ATCC 33257). The O12 polysaccharide is terminated at the non-reducing end by a β-linked 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue. The O12 ABC transporter also binds its cognate O-PS via a CBM, and export is dependent on the presence of the terminal β-Kdo residue. The overall structural architecture of the O12 CBM resembles the O9a prototype, but they share only weak sequence similarity, and the putative binding pocket for the O12 glycan is different. Removal of the CBM abrogated O-PS transport, but export was restored when the CBM was expressed in trans with the mutant CBM-deficient ABC transporter. These results demonstrate that the CBM-mediated substrate-recognition mechanism is evolutionarily conserved and can operate with glycans of widely differing structures.
Collapse
Affiliation(s)
- Evan Mann
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Evan Mallette
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bradley R Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
46
|
Abstract
Circular dichroism spectra of helical bundle (red), beta barrel (blue), and mixed helical/sheet/unordered (green) membrane proteins.
Collapse
Affiliation(s)
- A. J. Miles
- Institute of Structural and Molecular Biology
- Birkbeck College
- University of London
- London
- UK
| | - B. A. Wallace
- Institute of Structural and Molecular Biology
- Birkbeck College
- University of London
- London
- UK
| |
Collapse
|
47
|
Surkont J, Diekmann Y, Ryder PV, Pereira-Leal JB. Coiled-coil length: Size does matter. Proteins 2015; 83:2162-9. [PMID: 26387794 DOI: 10.1002/prot.24932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022]
Abstract
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints.
Collapse
Affiliation(s)
| | - Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| | - Pearl V Ryder
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543.,Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| |
Collapse
|
48
|
Chang CW, Tran ENH, Ericsson DJ, Casey LW, Lonhienne T, Benning F, Morona R, Kobe B. Structural and Biochemical Analysis of a Single Amino-Acid Mutant of WzzBSF That Alters Lipopolysaccharide O-Antigen Chain Length in Shigella flexneri. PLoS One 2015; 10:e0138266. [PMID: 26378781 PMCID: PMC4574919 DOI: 10.1371/journal.pone.0138266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Lipopolysaccharide (LPS), a surface polymer of Gram-negative bacteria, helps bacteria survive in different environments and acts as a virulence determinant of host infection. The O-antigen (Oag) component of LPS exhibits a modal chain-length distribution that is controlled by polysaccharide co-polymerases (PCPs). The molecular basis of the regulation of Oag chain-lengths remains unclear, despite extensive mutagenesis and structural studies of PCPs from Escherichia coli and Shigella. Here, we identified a single mutation (A107P) of the Shigella flexneri WzzBSF, by a random mutagenesis approach, that causes a shortened Oag chain-length distribution in bacteria. We determined the crystal structures of the periplasmic domains of wild-type WzzBSF and the A107P mutant. Both structures form a highly similar open trimeric assembly in the crystals, and show a similar tendency to self-associate in solution. Binding studies by bio-layer interferometry reveal cooperative binding of very short (VS)-core-plus-O-antigen polysaccharide (COPS) to the periplasmic domains of both proteins, but with decreased affinity for the A107P mutant. Our studies reveal that subtle and localized structural differences in PCPs can have dramatic effects on LPS chain-length distribution in bacteria, for example by altering the affinity for the substrate, which supports the role of the structure of the growing Oag polymer in this process.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Elizabeth N. H. Tran
- School of Biological Sciences, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide 5005, Australia
| | - Daniel J. Ericsson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Lachlan W. Casey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
| | - Friederike Benning
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide 5005, Australia
- * E-mail: (BK); (RM)
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane Qld 4072, Australia
- * E-mail: (BK); (RM)
| |
Collapse
|
49
|
Mann E, Ovchinnikova OG, King JD, Whitfield C. Bacteriophage-mediated Glucosylation Can Modify Lipopolysaccharide O-Antigens Synthesized by an ATP-binding Cassette (ABC) Transporter-dependent Assembly Mechanism. J Biol Chem 2015; 290:25561-70. [PMID: 26330553 DOI: 10.1074/jbc.m115.660803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Lysogenic bacteriophages may encode enzymes that modify the structures of lipopolysaccharide O-antigen glycans, altering the structure of the bacteriophage receptor and resulting in serotype conversion. This can enhance virulence and has implications for antigenic diversity and vaccine development. Side chain glucosylation is a common modification strategy found in a number of bacterial species. To date, glucosylation has only been observed in O-antigens synthesized by Wzy-dependent pathways, one of the two most prevalent O-antigen synthesis systems. Here we exploited a heterologous system to study the glucosylation potential of a model O-antigen produced in an ATP-binding cassette (ABC) transporter-dependent system. Although O-antigen production is cryptic in Escherichia coli K-12, because of a mutation in the synthesis genes, it possesses a prophage glucosylation cluster, which modifies the GlcNAc residue in an α-l-Rha-(1→3)-d-GlcNAc motif found in the original O16 antigen. Raoultella terrigena ATCC 33257 produces an O-antigen possessing the same disaccharide motif, but its assembly uses an ABC transporter-dependent system. E. coli harboring the R. terrigena O-antigen biosynthesis genes produced an O-antigen displaying reduced reactivity toward antisera raised against the native R. terrigena repeat structure, indicative of an altered chemical structure. Structural determination using NMR revealed the addition of glucose side chains to the repeat units. O-antigen modification was dependent on a functional ABC transporter, consistent with modification in the periplasm, and was eliminated by deletion of the glucosylation genes from the E. coli chromosome, restoring native level antisera sensitivity and structure. There are therefore no intrinsic mechanistic barriers for bacteriophage-mediated O-antigen glucosylation in ABC transporter-dependent pathways.
Collapse
Affiliation(s)
- Evan Mann
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olga G Ovchinnikova
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jerry D King
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
50
|
Liston SD, Clarke BR, Greenfield LK, Richards MR, Lowary TL, Whitfield C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J Biol Chem 2014; 290:1075-85. [PMID: 25422321 DOI: 10.1074/jbc.m114.622480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane.
Collapse
Affiliation(s)
- Sean D Liston
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Laura K Greenfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Michele R Richards
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| |
Collapse
|