1
|
Goldberg K, Lobov A, Antonello P, Shmueli MD, Yakir I, Weizman T, Ulman A, Sheban D, Laser E, Kramer MP, Shteinvil R, Chen G, Ibraheem A, Sysoeva V, Fishbain-Yoskovitz V, Mohapatra G, Abramov A, Shimshi S, Ogneva K, Nandy M, Amidror S, Bootz-Maoz H, Kuo SH, Dezorella N, Kacen A, Javitt A, Lau GW, Yissachar N, Hayouka Z, Merbl Y. Cell-autonomous innate immunity by proteasome-derived defence peptides. Nature 2025; 639:1032-1041. [PMID: 40044870 PMCID: PMC11946893 DOI: 10.1038/s41586-025-08615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
For decades, antigen presentation on major histocompatibility complex class I for T cell-mediated immunity has been considered the primary function of proteasome-derived peptides1,2. However, whether the products of proteasomal degradation play additional parts in mounting immune responses remains unknown. Antimicrobial peptides serve as a first line of defence against invading pathogens before the adaptive immune system responds. Although the protective function of antimicrobial peptides across numerous tissues is well established, the cellular mechanisms underlying their generation are not fully understood. Here we uncover a role for proteasomes in the constitutive and bacterial-induced generation of defence peptides that impede bacterial growth both in vitro and in vivo by disrupting bacterial membranes. In silico prediction of proteome-wide proteasomal cleavage identified hundreds of thousands of potential proteasome-derived defence peptides with cationic properties that may be generated en route to degradation to act as a first line of defence. Furthermore, bacterial infection induces changes in proteasome composition and function, including PSME3 recruitment and increased tryptic-like cleavage, enhancing antimicrobial activity. Beyond providing mechanistic insights into the role of proteasomes in cell-autonomous innate immunity, our study suggests that proteasome-cleaved peptides may have previously overlooked functions downstream of degradation. From a translational standpoint, identifying proteasome-derived defence peptides could provide an untapped source of natural antibiotics for biotechnological applications and therapeutic interventions in infectious diseases and immunocompromised conditions.
Collapse
Affiliation(s)
- Karin Goldberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Arseniy Lobov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Paola Antonello
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Yakir
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Weizman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Laser
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Shteinvil
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Guoyun Chen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Angham Ibraheem
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Sysoeva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Abramov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshi
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kseniia Ogneva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Madhurima Nandy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Amidror
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadar Bootz-Maoz
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shanny H Kuo
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Gee W Lau
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nissan Yissachar
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Yaseen I, White SA, Torres-Garcia S, Spanos C, Lafos M, Gaberdiel E, Yeboah R, El Karoui M, Rappsilber J, Pidoux AL, Allshire RC. Proteasome-dependent truncation of the negative heterochromatin regulator Epe1 mediates antifungal resistance. Nat Struct Mol Biol 2022; 29:745-758. [PMID: 35879419 PMCID: PMC7613290 DOI: 10.1038/s41594-022-00801-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/06/2022] [Indexed: 12/03/2022]
Abstract
Epe1 histone demethylase restricts H3K9-methylation-dependent heterochromatin, preventing it from spreading over, and silencing, gene-containing regions in fission yeast. External stress induces an adaptive response allowing heterochromatin island formation that confers resistance on surviving wild-type lineages. Here we investigate the mechanism by which Epe1 is regulated in response to stress. Exposure to caffeine or antifungals results in Epe1 ubiquitylation and proteasome-dependent removal of the N-terminal 150 residues from Epe1, generating truncated Epe1 (tEpe1) which accumulates in the cytoplasm. Constitutive tEpe1 expression increases H3K9 methylation over several chromosomal regions, reducing expression of underlying genes and enhancing resistance. Reciprocally, constitutive non-cleavable Epe1 expression decreases resistance. tEpe1-mediated resistance requires a functional JmjC demethylase domain. Moreover, caffeine-induced Epe1-to-tEpe1 cleavage is dependent on an intact cell integrity MAP kinase stress signaling pathway, mutations in which alter resistance. Thus, environmental changes elicit a mechanism that curtails the function of this key epigenetic modifier, allowing heterochromatin to reprogram gene expression, thereby bestowing resistance to some cells within a population. H3K9me-heterochromatin components are conserved in human and crop-plant fungal pathogens for which a limited number of antifungals exist. Our findings reveal how transient heterochromatin-dependent antifungal resistant epimutations develop and thus inform on how they might be countered.
Collapse
Affiliation(s)
- Imtiyaz Yaseen
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- CSIR Indian Institute of Integrative Medicine, Jammu, India
| | - Sharon A White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sito Torres-Garcia
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Elisabeth Gaberdiel
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rebecca Yeboah
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Meriem El Karoui
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- SynthSys, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
- SynthSys, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Zanet J, Chanut-Delalande H, Plaza S, Payre F. Small Peptides as Newcomers in the Control of Drosophila Development. Curr Top Dev Biol 2016; 117:199-219. [PMID: 26969979 DOI: 10.1016/bs.ctdb.2015.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout the last century, studies using the fruit fly have contributed to the discovery of many key genetic elements that control animal development. Recent work has shed light on an unexpectedly large number of RNAs that lack the classical hallmarks of protein-coding genes and are thus referred to as noncoding RNAs. However, there is mounting evidence that both mRNA and noncoding RNAs often contain small open reading frames (sORFs/smORFs), which can be translated into peptides. While genome-wide profiling supports a pervasive translation of these noncanonical sORF/smORF/SEP peptides, their functions remain poorly understood. Here, we review recent data obtained in Drosophila demonstrating the overlooked role of smORF peptides in the control of development and adult life. Focusing on a few smORF peptides whose functions have been elucidated recently, we discuss the importance of these newly identified regulatory molecules and how they act to regulate the building and function of the whole organism.
Collapse
Affiliation(s)
- J Zanet
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - H Chanut-Delalande
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - Serge Plaza
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| | - Francios Payre
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| |
Collapse
|
4
|
The 26S proteasome and initiation of gene transcription. Biomolecules 2014; 4:827-47. [PMID: 25211636 PMCID: PMC4192674 DOI: 10.3390/biom4030827] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex.
Collapse
|
5
|
Fricker LD, Gelman JS, Castro LM, Gozzo FC, Ferro ES. Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J Proteome Res 2012; 11:1981-90. [PMID: 22304392 DOI: 10.1021/pr2012076] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 or 2 μM) for 1 h and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that, while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution, as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | | | |
Collapse
|
6
|
Kwak J, Workman JL, Lee D. The proteasome and its regulatory roles in gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:88-96. [PMID: 20723625 DOI: 10.1016/j.bbagrm.2010.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 12/21/2022]
Abstract
Cumulative evidence indicates that the proteasome, which is mainly known as a protein-degrading machine, is very essential for gene expression. Destructive functions of the proteasome, i.e., ubiquitin-dependent proteolytic activity, are significant for activator localization, activator destruction, co-activator/repressor destruction and PIC disassembly. Non-proteolytic functions of the proteasome are important for recruitment of activators and co-activators to promoters, ubiquitin-dependent histone modification, transcription elongation and possibly maturation of mRNA via the facilitation of mRNA export from the nucleus to the cytoplasm. In this review, we discuss how the proteasome regulates transcription at numerous stages during gene expression. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Jaechan Kwak
- Department of Biological Sciences, KAIST, Yuseong-Gu, Daejeon, 305-701, Korea
| | | | | |
Collapse
|
7
|
Liou GY, Zhang H, Miller EM, Seibold SA, Chen W, Gallo KA. Induced, selective proteolysis of MLK3 negatively regulates MLK3/JNK signalling. Biochem J 2010; 427:435-43. [PMID: 20158498 DOI: 10.1042/bj20091077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MLK3 (mixed lineage kinase 3) is a MAP3K [MAPK (mitogen-activated protein kinase) kinase kinase] that activates multiple MAPK pathways, including the JNK (c-Jun N-terminal kinase) pathway. Immunoblotting of lysates from cells ectopically expressing active MLK3 revealed an additional immunoreactive band corresponding to a CTF (C-terminal fragment) of MLK3. In the present paper we provide evidence that MLK3 undergoes proteolysis to generate a stable CTF in response to different stimuli, including PMA and TNFalpha (tumour necrosis factor alpha). The cleavage site was deduced by Edman sequencing as between Gln251 and Pro252, which is within the kinase domain of MLK3. Based on our homology model of the kinase domain of MLK3, the region containing the cleavage site is predicted to reside on a flexible solvent-accessible loop. Site-directed mutagenesis studies revealed that Leu250 and Gln251 are required for recognition by the 'MLK3 protease', reminiscent of the substrate specificity of the coronavirus 3C and 3CL proteases. Whereas numerous mammalian protease inhibitors have no effect on MLK3 proteolysis, blockade of the proteasome through epoxomicin or MG132 abolishes PMA-induced production of the CTF of MLK3. This CTF is able to heterodimerize with full-length MLK3, and interact with the active form of the small GTPase Cdc42, resulting in diminished activation loop phosphorylation of MLK3 and reduced signalling to JNK. Thus this novel proteolytic processing of MLK3 may negatively control MLK3 signalling to JNK.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Bhaumik SR, Malik S. Diverse regulatory mechanisms of eukaryotic transcriptional activation by the proteasome complex. Crit Rev Biochem Mol Biol 2009; 43:419-33. [PMID: 19058045 DOI: 10.1080/10409230802605914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life of any protein within a cell begins with transcriptional activation, and ends with proteolytic degradation. Intriguingly, the 26S proteasome complex, a non-lysosomal protein degradation machine comprising the 20S proteolytic core and 19S regulatory particles, has been implicated in intimate regulation of eukaryotic transcriptional activation through diverse mechanisms in a proteolysis-dependent as well as independent manner. Here, we discuss the intricate mechanisms of such proteasomal regulation of eukaryotic gene activation via multiple pathways.
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | | |
Collapse
|
10
|
Erratum: Where to start and when to stop. Nat Struct Mol Biol 2006. [DOI: 10.1038/nsmb0906-855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|